1
|
Govender P, Ghai M. Population-specific differences in the human microbiome: Factors defining the diversity. Gene 2025; 933:148923. [PMID: 39244168 DOI: 10.1016/j.gene.2024.148923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Differences in microbial communities at different body habitats define the microbiome composition of the human body. The gut, oral, skin vaginal fluid and tissue microbiome, are pivotal for human development and immune response and cross talk between these microbiomes is evident. Population studies reveal that various factors, such as host genetics, diet, lifestyle, aging, and geographical location are strongly associated with population-specific microbiome differences. The present review discusses the factors that shape microbiome diversity in humans, and microbiome differences in African, Asian and Caucasian populations. Gut microbiome studies show that microbial species Bacteroides is commonly found in individuals living in Western countries (Caucasian populations), while Prevotella is prevalent in non-Western countries (African and Asian populations). This association is mainly due to the high carbohydrate, high fat diet in western countries in contrast to high fibre, low fat diets in African/ Asian regions. Majority of the microbiome studies focus on the bacteriome component; however, interesting findings reveal that increased bacteriophage richness, which makes up the virome component, correlates with decreased bacterial diversity, and causes microbiome dysbiosis. An increase of Caudovirales (bacteriophages) is associated with a decrease in enteric bacteria in inflammatory bowel diseases. Future microbiome studies should evaluate the interrelation between bacteriome and virome to fully understand their significance in the pathogenesis and progression of human diseases. With ethnic health disparities becoming increasingly apparent, studies need to emphasize on the association of population-specific microbiome differences and human diseases, to develop microbiome-based therapeutics. Additionally, targeted phage therapy is emerging as an attractive alternative to antibiotics for bacterial infections. With rapid rise in microbiome research, focus should be on standardizing protocols, advanced bioinformatics tools, and reducing sequencing platform related biases. Ultimately, integration of multi-omics data (genomics, transcriptomics, proteomics and metabolomics) will lead to precision models for personalized microbiome therapeutics advancement.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| |
Collapse
|
2
|
Marzinelli EM, Thomas T, Vadillo Gonzalez S, Egan S, Steinberg PD. Seaweeds as holobionts: Current state, challenges, and potential applications. JOURNAL OF PHYCOLOGY 2024; 60:785-796. [PMID: 39047050 DOI: 10.1111/jpy.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.
Collapse
Affiliation(s)
- Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Vadillo Gonzalez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
4
|
Herman C, Barker BM, Bartelli TF, Chandra V, Krajmalnik-Brown R, Jewell M, Li L, Liao C, McAllister F, Nirmalkar K, Xavier JB, Gregory Caporaso J. Assessing Engraftment Following Fecal Microbiota Transplant. ARXIV 2024:arXiv:2404.07325v1. [PMID: 38659636 PMCID: PMC11042410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorders, to priming the microbiome for cancer treatment, and restoring microbiomes impacted by cancer treatment. Quantifying the extent of engraftment following an FMT is important in determining if a recipient didn't respond because the engrafted microbiome didn't produce the desired outcomes (a successful FMT, but negative treatment outcome), or the microbiome didn't engraft (an unsuccessful FMT and negative treatment outcome). The lack of a consistent methodology for quantifying FMT engraftment extent hinders the assessment of FMT success and its relation to clinical outcomes, and presents challenges for comparing FMT results and protocols across studies. Here we review 46 studies of FMT in humans and model organisms and group their approaches for assessing the extent to which an FMT engrafts into three criteria: 1) Chimeric Asymmetric Community Coalescence investigates microbiome shifts following FMT engraftment using methods such as alpha diversity comparisons, beta diversity comparisons, and microbiome source tracking. 2) Donated Microbiome Indicator Features tracks donated microbiome features (e.g., amplicon sequence variants or species of interest) as a signal of engraftment with methods such as differential abundance testing based on the current sample collection, or tracking changes in feature abundances that have been previously identified (e.g., from FMT or disease-relevant literature). 3) Temporal Stability examines how resistant post-FMT recipient's microbiomes are to reverting back to their baseline microbiome. Individually, these criteria each highlight a critical aspect of microbiome engraftment; investigated together, however, they provide a clearer assessment of microbiome engraftment. We discuss the pros and cons of each of these criteria, providing illustrative examples of their application. We also introduce key terminology and recommendations on how FMT studies can be analyzed for rigorous engraftment extent assessment.
Collapse
Affiliation(s)
- Chloe Herman
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Thais F Bartelli
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, U.S.A
| | | | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Gregory Caporaso
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
5
|
Zhang Y, Zhang H, Xu T, Zeng L, Liu F, Huang X, Liu Q. Interactions among microorganisms open up a new world for anti-infectious therapy. FEBS J 2024; 291:1615-1631. [PMID: 36527169 DOI: 10.1111/febs.16705] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The human microbiome, containing bacteria, fungi, and viruses, is a community that coexists peacefully with humans most of the time, but with the potential to cause disease under certain conditions. When the environment changes or certain stimuli are received, microbes may interact with each other, causing or increasing the severity of disease in a host. With the appropriate methods, we can make these microbiota work for us, creating new applications for human health. This review discusses the wide range of interactions between microorganisms that result in an increase in susceptibility to, severity of, and mortality of diseases, and also briefly introduces how microorganisms interact with each other directly or indirectly. The study of microbial interactions and their mechanisms has revealed a new world of treatments for infectious disease. The regulation of the balance between intestinal flora, the correct application of probiotics, and the development of effective drugs by symbiosis all demonstrate the great contributions of the microbiota to human health and its powerful potential value. Consequently, the study of interactions between microorganisms plays an essential role in identifying the causes of diseases and the development of treatments.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Hanchi Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
- The First Clinical Medical College, Nanchang University, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children's Hospital of Jiangxi Province, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, China
| |
Collapse
|
6
|
Miao S, Qiu H. The microbiome in the pathogenesis of lung cancer: The role of microbiome in lung cancer pathogenesis. APMIS 2024; 132:68-80. [PMID: 37974493 DOI: 10.1111/apm.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
As one of the malignant tumors with high incidence rate and high mortality, lung cancer seriously threatens the life safety of patients. Research shows that microorganisms are closely related to lung cancer. The microbiome is symbiotic with the host and plays a vital role in the functions of the human body. Microbiota dysbiosis is correlated with development of lung cancer. However, the underlying mechanisms are poorly understood. This paper summarizes the composition characteristics of the gut-lung axis microbiome and intratumoral microbiome in patients with lung cancer. We then expound five potential carcinogenic mechanisms based on microorganisms, such as genotoxicity, metabolism, inflammation, immune response, and angiogenesis. Next, we list three high-throughput sequencing methods, and finally looks forward to the prospect of microorganisms as novel targets for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Sainan Miao
- School of Nursing, Anhui Medical University, Hefei, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Krekhno Z, Woodward SE, Serapio-Palacios A, Peña-Díaz J, Moon KM, Foster LJ, Finlay BB. Citrobacter rodentium possesses a functional type II secretion system necessary for successful host infection. Gut Microbes 2024; 16:2308049. [PMID: 38299318 PMCID: PMC10841016 DOI: 10.1080/19490976.2024.2308049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
Infectious diarrheal diseases are the third leading cause of mortality in young children, many of which are driven by Gram-negative bacterial pathogens. To establish successful host infections these pathogens employ a plethora of virulence factors necessary to compete with the resident microbiota, and evade and subvert the host defenses. The type II secretion system (T2SS) is one such conserved molecular machine that allows for the delivery of effector proteins into the extracellular milieu. To explore the role of the T2SS during natural host infection, we used Citrobacter rodentium, a murine enteric pathogen, as a model of human intestinal disease caused by pathogenic Escherichia coli such as Enteropathogenic and Enterohemorrhagic E. coli (EPEC and EHEC). In this study, we determined that the C. rodentium genome encodes one T2SS and 22 potential T2SS-secreted protein effectors, as predicted via sequence homology. We demonstrated that this system was functional in vitro, identifying a role in intestinal mucin degradation allowing for its utilization as a carbon source, and promoting C. rodentium attachment to a mucus-producing colon cell line. During host infection, loss of the T2SS or associated effectors led to a significant colonization defect and lack of systemic spread. In mice susceptible to lethal infection, T2SS-deficient C. rodentium was strongly attenuated, resulting in reduced morbidity and mortality in infected hosts. Together these data highlight the important role of the T2SS and its effector repertoire during C. rodentium pathogenesis, aiding in successful host mucosal colonization.
Collapse
Affiliation(s)
- Z Krekhno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - SE Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - A Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - KM Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - LJ Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - BB Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Yao Y, Shen Y. Cross-talk between gut microbiota and liver steatosis: Complications and therapeutic target. Open Life Sci 2023; 18:20220699. [PMID: 37671098 PMCID: PMC10476486 DOI: 10.1515/biol-2022-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
Liver steatosis is the most widespread chronic liver condition. Its global incidence is rising swiftly and is currently estimated to be 24%. Liver steatosis is strongly related with numerous metabolic syndrome characteristics, like obesity, insulin resistance, hyperlipidemia, and hypertension. The gastrointestinal tract contains about 100 trillion commensal organisms and more than 7,000 distinct bacterial strains. Fat deposition in the liver without secondary causes is known as liver steatosis. Dysregulation of the gut flora is one of the factors connected to the onset of fatty liver disease. Dietary choices may alter constitution of the microbiome and cause gut microbiome dysbiosis, particularly due to the intake of food high in fructose sugars, animal products, and saturated fats. Various gut bacteria cause nutrient metabolism in multiple ways, setting off different inflammatory cascades that encourage liver disease and pathways that help fat build up in the liver. Due to their relatively stable nature, genetic factors may not be responsible for the constant increase in liver steatosis incidence. Genetic factors set the stage for liver steatosis pathogenesis. This review will offer an overview of our present knowledge of the roles played by gut microbiota in regulating the development of liver steatosis, potential side effects, and potential treatment targets.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| |
Collapse
|