1
|
Amiri M, Moaveni AK, Majidi Zolbin M, Shademan B, Nourazarian A. Optimizing cancer treatment: the synergistic potential of CAR-T cell therapy and CRISPR/Cas9. Front Immunol 2024; 15:1462697. [PMID: 39582866 PMCID: PMC11581867 DOI: 10.3389/fimmu.2024.1462697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 11/26/2024] Open
Abstract
Optimizing cancer treatment has become a pivotal goal in modern oncology, with advancements in immunotherapy and genetic engineering offering promising avenues. CAR-T cell therapy, a revolutionary approach that harnesses the body's own immune cells to target and destroy cancer cells, has shown remarkable success, particularly in treating acute lymphoblastic leukemia (ALL), and in treating other hematologic malignancies. While CAR-T cell therapy has shown promise, challenges such as high cost and manufacturing complexity remain. However, its efficacy in solid tumors remains limited. The integration of CRISPR/Cas9 technology, a powerful and precise genome-editing tool, also raises safety concerns regarding unintended edits and off-target effects, offers a synergistic potential to overcome these limitations. CRISPR/Cas9 can enhance CAR-T cell therapy by improving the specificity and persistence of CAR-T cells, reducing off-target effects, and engineering resistance to tumor-induced immunosuppression. This combination can also facilitate the knockout of immune checkpoint inhibitors, boosting the anti-tumor activity of CAR-T cells. Recent studies have demonstrated that CRISPR/Cas9-edited CAR-T cells can target previously untreatable cancer types, offering new hope for patients with refractory cancers. This synergistic approach not only enhances the efficacy of cancer treatment but also paves the way for personalized therapies tailored to individual genetic profiles. This review highlights the ongoing research efforts to refine this approach and explores its potential to revolutionize cancer treatment across a broader range of malignancies. As research progresses, the integration of CAR-T cell therapy and CRISPR/Cas9 holds the promise of transforming cancer treatment, making it more effective and accessible. This review explores the current advancements, challenges, and future prospects of this innovative therapeutic strategy.
Collapse
Affiliation(s)
- Maryam Amiri
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Shademan
- Medical Journalism, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| |
Collapse
|
2
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
3
|
Isazadeh A, Heris JA, Shahabi P, Mohammadinasab R, Shomali N, Nasiri H, Valedkarimi Z, Khosroshahi AJ, Hajazimian S, Akbari M, Sadeghvand S. Pattern-recognition receptors (PRRs) in SARS-CoV-2. Life Sci 2023; 329:121940. [PMID: 37451397 DOI: 10.1016/j.lfs.2023.121940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Pattern recognition receptors (PRRs) are specific sensors that directly recognize various molecules derived from viral or bacterial pathogens, senescent cells, damaged cells, and apoptotic cells. These sensors act as a bridge between nonspecific and specific immunity in humans. PRRs in human innate immunity were classified into six types: toll-like receptors (TLR), C-type lectin receptors (CLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs), absent in melanoma 2 (AIM2)-like receptors (ALRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and cyclic GMP-AMP (cGAMP) synthase (cGAS). Numerous types of PRRs are responsible for recognizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which is immensely effective in prompting interferon responses. Detection of SARS-CoV-2 infection by PRRs causes the initiation of an intracellular signaling cascade and subsequently the activation of various transcription factors that stimulate the production of cytokines, chemokines, and other immune-related factors. Therefore, it seems that PRRs are a promising potential therapeutic approach for combating SARS-CoV-2 infection and other microbial infections. In this review, we have introduced the current knowledge of various PRRs and related signaling pathways in response to SARS-CoV-2.
Collapse
Affiliation(s)
- Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahram Sadeghvand
- Department of Pediatrics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Sagoe KO, Kyama MC, Maina N, Kamita M, Njokah M, Thiong'o K, Kanoi BN, Wandera EA, Ndegwa D, Kinyua DM, Gitaka J. Application of Hybridization Chain Reaction/CRISPR-Cas12a for the Detection of SARS-CoV-2 Infection. Diagnostics (Basel) 2023; 13:diagnostics13091644. [PMID: 37175035 PMCID: PMC10178590 DOI: 10.3390/diagnostics13091644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Globally, the emergence of the coronavirus disease (COVID-19) has had a significant impact on life. The need for ongoing SARS-CoV-2 screening employing inexpensive and quick diagnostic approaches is undeniable, given the ongoing pandemic and variations in vaccine administration in resource-constrained regions. This study presents results as proof of concept to use hybridization chain reaction (HCR) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a complex for detecting SARS-CoV-2. HCR hairpin probes were designed using the NUPACK web-based program and further used to amplify the SARS-CoV-2 N gene in archived nasopharyngeal samples. The results were visualized using agarose gels and CRISPR Cas12a-based lateral flow strips. The assay was evaluated using the gold standard, real-time polymerase chain reaction (RT-PCR), as recommended by the World Health Organization (WHO). The results show the comparative efficiency of HCR to RT-PCR. This study shows that HCR and CRISPR are viable alternatives for diagnosing SARS-CoV-2 in samples.
Collapse
Affiliation(s)
- Kate Obaayaa Sagoe
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi P.O. Box 62000-00200, Kenya
| | - Mutinda Cleophas Kyama
- Department of Medical Laboratory Science, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Naomi Maina
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Moses Kamita
- Directorate of Research and Innovation, Mount Kenya University, Thika P.O. Box 342-01000, Kenya
| | - Muturi Njokah
- Department of Biochemistry, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Kelvin Thiong'o
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, Thika P.O. Box 342-01000, Kenya
| | - Ernest Apondi Wandera
- Directorate of Research and Innovation, Mount Kenya University, Thika P.O. Box 342-01000, Kenya
- Center for Virus Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya
| | - Davies Ndegwa
- Department of Medical Laboratory Sciences, Kenya Medical Training College, Nairobi P.O. Box 30195-00100, Kenya
| | - Dickson Mwenda Kinyua
- Department of Physical Sciences, Meru University of Science & Technology, Meru P.O. Box 972-60200, Kenya
- Department of Pure and Applied Sciences, Kirinyaga University, Kerugoya P.O. Box 143-10300, Kenya
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika P.O. Box 342-01000, Kenya
| |
Collapse
|
5
|
Polatoğlu I, Oncu‐Oner T, Dalman I, Ozdogan S. COVID-19 in early 2023: Structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm (Beijing) 2023; 4:e228. [PMID: 37041762 PMCID: PMC10082934 DOI: 10.1002/mco2.228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 04/13/2023] Open
Abstract
Coronavirus Disease-19 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome-coronaviruses-2 (SARS-CoV-2), a highly pathogenic and transmissible coronavirus. Most cases of COVID-19 have mild to moderate symptoms, including cough, fever, myalgias, and headache. On the other hand, this coronavirus can lead to severe complications and death in some cases. Therefore, vaccination is the most effective tool to prevent and eradicate COVID-19 disease. Also, rapid and effective diagnostic tests are critical in identifying cases of COVID-19. The COVID-19 pandemic has a dynamic structure on the agenda and contains up-to-date developments. This article has comprehensively discussed the most up-to-date pandemic situation since it first appeared. For the first time, not only the structure, replication mechanism, and variants of SARS-CoV-2 (Alpha, Beta, Gamma, Omicron, Delta, Epsilon, Kappa, Mu, Eta, Zeta, Theta, lota, Lambda) but also all the details of the pandemic, such as how it came out, how it spread, current cases, what precautions should be taken, prevention strategies, the vaccines produced, the tests developed, and the drugs used are reviewed in every aspect. Herein, the comparison of diagnostic tests for SARS-CoV-2 in terms of procedure, accuracy, cost, and time has been presented. The mechanism, safety, efficacy, and effectiveness of COVID-19 vaccines against SARS-CoV-2 variants have been evaluated. Drug studies, therapeutic targets, various immunomodulators, and antiviral molecules applied to patients with COVID-19 have been reviewed.
Collapse
Affiliation(s)
- Ilker Polatoğlu
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Tulay Oncu‐Oner
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| | - Irem Dalman
- Department of BioengineeringEge UniversityBornovaIzmirTurkey
| | - Senanur Ozdogan
- Department of BioengineeringManisa Celal Bayar UniversityYunusemreManisaTurkey
| |
Collapse
|
6
|
Nuchnoi P, Piromtong P, Siribal S, Anansilp K, Thichanpiang P, Okada PA. Applicability of a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection in high exposure risk setting. Int J Infect Dis 2023; 128:285-289. [PMID: 36642206 PMCID: PMC9836985 DOI: 10.1016/j.ijid.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/25/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES During the third wave, the growing number of COVID-19 case clusters reported countrywide in Thailand demonstrated the rapidly evolving characteristics of SARS-CoV-2, the causative agent of the COVID-19 pandemic. The rapid spread of COVID-19 infections had been extensively reported in public areas and construction camps, as well as in congested communities with poor sanitation. High demand for SARS-CoV-2 genome testing and quick reporting by an hour for case identification and isolation characterizes the COVID-19 crisis in Thailand. This situation leads to an urgent need for alternative molecular tests which are reliable, rapid, and cost-effective. METHODS In this study, we assessed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP), using real-time reverse transcription-polymerase chain reaction (RT-PCR) as a reference standard, for active case finding in suspected (mostly asymptomatic) cases living in high-risk areas of Bangkok. RESULTS The diagnostic performance of the RT-LAMP compared with real-time RT-PCR in specimens from 549 Thais were computed in a real-world field study setting. Our study demonstrated that RT-LAMP achieved robust identification of SARS-CoV-2 infection, with a diagnostic sensitivity and specificity of 91.67% and 100%, respectively. CONCLUSION RT-LAMP is a reliable assay for SARS-CoV-2 detection and is scalable for use in the emergency response to a nationwide pandemic, despite resource limitations. The RT-LAMP real-world data derived from this field study validate its potential use in laboratory practice. RT-LAMP is a good choice as a laboratory-based SARS-CoV-2 molecular test when real-time RT-PCR is not available.
Collapse
Affiliation(s)
- Pornlada Nuchnoi
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhnon Pathom, Thailand; Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhnon Pathom, Thailand.
| | - Pakorn Piromtong
- National Institute of Health of Thailand, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Saranya Siribal
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Korrarit Anansilp
- International Center for Medical and Radiological Technology, Faculty of Medical Technology, Mahidol University, Nakhnon Pathom, Thailand
| | - Peeradech Thichanpiang
- Division of Occupational Therapy, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
| | - Pilailuk Akkapaiboon Okada
- National Institute of Health of Thailand, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
7
|
Prognostic Value of Physiological Scoring Systems in COVID-19 Patients: A Prospective Observational Study. Adv Emerg Nurs J 2023; 45:77-85. [PMID: 36757751 DOI: 10.1097/tme.0000000000000445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The objective of this study was to investigate the accuracy of the Modified Early Warning Score (MEWS), Rapid Emergency Medicine Score (REMS), Rapid Acute Physiology Score (RAPS), Worthing Physiological Scoring System (WPSS), and Revised Trauma Score (RTS) for predicting the inhospital mortality of COVID-19 patients. This diagnostic accuracy study was conducted in Tehran, Iran, from November 15, 2020, to March 10, 2021. The participants consisted of 246 confirmed cases of COVID-19 patients who were admitted to the emergency department. The patients were followed from the point of admission up until discharge from the hospital. The mortality status of patients (survivor or nonsurvivor) was reported at the discharge time, and the receiver operating characteristic curve analysis of each scoring system for predicting inhospital mortality was estimated. The area under the curve of REMS was significantly higher than other scoring systems and in cutoff value of 6 and greater had a sensitivity and specificity of 89.13% and 55.50%, respectively. Among the five scoring systems employed in this study, REMS had the best accuracy to predict the inhospital mortality rate of COVID-19 patients and RAPS had the lowest accuracy for inhospital mortality. Thus, REMS is a useful tool that can be employed in identifying high-risk COVID-19 patients.
Collapse
|
8
|
Sarkar S, Sen R. Insights into Cardiovascular Defects and Cardiac Epigenome in the Context of COVID-19. EPIGENOMES 2022; 6:epigenomes6020013. [PMID: 35645252 PMCID: PMC9150012 DOI: 10.3390/epigenomes6020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Although few in number, studies on epigenome of the heart of COVID-19 patients show that epigenetic signatures such as DNA methylation are significantly altered, leading to changes in expression of several genes. It contributes to pathogenic cardiac phenotypes of COVID-19, e.g., low heart rate, myocardial edema, and myofibrillar disarray. DNA methylation studies reveal changes which likely contribute to cardiac disease through unknown mechanisms. The incidence of severe COVID-19 disease, including hospitalization, requiring respiratory support, morbidity, and mortality, is disproportionately higher in individuals with co-morbidities. This poses unprecedented strains on the global healthcare system. While their underlying conditions make patients more susceptible to severe COVID-19 disease, strained healthcare systems, lack of adequate support, or sedentary lifestyles from ongoing lockdowns have proved detrimental to their underlying health conditions, thus pushing them to severe risk of congenital heart disease (CHD) itself. Prophylactic vaccines against COVID-19 have ushered new hope for CHD. A common connection between COVID-19 and CHD is SARS-CoV-2’s host receptor ACE2, because ACE2 regulates and protects organs, including the heart, in various ways. ACE2 is a common therapeutic target against cardiovascular disease and COVID-19 which damages organs. Hence, this review explores the above regarding CHDs, cardiovascular damage, and cardiac epigenetics, in COVID-19 patients.
Collapse
Affiliation(s)
- Shreya Sarkar
- New Brunswick Heart Centre, Saint John Regional Hospital, Saint John, NB E2L 4L2, Canada;
| | - Rwik Sen
- Active Motif, Inc., 1914 Palomar Oaks Way, Suite 150, Carlsbad, CA 92008, USA
- Correspondence:
| |
Collapse
|
9
|
Al-Awwal N, Dweik F, Mahdi S, El-Dweik M, Anderson SH. A Review of SARS-CoV-2 Disease (COVID-19): Pandemic in Our Time. Pathogens 2022; 11:368. [PMID: 35335691 PMCID: PMC8951506 DOI: 10.3390/pathogens11030368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Development and deployment of biosensors for the rapid detection of the 2019 novel severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) are of utmost importance and urgency during this recent outbreak of coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection, which spread rapidly around the world. Cases now confirmed in February 2022 indicate that more than 170 countries worldwide are affected. Recent evidence indicates over 430 million confirmed cases with over 5.92 million deaths scattered across the globe, with the United States having more than 78 million confirmed cases and over 920,000 deaths. The US now has many more cases than in China where coronavirus cases were first reported in late December 2019. During the initial outbreak in China, many leaders did not anticipate it could reach the whole world, spreading to many countries and posing severe threats to global health. The objective of this review is to summarize the origin of COVID-19, its biological nature, comparison with other coronaviruses, symptoms, prevention, treatment, potential, available methods for SARS-CoV-2 detection, and post-COVID-19 symptoms.
Collapse
Affiliation(s)
- Nasruddeen Al-Awwal
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| | - Ferris Dweik
- Department of Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA;
| | - Samira Mahdi
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Majed El-Dweik
- Cooperative Research, Lincoln University, Jefferson City, MO 65101, USA;
| | - Stephen H. Anderson
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|