1
|
Paiva SC, Salvador GHM, Barbosa PS, Oliveira HCD, Fernandes CAH, Ramos CHI, Fontes MRDM, Cano MIN. Exploring the structure and nucleic acid interactions of the Leishmania sp. telomerase reverse transcriptase N-terminal region. Arch Biochem Biophys 2025; 764:110289. [PMID: 39778669 DOI: 10.1016/j.abb.2025.110289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal. The enzyme also contains an RNA component that carries the template copied by the TERT during telomere elongation. Here, we show that the tertiary structure of Leishmania major TERT (LmTERT) is conserved compared to other eukaryotes. However, the LmTERT N-terminal (LmTERT-NT) portion shows structural changes not detected in the entire protein, mainly in the TEN domain. Besides the disordered elements, the TEN gains two long β-sheets but preserves the GQ motif and the residues in β-sheet 5 that interact with the TRAP motif. In both structures, a linker flanks the TEN and TRBD. The TRBD is partially conserved in both structures and contains the canonical QFP and T motifs, invariant residues, and the putative CP and two trypanosomatid-specific motifs (TSM) besides genus-specific amino acid substitutions. Despite the structural changes, the recombinant LmTERT-NT preserves a hydrophobic cavity that binds specifically and in the picomolar range to the telomeric G-rich DNA and the TER 5' end region. Thus, LmTERT-NT shares the canonical structural domains and motifs and is biochemically active. We discuss the importance of the TERT N-terminal region in the parasite's telomerase catalysis.
Collapse
Affiliation(s)
- Stephany C Paiva
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Patrick S Barbosa
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Hamine Cristina de Oliveira
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Carlos Alexandre H Fernandes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil; UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, 75005, Paris, France
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Marcos Roberto de M Fontes
- Department of Biophysics and Pharmacology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil; Institute for Advanced Studies of the Sea, São Paulo State University (UNESP), São Vicente, SP, Brazil
| | - Maria Isabel N Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
2
|
Ludwiczak J, Iłowska E, Wilkowska M, Szymańska A, Kempka M, Dobies M, Szutkowski K, Kozak M. The influence of a dicationic surfactant on the aggregation process of the IVAGVN peptide derived from the human cystatin C sequence (56-61). RSC Adv 2025; 15:3237-3249. [PMID: 39896427 PMCID: PMC11784886 DOI: 10.1039/d4ra08377f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Human cystatin C (hCC) undergoes domain swapping and forms amyloid structures. Steric zipper motifs, which are important for hCC fibrillization, have been identified and studied in our previous work. In the present study, we analysed the influence of the selected dicationic surfactant (a derivative of dodecylimidazolium chloride: 3,3'-[α,ω-(dioxahexane)]bis(1-dodecylimidazolium)dichloride) on the structure of the aggregates formed by one such fragment, a peptide with the sequence IVAGVN, corresponding to residues 56-61 in the full-length protein. Changes in the secondary structure of the peptide induced by the surfactant were studied using circular dichroism (CD) and FTIR, and the aggregates were characterised using microscopic techniques (AFM and TEM) and NMR.
Collapse
Affiliation(s)
- Julia Ludwiczak
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | - Emilia Iłowska
- Department of Organic Chemistry, University of Gdansk Gdansk Poland
| | | | - Aneta Szymańska
- Department of Biomedical Chemistry, University of Gdansk Gdansk Poland
| | - Marek Kempka
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | - Maria Dobies
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| | | | - Maciej Kozak
- Department of Biomedical Physics, Adam Mickiewicz University Poznan Poland
| |
Collapse
|
3
|
Tiwari S, Koti Ainavarapu SR. Platinum Stabilises a Molten-Globule Conformation of a Small Globular Cytosolic Protein SUMO1. Chem Asian J 2025; 20:e202400971. [PMID: 39417787 PMCID: PMC11741158 DOI: 10.1002/asia.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Proteins are generally resistant to large conformational changes under physiological conditions. Here, we show that platinum (Pt(II)), which is widely-used metal centre in cancer therapeutic drugs, binds to a cytosolic protein, small ubiquitin-like modifier 1 (SUMO1), under physiological conditions and changes its conformation to a molten globule (MG). Mass spectrometry (ICP-MS) studies confirmed stoichiometric Pt(II) binding to SUMO1. Fluorescence spectroscopy showed Tyr fluorescence quenching and increased ANS binding. Fluorescence assays on Trp-mutants indicated conformational changes and circular dichroism (CD) suggested MG formation upon Pt(II) binding. In contrast, structural homologues of SUMO1 (ubiquitin (Ubq) and SUMO2) showed no conformational changes on Pt(II) titration. Further studies compared the impact of distinct His residues in SUMO1 on Pt(II) binding and protein structure to SUMO2 and Ubq. Experiments at low pH (5.0) implicated His residues interacting with Pt(II), corroborated by the absence of conformational change in the H75L mutant of SUMO1. Pt(II)-His binding in SUMO1 unravels key molecular determinants of Pt(II)-protein interactions and their conformational consequences. SUMO1 with other SUMOylation components are shown to have enhanced expression in several cancers, hence, our study suggests a possible fate of the non-targetability of Pt(II)-based drugs on SUMOylation in cancer cells, upon interaction with SUMO1.
Collapse
Affiliation(s)
- Suman Tiwari
- Department of Chemical SciencesTata Institute of Fundamental ResearchDr Homi Bhabha Road, ColabaMumbai400005India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical SciencesTata Institute of Fundamental ResearchDr Homi Bhabha Road, ColabaMumbai400005India
| |
Collapse
|
4
|
Lo Cascio F, Park S, Sengupta U, Puangmalai N, Bhatt N, Shchankin N, Jerez C, Moreno N, Bittar A, Xavier R, Zhao Y, Wang C, Fu H, Ma Q, Montalbano M, Kayed R. Brain-derived tau oligomer polymorphs: distinct aggregations, stability profiles, and biological activities. Commun Biol 2025; 8:53. [PMID: 39809992 PMCID: PMC11733013 DOI: 10.1038/s42003-025-07499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs. Here, we investigate the structural and functional differences of amplified brain-derived tau oligomers (aBDTOs) from AD, DLB, and PSP. Our results indicate that the aBDTOs possess different structural and morphological features that impact neuronal function, gene regulation, and ultimately disease progression. The distinct tau oligomeric polymorphs may thus contribute to the development of clinical phenotypes and shape the progression of diseases. Our results can provide insight into developing personalized therapy to target a specific neurotoxic tau polymorph.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Suhyeorn Park
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikita Shchankin
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi Moreno
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rhea Xavier
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yingxin Zhao
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Pani BSUL, Chandrasekaran N. Investigating the impact of nanoplastics in altering the efficacy of clarithromycin antibiotics through In vitro studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125144. [PMID: 39424051 DOI: 10.1016/j.envpol.2024.125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Plastics have significant global implications due to their environmental contamination from extensive use and improper disposal. Among plastic particles, nanoplastics (<1 μm) pose notable risks to organisms and ecosystems due to their high surface area, reactivity, and potential to carry environmental pollutants. This study explores the interaction between polystyrene nanoplastics (PSNPs) and clarithromycin (CLA), a broad-spectrum antibiotic, focusing on their combined impact on insulin (INS) and antibiotic-resistant (AMR) bacteria. PSNPs can adsorb CLA, leading to structural changes in insulin and affecting its physiological functions, potentially causing insulin resistance. Additionally, PSNPs reduce CLA's inhibitory effects on pathogenic bacteria, facilitating antibiotic resistance. Our research utilized UV-Vis Spectroscopy, FTIR, Fluorescence spectroscopy, and Circular dichroism (CD) spectroscopy to assess INS structural changes, alongside the Kirby-Bauer disk diffusion method for microbiological examination. The findings highlight the synergistic and antagonistic effects of PSNPs and CLA, underscoring the enhanced toxicity of CLA when adsorbed onto PSNPs and the complex interactions affecting both human health and bacterial resistance. Further studies are essential to fully understand these mechanisms and their broader implications.
Collapse
|
6
|
Salgueiro BA, Saramago M, Tully MD, Arraiano CM, Moe E, Matos RG, Matias PM, Romão CV. Structure-function mapping and mechanistic insights on the SARS CoV2 Nsp1. Protein Sci 2024; 33:e5228. [PMID: 39584680 PMCID: PMC11586866 DOI: 10.1002/pro.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
Non-structural protein 1 (Nsp1) is a key component of the infectious process caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), responsible for the COVID-19 pandemic. Our previous data demonstrated that Nsp1 can degrade both RNA and DNA in the absence of the ribosome, a process dependent on the metal ions Mn2+, Ca2+, or Mg2+ (Salgueiro et al., SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals. 2024;37:1127-1146). The protein is composed of two structural domains: the N-terminal domain (NTD) and C-terminal domain (CTD), connected by a loop. To elucidate the function of each structural domain, we generated four truncated versions of Nsp1 containing either the NTD or the CTD. Our results indicate that the Nsp1SARS-CoV2 domains play distinct functional roles. Specifically, the NTD is involved in nucleotide binding and regulation, while the CTD acts as the catalytic domain. Moreover, a tyrosyl radical was detected during the nuclease activity, and an in-depth analysis of the different constructs suggested that Y136 could be involved in this process. Indeed, our results show that Y136F Nsp1 variant lacks DNA nuclease activity but retains its RNA nuclease activity. Furthermore, we observed that the CTD has a propensity to associate with hydrophobic environments, suggesting that it might associate with cell membranes. However, the cellular function of this association requires further investigation. This study sheds light on the functions of the individual domains of Nsp1, providing valuable insights into its mechanism of action in Coronaviruses.
Collapse
Affiliation(s)
- Bruno A. Salgueiro
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Margarida Saramago
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Mark D. Tully
- ESRF, European Synchrotron Radiation FacilityGrenoble Cedex 9France
| | - Cecília M. Arraiano
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Elin Moe
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Rute G. Matos
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Pedro M. Matias
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- iBET – Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Célia V. Romão
- ITQB‐NOVA, Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
7
|
Budamagunta MS, Mori H, Silk J, Slez RR, Bognár B, Mendiola UR, Kálai T, Maezawa I, Voss JC. Nitroxyl Hybrids with Curcumin and Stilbene Scaffolds Display Potent Antioxidant Activity, Remodel the Amyloid Beta Oligomer, and Reverse Amyloid Beta-Induced Cytotoxicity. Antioxidants (Basel) 2024; 13:1411. [PMID: 39594552 PMCID: PMC11591036 DOI: 10.3390/antiox13111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The disorder and heterogeneity of low-molecular-weight amyloid-beta oligomers (AβOs) underlie their participation in multiple modes of cellular dysfunction associated with the etiology of Alzheimer's disease (AD). The lack of specified conformational states in these species complicates efforts to select or design small molecules to targeting discrete pathogenic states. Furthermore, targeting AβOs alone may be therapeutically insufficient, as AD progresses as a multifactorial, self-amplifying cascade. To address these challenges, we have screened the activity of seven new candidates that serve as Paramagnetic Amyloid Ligand (PAL) candidates. PALs are bifunctional small molecules that both remodel the AβO structure and localize a potent antioxidant that mimics the activity of SOD within live cells. The candidates are built from either a stilbene or curcumin scaffold with nitroxyl moiety to serve as catalytic antioxidants. Measurements of PAL AβO binding and remolding along with assessments of bioactivity allow for the extraction of useful SAR information from screening data. One candidate (HO-4450; PMT-307), with a six-membered nitroxyl ring attached to a stilbene ring, displays the highest potency in protecting against cell-derived Aβ. A preliminary low-dose evaluation in AD model mice provides evidence of modest treatment effects by HO-4450. The results for the curcumin PALs demonstrate that the retention of the native curcumin phenolic groups is advantageous to the design of the hybrid PAL candidates. Finally, the PAL remodeling of AβO secondary structures shows a reasonable correlation between a candidate's bioactivity and its ability to reduce the fraction of antiparallel β-strand.
Collapse
Affiliation(s)
- Madhu S. Budamagunta
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA; (M.S.B.); (J.S.); (R.R.S.)
| | - Hidetoshi Mori
- Center for Genomic Pathology, University of California Davis, Sacramento, CA 95817, USA
| | - Joshua Silk
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA; (M.S.B.); (J.S.); (R.R.S.)
- Paramag Biosciences Inc., 720 Olive Drive, Davis, CA 95616, USA
| | - Ryan R. Slez
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA; (M.S.B.); (J.S.); (R.R.S.)
| | - Balázs Bognár
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd St. 1., H-7624 Pécs, Hungary; (B.B.); (T.K.)
- János Szentágothai Research Center, Ifjúság St. 20., H-7624 Pécs, Hungary
| | - Ulises Ruiz Mendiola
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd St. 1., H-7624 Pécs, Hungary; (B.B.); (T.K.)
- János Szentágothai Research Center, Ifjúság St. 20., H-7624 Pécs, Hungary
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA; (M.S.B.); (J.S.); (R.R.S.)
- Paramag Biosciences Inc., 720 Olive Drive, Davis, CA 95616, USA
| |
Collapse
|
8
|
Almeida FS, da Silva AMM, Mendes GAC, Sato ACK, Cunha RL. Almond protein as Pickering emulsion stabilizer: Impact of microgel fabrication method and pH on emulsion stability. Int J Biol Macromol 2024; 280:135812. [PMID: 39306185 DOI: 10.1016/j.ijbiomac.2024.135812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
We evaluated the ability of almond proteins to produce Pickering emulsions (EM) stabilized by microgels (MG) fabricated by three different methods (heat treatment-HT, crosslinking with transglutaminase-TG or calcium-CA), at two pH levels (pH 3 or 7). Compared to pH 7, acidic pH significantly denatured almond proteins (ellipticity ∼0 mdeg), decreased absolute zeta potential values (10.5 to 18.6 mV at pH 3 and - 24.6 to -32.6 mV at pH 7), and free thiol content (114.64-131.60 μmol SH/g protein at pH 3 and 129.46-148.17 μmol SH/g protein at pH 7 - except in CA-crosslinked microgels, p > 0.05). These changes led to larger microgel sizes (D3,2pH3: 26.3-39.5 μm vs. D3,2pH7: 5.9-9.0 μm) with lower polydispersity (SpanpH3: ∼ 1.94 vs. SpanpH7: 2.32, excluding CA-based samples). Consequently, the Turbiscan Stability Index (TSI) was higher in acidic conditions for all emulsions, except for the calcium-containing formulation (EM_CApH3), emphasizing the critical role of calcium binding in maintaining emulsion stability in acidic environments. Microgels prepared via the traditional heat treatment method produced emulsions with intermediate stability (TSI ranging from 3.4 % to 5.1 % at 28 days of storage). Conversely, TG-crosslinked microgels led to unstable emulsions at pH 3, likely due to the lowest zeta potential (+4.2 mV), whereas at pH 7, the greatest stability was attributed to bridging flocculation that created a stable gel-like structure. Indeed, emulsions with lower TSI (EM_CApH3 = 1.8 %, EM_CApH7 = 2.3 % and EM_TGpH7 = 1.0 %, at 28 days of storage) also exhibited higher elastic modulus (G') over frequency sweep, indicating that the strong elastic network was relevant for emulsion stability (up to 28 days). This study, for the first time, demonstrated the production of stable almond-based Pickering emulsions, with properties modulated by the pH and method used to fabricate the microgels.
Collapse
Affiliation(s)
- Flávia Souza Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Aurenice Maria Mota da Silva
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Gabriel Augusto Campos Mendes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Ana Carla Kawazoe Sato
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil.
| |
Collapse
|
9
|
Yadav S, Sewariya S, Raman APS, Arun, Singh P, Chandra R, Jain P, Singh A, Kumari K. A multifaceted approach to investigate interactions of thifluzamide with haemoglobin. Int J Biol Macromol 2024; 282:136736. [PMID: 39433183 DOI: 10.1016/j.ijbiomac.2024.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
This study explores the interaction between the pesticide thifluzamide (TF) and haemoglobin (Hb) to understand potential structural changes that might affect Hb's function. Using a combination of UV-Visible and fluorescence spectroscopy, circular dichroism (CD), molecular docking, molecular dynamics (MD) simulations, and electrochemical methods, we investigated these interactions in detail. Spectroscopy results indicated the formation of a stable TF-Hb complex, with a binding constant of 6.64 × 105 M-1 at 298 K and a 1:1 binding ratio. The stability of this complex was confirmed by a free energy change (∆G) of -34.491 kJ mol-1. CD spectroscopy was employed to confirm structural changes in Hb due to thifluzamide binding. Molecular docking studies revealed that TF interacts with specific amino acids in Hb like ALA, HIS, VAL, LYS, and LEU, with a binding energy of -25.10 kJ mol-1. MD simulations supported these findings by showing conformational changes in Hb upon TF binding, as indicated by RMSD and RMSF analyses. Electrochemical experiments further confirmed the interaction, evidenced by a consistent decrease in the TF's peak in the presence of Hb. Overall, our findings shed light to understand the binding of TF with Hb, causing structural changes that could potentially impact its normal function. This research enhances our understanding of the biochemical effects of TF on Hb, which could have significant implications for biological systems.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India; Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi, India; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India; Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Arun
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Anju Singh
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
10
|
Zarubin M, Murugova T, Ryzhykau Y, Ivankov O, Uversky VN, Kravchenko E. Structural study of the intrinsically disordered tardigrade damage suppressor protein (Dsup) and its complex with DNA. Sci Rep 2024; 14:22910. [PMID: 39358423 PMCID: PMC11447161 DOI: 10.1038/s41598-024-74335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Studies of proteins, found in one of the most stress-resistant animals tardigrade Ramazzottius varieornatus, aim to reveal molecular principles of extreme tolerance to various types of stress and developing applications based on them for medicine, biotechnology, pharmacy, and space research. Tardigrade DNA/RNA-binding damage suppressor protein (Dsup) reduces DNA damage caused by reactive oxygen spices (ROS) produced upon irradiation and oxidative stresses in Dsup-expressing transgenic organisms. This work is focused on the determination of structural features of Dsup protein and Dsup-DNA complex, which refines details of protective mechanism. For the first time, intrinsically disordered nature of Dsup protein with highly flexible structure was experimentally proven and characterized by the combination of small angle X-ray scattering (SAXS) technique, circular dichroism spectroscopy, and computational methods. Low resolution models of Dsup protein and an ensemble of conformations were presented. In addition, we have shown that Dsup forms fuzzy complex with DNA.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia
| | - Tatiana Murugova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yury Ryzhykau
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Oleksandr Ivankov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Elena Kravchenko
- Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia.
| |
Collapse
|
11
|
Salgueiro BA, Saramago M, Tully MD, Issoglio F, Silva STN, Paiva ACF, Arraiano CM, Matias PM, Matos RG, Moe E, Romão CV. SARS-CoV2 Nsp1 is a metal-dependent DNA and RNA endonuclease. Biometals 2024; 37:1127-1146. [PMID: 38538957 PMCID: PMC11473540 DOI: 10.1007/s10534-024-00596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/05/2024] [Indexed: 10/15/2024]
Abstract
Over recent years, we have been living under a pandemic, caused by the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2). One of the major virulence factors of Coronaviruses is the Non-structural protein 1 (Nsp1), known to suppress the host cells protein translation machinery, allowing the virus to produce its own proteins, propagate and invade new cells. To unveil the molecular mechanisms of SARS-CoV2 Nsp1, we have addressed its biochemical and biophysical properties in the presence of calcium, magnesium and manganese. Our findings indicate that the protein in solution is a monomer and binds to both manganese and calcium, with high affinity. Surprisingly, our results show that SARS-CoV2 Nsp1 alone displays metal-dependent endonucleolytic activity towards both RNA and DNA, regardless of the presence of host ribosome. These results show Nsp1 as new nuclease within the coronavirus family. Furthermore, the Nsp1 double variant R124A/K125A presents no nuclease activity for RNA, although it retains activity for DNA, suggesting distinct binding sites for DNA and RNA. Thus, we present for the first time, evidence that the activities of Nsp1 are modulated by the presence of different metals, which are proposed to play an important role during viral infection. This research contributes significantly to our understanding of the mechanisms of action of Coronaviruses.
Collapse
Affiliation(s)
- Bruno A Salgueiro
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Margarida Saramago
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Mark D Tully
- ESRF, European Synchrotron Radiation Facility, 71, avenue des Martyrs CS 40220, 38043, Grenoble Cedex 9, France
| | - Federico Issoglio
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Sara T N Silva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Ana C F Paiva
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Cecília M Arraiano
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Pedro M Matias
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Rute G Matos
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal
| | - Elin Moe
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- Department of Chemistry, UiT, the Arctic University of Norway, Tromsø, Norway.
| | - Célia V Romão
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
12
|
Lill A, Herbst A, Langhans M, Paech S, Hamacher K, Biesalski M, Meckel T, Schmitz K. Investigating Cellulose Binding of Peptides Derived from Carbohydrate Binding Module 1. Biomacromolecules 2024; 25:5902-5908. [PMID: 39103164 PMCID: PMC11389687 DOI: 10.1021/acs.biomac.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Carbohydrate-binding modules (CBM) have emerged as useful tools for a wide range of tasks, including the use as purification tags or for cellulose fiber modification. For this purpose, the CBM needs to be attached to a target protein leading to large constructs. We investigated if short peptides from the carbohydrate binding site of CBMs can bind in a similar way as native, full-length CBMs to nanocrystalline cellulose (NCC) or cotton linter paper. We designed our cellulose-binding peptides to be less hydrophobic and shorter than those previously reported. Starting from the binding site of Cel7A-CBM1, we incorporated the essential amino acids involved in cellulose binding into our peptides. These peptides, as well as control peptides with scrambled sequences or a lack of essential amino acids, bound to cellulose with similar affinity as CBM regardless of their secondary structure, sequence, or hydrophobicity. This unspecific mode of cellulose binding displayed by the presented peptides may be exploited to functionalize cellulose-based biomaterials by means of peptide-conjugates.
Collapse
Affiliation(s)
- Annika Lill
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| | - Alexandra Herbst
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| | - Markus Langhans
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Steffen Paech
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Kay Hamacher
- Computational
Biology and Simulation, Biology Department, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Markus Biesalski
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Tobias Meckel
- Macromolecular
and Paper Chemistry, Chemistry Department, Technical University of Darmstadt, Darmstadt 64278, Germany
| | - Katja Schmitz
- Biological
Chemistry, Chemistry Department, Technical
University of Darmstadt, Darmstadt 64278, Germany
| |
Collapse
|
13
|
Bhopatkar AA, Bhatt N, Haque MA, Xavier R, Fung L, Jerez C, Kayed R. MAPT mutations associated with familial tauopathies lead to formation of conformationally distinct oligomers that have cross-seeding ability. Protein Sci 2024; 33:e5099. [PMID: 39145409 PMCID: PMC11325167 DOI: 10.1002/pro.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.
Collapse
Affiliation(s)
- Anukool A. Bhopatkar
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md Anzarul Haque
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rhea Xavier
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Leiana Fung
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Neuroscience Graduate Program, UT Southwestern Medical CenterDallasTexasUSA
| | - Cynthia Jerez
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
14
|
Nabi F, Ahmad O, Khan A, Hassan MN, Hisamuddin M, Malik S, Chaari A, Khan RH. Natural compound plumbagin based inhibition of hIAPP revealed by Markov state models based on MD data along with experimental validations. Proteins 2024; 92:1070-1084. [PMID: 38497314 DOI: 10.1002/prot.26682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from β cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 μs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adeeba Khan
- Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
15
|
Xie M, Zhou C, Li X, Ma H, Liu Q, Hong P. Preparation and characterization of tilapia protein isolate - Hyaluronic acid complexes using a pH-driven method for improving the stability of tilapia protein isolate emulsion. Food Chem 2024; 445:138703. [PMID: 38387313 DOI: 10.1016/j.foodchem.2024.138703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
This study aimed to investigate the non-covalent complexation between hyaluronic acid (HA) and tilapia protein isolate (TPI) on the stability of oil-in-water (O/W) TPI emulsion. The results showed that HA binds to TPI through electrostatic, hydrophobic, and hydrogen bonding interactions, forming homogeneous hydrophilic TPI-HA complexes. The binding of HA promoted the structural folding of TPI and altered its secondary structure during pH neutralization. The TPI-HA complexes presented significantly improved EAI and ESI (P < 0.05) when the HA concentration was 0.8 % (w/v). Emulsion characterization showed that HA promoted the transfer of TPI to the O/W interface, forming an emulsion with excellent stability, which, combined with the high surface charge and strong spatial site resistance effect of HA, improved TPI emulsion stability. Therefore, non-covalent complexation with HA is an effective strategy to improve the stability of TPI emulsion.
Collapse
Affiliation(s)
- Mengya Xie
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China
| | - Xiang Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China
| | - Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China.
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China; Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China; Guangdong Provincial Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong, Zhanjiang 524088, China.
| |
Collapse
|
16
|
Mariño L, Belén Uceda A, Leal F, Adrover M. Insight into the Effect of Methylglyoxal on the Conformation, Function, and Aggregation Propensity of α-Synuclein. Chemistry 2024; 30:e202400890. [PMID: 38687053 DOI: 10.1002/chem.202400890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
It is well-known that people suffering from hyperglycemia have a higher propensity to develop Parkinson's disease (PD). One of the most plausible mechanisms linking these two pathologies is the glycation of neuronal proteins and the pathological consequences of it. α-Synuclein, a key component in PD, can be glycated at its fifteen lysine. In fact, the end products of this process have been detected on aggregated α-synuclein isolated from in vivo. However, the consequences of glycation are not entirely clear, which are of crucial importance to understand the mechanism underlying the connection between diabetes and PD. To better clarify this, we have here examined how methylglyoxal (the most important carbonyl compound found in the cytoplasm) affects the conformation and aggregation propensity of α-synuclein, as well as its ability to cluster and fuse synaptic-like vesicles. The obtained data prove that methylglyoxal induces the Lys-Lys crosslinking through the formation of MOLD. However, this does not have a remarkable effect on the averaged conformational ensemble of α-synuclein, although it completely depletes its native propensity to form soluble oligomers and insoluble amyloid fibrils. Moreover, methylglyoxal has a disrupting effect on the ability of α-synuclein to bind, cluster and fusion synaptic-like vesicles.
Collapse
Affiliation(s)
- Laura Mariño
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Francisco Leal
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra, Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain
| |
Collapse
|
17
|
Acar M, Tatini D, Fidi A, Pacini L, Quagliata M, Nuti F, Papini AM, Lo Nostro P. A Promising Compound for Green Multiresponsive Materials Based on Acyl Carrier Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12381-12393. [PMID: 38836557 DOI: 10.1021/acs.langmuir.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several β-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.
Collapse
Affiliation(s)
- Mert Acar
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Duccio Tatini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alberto Fidi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Lorenzo Pacini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Michael Quagliata
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Nuti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Anna Maria Papini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
- PeptLab, University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
18
|
Lampitella EA, Marone M, Achanta NSK, Porzio E, Trepiccione F, Manco G. The Human Paraoxonase 2: An Optimized Procedure for Refolding and Stabilization Facilitates Enzyme Analyses and a Proteomics Approach. Molecules 2024; 29:2434. [PMID: 38893310 PMCID: PMC11173892 DOI: 10.3390/molecules29112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The human paraoxonase 2 (PON2) is the oldest member of a small family of arylesterase and lactonase enzymes, representing the first line of defense against bacterial infections and having a major role in ROS-associated diseases such as cancer, cardiovascular diseases, neurodegeneration, and diabetes. Specific Post-Translational Modifications (PTMs) clustering nearby two residues corresponding to pon2 polymorphic sites and their impact on the catalytic activity are not yet fully understood. Thus, the goal of the present study was to develop an improved PON2 purification protocol to obtain a higher amount of protein suitable for in-depth biochemical studies and biotechnological applications. To this end, we also tested several compounds to stabilize the active monomeric form of the enzyme. Storing the enzyme at 4 °C with 30 mM Threalose had the best impact on the activity, which was preserved for at least 30 days. The catalytic parameters against the substrate 3-Oxo-dodecanoyl-Homoserine Lactone (3oxoC12-HSL) and the enzyme ability to interfere with the biofilm formation of Pseudomonas aeruginosa (PAO1) were determined, showing that the obtained enzyme is well suited for downstream applications. Finally, we used the purified rPON2 to detect, by the direct molecular fishing (DMF) method, new putative PON2 interactors from soluble extracts of HeLa cells.
Collapse
Affiliation(s)
- Eros A. Lampitella
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Maria Marone
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Nagendra S. K. Achanta
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| | - Francesco Trepiccione
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy;
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (E.A.L.); (M.M.); (N.S.K.A.); (E.P.)
| |
Collapse
|
19
|
Gorain C, Gupta S, Alam SSM, Hoque M, Karlyshev AV, Mallick AI. Identification and functional characterization of putative ligand binding domain(s) of JlpA protein of Campylobacter jejuni. Int J Biol Macromol 2024; 264:130388. [PMID: 38417756 DOI: 10.1016/j.ijbiomac.2024.130388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Among the major Surface Exposed Colonization Proteins (SECPs) of Campylobacter jejuni (C. jejuni), Jejuni lipoprotein A (JlpA) plays a crucial role in host cell adhesion specifically by binding to the N-terminal domain of the human heat shock protein 90α (Hsp90α-NTD). Although the JlpA binding to Hsp90α activates NF-κB and p38 MAP kinase pathways, the underlying mechanism of JlpA association with the cellular receptor remains unclear. To this end, we predicted two potential receptor binding sites within the C-terminal domain of JlpA: one spanning from amino acid residues Q332-A354 and the other from S258-T295; however, the latter exhibited weaker binding. To assess the functional attributes of these predicted sequences, we generated two JlpA mutants (JlpAΔ1: S258-T295; JlpAΔ2: Q332-A354) and assessed the Hsp90α-binding affinity-kinetics by in vitro and ex vivo experiments. Our findings confirmed that the residues Q332-A354 are of greater importance in host cell adhesion with a measurable impact on cellular responses. Further, thermal denaturation by circular dichroism (CD) confirmed that the reduced binding affinity of the JlpAΔ2 to Hsp90α is not associated with protein folding or stability. Together, this study provides a possible framework for determining the molecular function of designing rational inhibitors efficiently targeting JlpA.
Collapse
Affiliation(s)
- Chandan Gorain
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - S S Mahafujul Alam
- Department of Biological Sciences, Aliah University, New Town Kolkata, West Bengal, 700160, India
| | - Mehboob Hoque
- Department of Biological Sciences, Aliah University, New Town Kolkata, West Bengal, 700160, India
| | - Andrey V Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry Faculty of Health, Science, Social Care & Education, Kingston University London, Penrhyn Road, Kingston upon Thames, KT12EE, UK
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
20
|
Vásquez-Suárez A, Muñoz-Flores C, Ortega L, Roa F, Castillo C, Romero A, Parra N, Sandoval F, Macaya L, González-Chavarría I, Astuya A, Starck MF, Villegas MF, Agurto N, Montesino R, Sánchez O, Valenzuela A, Toledo JR, Acosta J. Design and functional characterization of Salmo salar TLR5 agonist peptides derived from high mobility group B1 acidic tail. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109373. [PMID: 38272332 DOI: 10.1016/j.fsi.2024.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.
Collapse
Affiliation(s)
- Aleikar Vásquez-Suárez
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Roa
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Castillo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Sandoval
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Luis Macaya
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y COPAS Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - María Francisca Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Jorge R Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
21
|
Pani BSUL, Chandrasekaran N. Adsorption of clarithromycin on polystyrene nanoplastics surface and its combined adverse effect on serum albumin. Colloids Surf B Biointerfaces 2024; 234:113673. [PMID: 38086277 DOI: 10.1016/j.colsurfb.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/09/2024]
Abstract
Emerging contaminants, such as antibiotics and nanoplastics, have garnered significant attention due to their potential adverse effects on diverse ecosystems. Antibiotic adsorption on the surface of nanoplastics potentially facilitates their long-range transport, leading to the synergistic effects of the complex. This research aims to examine the adsorption behavior of clarithromycin binding with polystyrene nanoplastics surface as well as their interaction between drug adsorbed polystyrene nanoplastics with serum albumin. Different spectroscopic methods were used to find out the interaction between clarithromycin and nanoplastics, under stimulated physiological conditions UV-vis spectroscopy showed a maximum of 22.8% percentage of the drug adsorbed with the polystyrene nanoplastics surface after 6 h of incubation. The fluorescence spectroscopic results demonstrated that the fluorescence intensity of serum albumin was quenched by the clarithromycin-polystyrene nanoplastics (CLA-PSNP) complex through static quenching. We calculated the number of binding stoichiometry, binding constants, and thermodynamic parameters. This study revealed that the CLA-PSNP binds to serum albumin spontaneously and its hydrophobic interactions played a significant role. The conformational changes in the structure of serum albumin were revealed from the findings of synchronous fluorescence spectra, CD spectra, and 3D fluorescence spectra, leading to the disturbance in functional activity. This study focuses valuable insights into the intermolecular interactions between clarithromycin-adsorbed polystyrene nanoplastics and serum albumin and its potential molecular-level biological toxicity.
Collapse
|
22
|
Bhatt N, Puangmalai N, Sengupta U, Jerez C, Kidd M, Gandhi S, Kayed R. C9orf72-associated dipeptide protein repeats form A11-positive oligomers in amyotrophic lateral sclerosis and frontotemporal dementia. J Biol Chem 2024; 300:105628. [PMID: 38295729 PMCID: PMC10844744 DOI: 10.1016/j.jbc.2024.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
Hexanucleotide repeat expansion in C9orf72 is one of the most common causes of amyotrophic lateral sclerosis and frontotemporal dementia. The hexanucleotide expansion, formed by GGGGCC (G4C2) repeats, leads to the production of five dipeptide protein repeats (DPRs) via repeat-associated non-AUG translation. Among the five dipeptide repeats, Gly-Arg, Pro-Arg, and Gly-Ala form neuronal inclusions that contain aggregates of the peptides. Several studies have attempted to model DPR-associated toxicity using various repeat lengths, which suggests a unique conformation that is cytotoxic and is independent of the repeat length. However, the structural characteristics of DPR aggregates have yet to be determined. Increasing evidence suggests that soluble species, such as oligomers, are the main cause of toxicity in proteinopathies, such as Alzheimer's and Parkinson's disease. To investigate the ability of DPRs to aggregate and form toxic oligomers, we adopted a reductionist approach using small dipeptide repeats of 3, 6, and 12. This study shows that DPRs, particularly glycine-arginine and proline-arginine, form oligomers that exhibit distinct dye-binding properties and morphologies. Importantly, we also identified toxic DPR oligomers in amyotrophic lateral sclerosis and frontotemporal dementia postmortem brains that are morphologically similar to those generated recombinantly. This study demonstrates that, similar to soluble oligomers formed by various amyloid proteins, DPR oligomers are toxic, independent of their repeat length.
Collapse
Affiliation(s)
- Nemil Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison Kidd
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shailee Gandhi
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas, USA; Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
23
|
Maleš P, Brkljača Z, Crnolatac I, Petrov D, Bakarić D. Phase-Dependent Adsorption of Myelin Basic Protein to Phosphatidylcholine Lipid Bilayers. MEMBRANES 2024; 14:15. [PMID: 38248705 PMCID: PMC10819005 DOI: 10.3390/membranes14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
The dense packing of opposite cytoplasmic surfaces of the lipid-enriched myelin membrane, responsible for the proper saltatory conduction of nerve impulses through axons, is ensured by the adhesive properties of myelin basic protein (MBP). Although preferentially interacting with negatively charged phosphatidylserine (PS) lipids, as an intrinsically disordered protein, it can easily adapt its shape to its immediate environment and thus adsorb to domains made of zwitterionic phosphatidylcholine (PC) lipids. As the molecular-level interaction pattern between MBP and PC lipid membranes suffers from scarce characterization, an experimental and computational study of multilamellar liposomes (MLVs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of bovine MBP is presented here. Calorimetric and temperature-dependent UV-Vis measurements identified DPPC pretransition temperature (Tp) and calorimetric enthalpy (ΔHcal) as the physicochemical parameters most responsive to the presence of MBP. Besides suggesting an increase in β-sheet fractions of structured MBP segments as DPPC lipids undergo from the gel (20 °C) to the fluid (50 °C) phase, FTIR spectra unraveled the significant contribution of lysine (Lys) residues in the adsorption pattern, especially when DPPC is in the fluid (50 °C) phase. In addition to highlighting the importance of Lys residues in the MBP adsorption on DPPC lipid bilayer, employing salt bridges (SBs) and hydrogen bonds (HBs), MD data suggest the crucial importance of the orientation of MBP with respect to the surface of the DPPC lipid bilayer.
Collapse
Affiliation(s)
- Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| | - Dražen Petrov
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia; (P.M.); (Z.B.); (I.C.)
| |
Collapse
|
24
|
Harnish MT, Lopez D, Morrison CT, Narayanan R, Fernandez EJ, Shen T. Novel Covalent Modifier-Induced Local Conformational Changes within the Intrinsically Disordered Region of the Androgen Receptor. BIOLOGY 2023; 12:1442. [PMID: 37998041 PMCID: PMC10669190 DOI: 10.3390/biology12111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), certain covalent ligands induce important changes, such as the neutralization of the condensate. To understand the specificity of ligand-IDR interaction and potential implications for the mechanism of neutralizing liquid-liquid phase separation (LLPS), we modeled and performed computer simulations of ligand-bound peptide segments obtained from the human AR. We analyzed how different covalent ligands affect local secondary structure, protein contact map, and protein-ligand contacts for these protein systems. We find that effective neutralizers make specific interactions (such as those between cyanopyrazole and tryptophan) that alter the helical propensity of the peptide segments. These findings on the mechanism of action can be useful for designing molecules that influence IDR structure and condensate of the AR in the future.
Collapse
Affiliation(s)
- Michael T. Harnish
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Corbin T. Morrison
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| | - Elias J. Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; (M.T.H.); (D.L.); (C.T.M.); (E.J.F.)
| |
Collapse
|
25
|
Gómez-Pérez D, Schmid M, Chaudhry V, Hu Y, Velic A, Maček B, Ruhe J, Kemen A, Kemen E. Proteins released into the plant apoplast by the obligate parasitic protist Albugo selectively repress phyllosphere-associated bacteria. THE NEW PHYTOLOGIST 2023; 239:2320-2334. [PMID: 37222268 DOI: 10.1111/nph.18995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
Biotic and abiotic interactions shape natural microbial communities. The mechanisms behind microbe-microbe interactions, particularly those protein based, are not well understood. We hypothesize that released proteins with antimicrobial activity are a powerful and highly specific toolset to shape and defend plant niches. We have studied Albugo candida, an obligate plant parasite from the protist Oomycota phylum, for its potential to modulate the growth of bacteria through release of antimicrobial proteins into the apoplast. Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabidopsis thaliana samples revealed an abundance of negative correlations between Albugo and other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves combined with machine learning predictors enabled the selection of antimicrobial candidates for heterologous expression and study of their inhibitory function. We found for three candidate proteins selective antimicrobial activity against Gram-positive bacteria isolated from A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stability of the community structure. We could ascribe the antibacterial activity of the candidates to intrinsically disordered regions and positively correlate it with their net charge. This is the first report of protist proteins with antimicrobial activity under apoplastic conditions that therefore are potential biocontrol tools for targeted manipulation of the microbiome.
Collapse
Affiliation(s)
- Daniel Gómez-Pérez
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Monja Schmid
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Vasvi Chaudhry
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Yiheng Hu
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Ana Velic
- Department of Biology, Quantitative Proteomics Group, Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Boris Maček
- Department of Biology, Quantitative Proteomics Group, Interfaculty Institute of Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Jonas Ruhe
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Ariane Kemen
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, Center for Plant Molecular Biology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
26
|
Mendoza-Hoffmann F, Yang L, Buratto D, Brito-Sánchez J, Garduño-Javier G, Salinas-López E, Uribe-Álvarez C, Ortega R, Sotelo-Serrano O, Cevallos MÁ, Ramírez-Silva L, Uribe-Carvajal S, Pérez-Hernández G, Celis-Sandoval H, García-Trejo JJ. Inhibitory to non-inhibitory evolution of the ζ subunit of the F 1F O-ATPase of Paracoccus denitrificans and α-proteobacteria as related to mitochondrial endosymbiosis. Front Mol Biosci 2023; 10:1184200. [PMID: 37664184 PMCID: PMC10469736 DOI: 10.3389/fmolb.2023.1184200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: The ζ subunit is a potent inhibitor of the F1FO-ATPase of Paracoccus denitrificans (PdF1FO-ATPase) and related α-proteobacteria different from the other two canonical inhibitors of bacterial (ε) and mitochondrial (IF1) F1FO-ATPases. ζ mimics mitochondrial IF1 in its inhibitory N-terminus, blocking the PdF1FO-ATPase activity as a unidirectional pawl-ratchet and allowing the PdF1FO-ATP synthase turnover. ζ is essential for the respiratory growth of P. denitrificans, as we showed by a Δζ knockout. Given the vital role of ζ in the physiology of P. denitrificans, here, we assessed the evolution of ζ across the α-proteobacteria class. Methods: Through bioinformatic, biochemical, molecular biology, functional, and structural analyses of several ζ subunits, we confirmed the conservation of the inhibitory N-terminus of ζ and its divergence toward its C-terminus. We reconstituted homologously or heterologously the recombinant ζ subunits from several α-proteobacteria into the respective F-ATPases, including free-living photosynthetic, facultative symbiont, and intracellular facultative or obligate parasitic α-proteobacteria. Results and discussion: The results show that ζ evolved, preserving its inhibitory function in free-living α-proteobacteria exposed to broad environmental changes that could compromise the cellular ATP pools. However, the ζ inhibitory function was diminished or lost in some symbiotic α-proteobacteria where ζ is non-essential given the possible exchange of nutrients and ATP from hosts. Accordingly, the ζ gene is absent in some strictly parasitic pathogenic Rickettsiales, which may obtain ATP from the parasitized hosts. We also resolved the NMR structure of the ζ subunit of Sinorhizobium meliloti (Sm-ζ) and compared it with its structure modeled in AlphaFold. We found a transition from a compact ordered non-inhibitory conformation into an extended α-helical inhibitory N-terminus conformation, thus explaining why the Sm-ζ cannot exert homologous inhibition. However, it is still able to inhibit the PdF1FO-ATPase heterologously. Together with the loss of the inhibitory function of α-proteobacterial ε, the data confirm that the primary inhibitory function of the α-proteobacterial F1FO-ATPase was transferred from ε to ζ and that ζ, ε, and IF1 evolved by convergent evolution. Some key evolutionary implications on the endosymbiotic origin of mitochondria, as most likely derived from α-proteobacteria, are also discussed.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jorge Brito-Sánchez
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gilberto Garduño-Javier
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Emiliano Salinas-López
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Cristina Uribe-Álvarez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Oliver Sotelo-Serrano
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Leticia Ramírez-Silva
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Salvador Uribe-Carvajal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, México
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de México, México
| |
Collapse
|
27
|
Miles AJ, Drew ED, Wallace BA. DichroIDP: a method for analyses of intrinsically disordered proteins using circular dichroism spectroscopy. Commun Biol 2023; 6:823. [PMID: 37553525 PMCID: PMC10409736 DOI: 10.1038/s42003-023-05178-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are comprised of significant numbers of residues that form neither helix, sheet, nor any other canonical type of secondary structure. They play important roles in a broad range of biological processes, such as molecular recognition and signalling, largely due to their chameleon-like ability to change structure from unordered when free in solution to ordered when bound to partner molecules. Circular dichroism (CD) spectroscopy is a widely-used method for characterising protein secondary structures, but analyses of IDPs using CD spectroscopy have suffered because the methods and reference datasets used for the empirical determination of secondary structures do not contain adequate representations of unordered structures. This work describes the creation, validation and testing of a standalone Windows-based application, DichroIDP, and a new reference dataset, IDP175, which is suitable for analyses of proteins containing significant amounts of disordered structure. DichroIDP enables secondary structure determinations of IDPs and proteins containing intrinsically disordered regions.
Collapse
Affiliation(s)
- Andrew J Miles
- Institute of Structural and Molecular Biology, Birkbeck University of London, London, WC1E 7HX, UK
| | - Elliot D Drew
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Zappi, London, NW1 7JN, UK
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck University of London, London, WC1E 7HX, UK.
| |
Collapse
|
28
|
Fagihi MA, Premathilaka C, O’Neill T, Garré M, Bhattacharjee S. An Investigation into the Acidity-Induced Insulin Agglomeration: Implications for Drug Delivery and Translation. ACS OMEGA 2023; 8:25279-25287. [PMID: 37483254 PMCID: PMC10357556 DOI: 10.1021/acsomega.3c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
Insulin undergoes agglomeration with (subtle) changes in its biochemical environment, including acidity, application of heat, ionic imbalance, and exposure to hydrophobic surfaces. The therapeutic impact of such unwarranted insulin agglomeration is unclear and needs further evaluation. A systematic investigation was conducted on recombinant human insulin-with or without labeling with fluorescein isothiocyanate-while preparing insulin suspensions (0.125, 0.25, and 0.5 mg/mL) at pH 3. The suspensions were incubated (37 °C) and analyzed at different time points (t = 2, 4, 24, 48, and 72 h). Transmission electron microscopy and nanoparticle tracking analysis identified colloidally stable (zeta potential 15 ± 5 mV) spherical agglomerates of unlabeled insulin (100-500 nm). Circular dichroism established the preservation of insulin's secondary structure rich in α-helices despite exposure to an acidic environment (pH 3) for 72 h. Furthermore, fluorescence lifetime imaging microscopy illustrated an acidic core inside these spherical agglomerates, while the acidity gradually lessened toward the periphery. Some of these smaller agglomerates fused to form larger chunks with discrete zones of acidity. The data indicated a primary nucleation-driven mechanism of acid-induced insulin agglomeration under physiologically relevant conditions.
Collapse
Affiliation(s)
- Megren
H. A. Fagihi
- School
of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Clinical
Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran 55461, Kingdom of Saudi Arabia
| | - Chanaka Premathilaka
- Institute
of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Tiina O’Neill
- Conway
Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Massimiliano Garré
- Super-Resolution
Imaging Consortium, Royal College of Surgeons
in Ireland University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Sourav Bhattacharjee
- School of
Veterinary Medicine, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Sánchez-Moguel I, Costa-Silva TA, Pillaca-Pullo OS, Flores-Santos JC, Freire RKB, Carretero G, da Luz Bueno J, Camacho-Córdova DI, Santos JH, Sette LD, Pessoa-Jr A. Antarctic yeasts as a source of L-asparaginase: characterization of a glutaminase-activity free L-asparaginase from psychrotolerant yeast Leucosporidium scottii L115. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
30
|
Evans R, Ramisetty S, Kulkarni P, Weninger K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023; 13:124. [PMID: 36671509 PMCID: PMC9856150 DOI: 10.3390/biom13010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
Collapse
Affiliation(s)
- Rachel Evans
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Wollborn T, Michaelis M, Ciacchi LC, Fritsching U. Protein conformational changes at the oil/water-interface induced by premix membrane emulsification. J Colloid Interface Sci 2022; 628:72-81. [PMID: 35908433 DOI: 10.1016/j.jcis.2022.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
We present combined experimental and modelling evidence that β-lactoglobulin proteins employed as stabilizers of oil/water emulsions undergo minor but significant conformational changes during premix membrane emulsification processes. Circular Dichroism spectroscopy and Molecular Dynamics simulations reveal that the native protein structure is preserved as a metastable state after adsorption at stress-free oil/water interfaces. However, the shear stress applied to the oil droplets during their fragmentation in narrow membrane pores causes a transition into a more stable, partially unfolded interfacial state. The protein's β-sheet content is reduced by up to 8% in a way that is largely independent of the pressure applied during emulsification, and is driven by an increase of contacts between the oil and hydrophobic residues at the expense of structural order within the protein core.
Collapse
Affiliation(s)
- Tobias Wollborn
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany.
| | - Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany
| | - Udo Fritsching
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany; Particles and Process Engineering, University of Bremen, Badgasteiner Straße 3, 28359 Bremen, Germany
| |
Collapse
|
32
|
Micsonai A, Moussong É, Wien F, Boros E, Vadászi H, Murvai N, Lee YH, Molnár T, Réfrégiers M, Goto Y, Tantos Á, Kardos J. BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res 2022; 50:W90-W98. [PMID: 35544232 PMCID: PMC9252784 DOI: 10.1093/nar/gkac345] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of β-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel β-structure and antiparallel β-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.
Collapse
Affiliation(s)
- András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Éva Moussong
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Frank Wien
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France
| | - Eszter Boros
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Nikoletta Murvai
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary.,Institute of Enzymology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Republic of Korea.,Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.,Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| | - Matthieu Réfrégiers
- Synchrotron SOLEIL, Gif-sur-Yvette 91192, France.,Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, France
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan
| | - Ágnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest H-1117, Hungary
| |
Collapse
|