1
|
Deb VK, Chauhan N, Jain U. Deciphering TGF-β1's Role in Drug Resistance and Leveraging Plant Bioactives for Cancer Therapy. Eur J Pharmacol 2024:177218. [PMID: 39722325 DOI: 10.1016/j.ejphar.2024.177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement. Tumor microenvironmental TGF-β1 prompts epithelial-mesenchymal transition (EMT), facilitated by transcription factors like slug, twist-1, and snail. Notably, cancer-associated fibroblasts (CAFs) amplify this effect by secreting TGF-β1, fostering drug resistance. Of particular concern is the resistance observed with BRAF/MEK inhibitors (BRAFi/MEKi), highlighting the clinical significance of TGF-β signaling in cancer therapeutics. However, emerging interest in natural anti-cancer agents, with their distinct pharmacological actions on signaling proteins offers promising avenues for therapeutic intervention. This review emphasizes the multifaceted interplay between TGF-β signaling, tumor microenvironment dynamics, and therapeutic resistance mechanisms, illuminating potential targets for combating cancer progression by natural bioactive compounds. However, this review additionally explores the currently available advanced methods for detecting various types of cancer. Not only that, but it also discussed the function of plant-derived compounds in clinical aspects, as well as its limitations.
Collapse
Affiliation(s)
- Vishal Kumar Deb
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
de Almeida Camargo B, da Silva Feltran G, Fernandes CJDC, Carra MG, Saeki MJ, Zambuzzi WF. Impact of zirconia-based oxide on endothelial cell dynamics and extracellular matrix remodeling. J Trace Elem Med Biol 2024; 86:127537. [PMID: 39413570 DOI: 10.1016/j.jtemb.2024.127537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Zirconia (ZrO2) is highly regarded in dental restoration due to its aesthetic compatibility and mechanical properties that align with biological tissues. This study explores the effects of stabilized ZrO2 on endothelial cell function and extracellular matrix (ECM) remodeling, processes critical to successful osseointegration in dental implants. METHODOLOGY Human Umbilical Vein Endothelial Cells (HUVECs) were cultured in ZrO2 -enriched medium under both static and shear stress conditions. Newly implemented techniques, including detailed zirconia surface characterization using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD), were used to verify material properties. Gene and protein expression related to cell adhesion, proliferation, and ECM remodeling were assessed through RT-qPCR and Western blotting. Zymography was used to evaluate the activity of matrix metalloproteinases (MMP2 and MMP9) involved in ECM remodeling. RESULTS Characterization data confirmed the stability and structural properties of ZrO2, revealing a tetragonal crystalline structure and rough surface morphology conducive to cell adhesion. ZrO2 exposure led to the downregulation of Src, a key regulator of cell adhesion, while upregulating cell cycle regulators p15, CDK2, and CDK4, indicating enhanced cell proliferation. Under shear stress, ZrO2 modulated TGF-β and MAPK signaling, affecting cell proliferation and angiogenesis. MMP2 and MMP9 activity increased in static conditions but decreased under shear stress, suggesting ZrO2 dynamic role in ECM remodeling. CONCLUSION This study shows that stabilized zirconia (ZrO2) modulates endothelial cell dynamics and ECM remodeling, key for osseointegration. ZrO2 downregulated Src expression and upregulated cell cycle regulators, enhancing endothelial proliferation. It also affected TGF-β and MAPK pathways, influencing angiogenesis, and differentially modulated MMP2 and MMP9 activity depending on mechanical conditions. These findings highlight ZrO2 has potential ability to enhance vascular and tissue integration in dental applications.
Collapse
Affiliation(s)
- Beatriz de Almeida Camargo
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Geórgia da Silva Feltran
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Célio Junior da Costa Fernandes
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Maria Gabriela Carra
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Margarida Juri Saeki
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Science, Institute of Biosciences, UNESP - São Paulo State University, Botucatu, São Paulo 18618-970, Brazil.
| |
Collapse
|
3
|
Fan G, Xie T, Yang M, Li L, Tang L, Han X, Shi Y. Spatial analyses revealed S100P + TFF1 + tumor cells in spread through air spaces samples correlated with undesirable therapy response in non-small cell lung cancer. J Transl Med 2024; 22:917. [PMID: 39385235 PMCID: PMC11462816 DOI: 10.1186/s12967-024-05722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Spread through air spaces (STAS) is a recognized aggressive pattern in lung cancer, serving as a crucial risk factor for postoperative recurrence. However, its phenotype and related spatial structure have remained elusive. To address these limitations, we conducted a comprehensive study based on spatial data, analyzing over 30,000 spots from 14 non-STAS samples and one STAS sample. We observed increased proliferation activities and angiogenesis in STAS, identifying S100P as a potential biomarker for STAS. Furthermore, our investigation into the heterogeneity of STAS tumor cells revealed a subset identified as S100P + TFF1 +, exhibiting a negative impact on patients' survival in public datasets. This subtype exhibited the highest activities in the TGFb and hypoxia, suggesting its potential pro-tumor role within the tumor microenvironment. To assess the role of S100P + TFF1 + tumor cells in therapy response, we included data from two clinical trial cohorts (BPI-7711 for EGFR-TKI therapy and ORIENT-3 for immunotherapy). The presence of S100P + TFF1 + tumor cells correlated with worse responses to both EGFR-TKI therapy and immunotherapy. Notably, TFF1 emerged as a serum marker for predicting EGFR-TKI response. Cell-cell communication analysis revealed that the TGFb signaling pathway was the most activated in S100P + TFF1 + tumor cells, with TGFB2-TGFBR2 identified as the main ligand-receptor pair. This was further validated by multiplex immunofluorescence performed on twenty NSCLC samples. In summary, our study identified S100P as the biomarker for STAS and highlighted the adverse role of S100P + TFF1 + tumor cells in survival outcomes.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
4
|
Ji RC. The emerging importance of lymphangiogenesis in aging and aging-associated diseases. Mech Ageing Dev 2024; 221:111975. [PMID: 39089499 DOI: 10.1016/j.mad.2024.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Lymphatic aging represented by cellular and functional changes, is involved in increased geriatric disorders, but the intersection between aging and lymphatic modulation is less clear. Lymphatic vessels play an essential role in maintaining tissue fluid homeostasis, regulating immune function, and promoting macromolecular transport. Lymphangiogenesis and lymphatic remodeling following cellular senescence and organ deterioration are crosslinked with the progression of some lymphatic-associated diseases, e.g., atherosclerosis, inflammation, lymphoedema, and cancer. Age-related detrimental tissue changes may occur in lymphatic vessels with diverse etiologies, and gradually shift towards chronic low-grade inflammation, so-called inflammaging, and lead to decreased immune response. The investigation of the relationship between advanced age and organ deterioration is becoming an area of rapidly increasing significance in lymphatic biology and medicine. Here we highlight the emerging importance of lymphangiogenesis and lymphatic remodeling in the regulation of aging-related pathological processes, which will help to find new avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Rui-Cheng Ji
- Faculty of Welfare and Health Science, Oita University, Oita 870-1192, Japan.
| |
Collapse
|
5
|
Jaroszewski A, Geysels RC, Volpini X, Pellizas CG, Motran CC, Stempin CC, Nicola JP, Cheng SY, Fozzatti L. Anaplastic thyroid cancer cell-secreted TGFβ1 plays a key role in inducing macrophage polarization of human monocytes. Am J Cancer Res 2024; 14:3626-3638. [PMID: 39113863 PMCID: PMC11301286 DOI: 10.62347/bhfa4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. We have previously shown that paracrine signals released by ATC cells induced pro-tumor M2-like polarization of human monocytes. However, which soluble factors derived from ATC cells drive monocyte activation, are largely unknown. In this study we investigated the participation of transforming growth factor β1 (TGFβ1) on the phenotype of macrophage activation induced by ATC cell-derived conditioned media (CM). THP-1 cells exposed to CM derived from ATC cells and recombinant human TGFβ1 induced M2-like macrophage polarization, showing high CD163 and Dectin1 expression. Moreover, we showed that TGFβ1 induced the messenger RNA (mRNA) and protein expression of the transcription factors SNAIL and SLUG. Accordingly, increased TGFβ1 secretion from ATC cells was confirmed by enzyme-linked immunosorbent assay (ELISA). Addition of SB431542, a TGFβ receptor inhibitor, significantly decreased the Dectin1, CD163, SNAIL and SLUG expression stimulated by ATC cell-derived CM. We validated the clinical significance of the expression of TGFβ ligands, their receptors, as well as SNAIL and SLUG in human ATC by analyzing public microarray datasets. We found that the expression of the main TGFβ ligands, TGFβ1 and TGFβ3, along with their receptors, TGFR1 and TGFR2, as well as SLUG, was significantly higher in human ATC tissue samples than in normal thyroid tissues. Our findings indicate that ATC cell-secreted TGFβ1 may play a key role in M2-like macrophage polarization of human monocytes and in the up-regulation of SNAIL and SLUG transcription factors. Thus, ours results uncovered a novel mechanism involved in the activation of TAMs by soluble factors released by ATC cells, which suggest potential therapeutic targets for ATC.
Collapse
Affiliation(s)
- Agustina Jaroszewski
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Romina C Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Claudia G Pellizas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Claudia C Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Cinthia C Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Juan P Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, Maryland, USA
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCórdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICETCórdoba, Argentina
| |
Collapse
|
6
|
Ouyang Y, Shen R, Chu L, Fu C, Hu W, Huang H, Zhang Z, Jiang M, Chen X. Combining single-cell and bulk RNA sequencing, NK cell marker genes reveal a prognostic and immune status in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:15037. [PMID: 38951569 PMCID: PMC11217423 DOI: 10.1038/s41598-024-65917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.
Collapse
Affiliation(s)
- Yonghao Ouyang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China.
| | - Rongxi Shen
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
| | - Lihua Chu
- Jinggangshan University, Ji'an, 334000, China
| | - Chengchao Fu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Wang Hu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Haoxuan Huang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Ming Jiang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Xin Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| |
Collapse
|
7
|
Pu B, Feng S, Gu L, Smerin D, Jian Z, Xiong X, Wei L. Exploring MAP2K3 as a prognostic biomarker and potential immunotherapy target in glioma treatment. Front Neurol 2024; 15:1387743. [PMID: 38938778 PMCID: PMC11210523 DOI: 10.3389/fneur.2024.1387743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Glioma, the most prevalent primary brain tumor in adults, is characterized by significant invasiveness and resistance. Current glioma treatments include surgery, radiation, chemotherapy, and targeted therapy, but these methods often fail to eliminate the tumor completely, leading to recurrence and poor prognosis. Immune checkpoint inhibitors, a class of commonly used immunotherapeutic drugs, have demonstrated excellent efficacy in treating various solid malignancies. Recent research has indicated that unconventional levels of expression of the MAP2K3 gene closely correlates with glioma malignancy, hinting it could be a potential immunotherapy target. Our study unveiled substantial involvement of MAP2K3 in gliomas, indicating the potential of the enzyme to serve as a prognostic biomarker related to immunity. Through the regulation of the infiltration of immune cells, MAP2K3 can affect the prognosis of patients with glioma. These discoveries establish a theoretical foundation for exploring the biological mechanisms underlying MAP2K3 and its potential applications in glioma treatment.
Collapse
Affiliation(s)
- Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Transplantation Health Management Center, Sichuan Taikang Hospital, Chengdu, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Wei
- Transplantation Health Management Center, Sichuan Taikang Hospital, Chengdu, China
| |
Collapse
|
8
|
Nishikiori N, Sato T, Ogawa T, Higashide M, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Watanabe M. TGF-β Isoforms and Local Environments Greatly Modulate Biological Nature of Human Retinal Pigment Epithelium Cells. Bioengineering (Basel) 2024; 11:581. [PMID: 38927817 PMCID: PMC11201039 DOI: 10.3390/bioengineering11060581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
To characterize transforming growth factor-β (TGF-β) isoform (TGF-β1~3)-b's biological effects on the human retinal pigment epithelium (RPE) under normoxia and hypoxia conditions, ARPE19 cells cultured by 2D (two-dimensional) and 3D (three-dimensional) conditions were subjected to various analyses, including (1) an analysis of barrier function by trans-epithelial electrical resistance (TEER) measurements; (2) qPCR analysis of major ECM molecules including collagen 1 (COL1), COL4, and COL6; α-smooth muscle actin (αSMA); hypoxia-inducible factor 1α (HIF1α); and peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), a master regulator for mitochondrial respiration;, tight junction-related molecules, Zonula occludens-1 (ZO1) and E-cadherin; and vascular endothelial growth factor (VEGF); (3) physical property measurements of 3D spheroids; and (4) cellular metabolic analysis. Diverse effects among TGF-β isoforms were observed, and those effects were also different between normoxia and hypoxia conditions: (1) TGF-β1 and TGF-β3 caused a marked increase in TEER values, and TGF-β2 caused a substantial increase in TEER values under normoxia conditions and hypoxia conditions, respectively; (2) the results of qPCR analysis supported data obtained by TEER; (3) 3D spheroid sizes were decreased by TGF-β isoforms, among which TGF-β1 had the most potent effect under both oxygen conditions; (4) 3D spheroid stiffness was increased by TGF-β2 and TGF-β3 or by TGF-β1 and TGF-β3 under normoxia conditions and hypoxia conditions, respectively; and (5) the TGF-β isoform altered mitochondrial and glycolytic functions differently under oxygen conditions and/or culture conditions. These collective findings indicate that the TGF-β-induced biological effects of 2D and 3D cultures of ARPE19 cells were substantially diverse depending on the three TGF-β isoforms and oxygen levels, suggesting that pathological conditions including epithelial-mesenchymal transition (EMT) of the RPE may be exclusively modulated by both factors.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.H.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
9
|
崔 芝, 马 萃, 王 倩, 陈 金, 严 子, 杨 建, 吕 亚, 曹 春. [A recombinant adeno-associated virus expressing secretory TGF-β type Ⅱ receptor inhibits triple-negative murine breast cancer 4T1 cell proliferation and lung metastasis in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:818-826. [PMID: 38862439 PMCID: PMC11166713 DOI: 10.12122/j.issn.1673-4254.2024.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the effects of an adeno-associated virus (AAV2) vector expressing secretory transforming growth factor-β (TGF-β) type Ⅱ receptor (sTβRⅡ) extracellular domain-IgG2a Fc fusion protein (sTβRⅡ-Fc) on proliferation and migration of triple-negative murine breast cancer 4T1 cells in mice. METHODS The pAAV-sTβRⅡ-Fc vector expressing sTβRⅡ-Fc fusion protein constructed by molecular cloning, the capsid protein-expressing vector pAAV2 and the helper vector were co-transfected into HEK 293T cells to prepare the recombinant AAV2-sTβRⅡ virus, which was purified by density gradient centrifugation with iodixanol. Western blotting was used to examine the effects of AAV-sTβRⅡ virus on Smad2/3 phosphorylation in 4T1 cells and on expression levels of E-cadherin, vimentin and p-Smad2/3 in 4T1 cell xenografts in mice. BALB/c mice bearing subcutaneous xenografts of luciferase-expressing 4T1 cells received intravenous injections of AAV-sTβRⅡ virus, AAV-GFP virus or PBS (n=6) through the tail vein, and the proliferation and migration of 4T1 cells were analyzed with in vivo imaging. Ki67 expression in the tumor tissues and sTβRⅡ protein expressions in mouse livers were detected with immunohistochemistry and immunofluorescence staining, and tumor metastases in the vital organs were examined with HE staining. RESULTS The recombinant pAAV-sTβRⅡ-Fc vector successfully expressed sTβRⅡ in HEK 293T cells. Infection with AAV2-sTβRⅡ virus significantly reduced TGF-β1-induced Smad2/3 phosphorylation in 4T1 cells and effectively inhibited proliferation and lung metastasis of 4T1 xenografts in mice (P<0.05). In the tumor-bearing mice, intravenous injection of AAV-sTβRⅡ virus significantly increased E-cadherin expression, reduced vimentin and Ki67 protein expressions and Smad2/3 phosphorylation level in the tumor tissues (P<0.05 or 0.01), and induced liver-specific sTβRⅡ expression without causing body weight loss or heart, liver, spleen or kidney pathologies. CONCLUSION The recombinant AVV2 vector encoding sTβRⅡ extracellular domain is capable of blocking the TGF-β signaling pathway to inhibit the proliferation and lung metastasis of 4T1 cells in mice.
Collapse
|
10
|
Kong L, He Q, Ma D, Shi W, Xin Q, Jiang C, Wu J. Ezetimibe inhibits the migration and invasion of triple-negative breast cancer cells by targeting TGFβ2 and EMT. FEBS Open Bio 2024; 14:831-842. [PMID: 38531630 PMCID: PMC11073500 DOI: 10.1002/2211-5463.13797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The important role of cholesterol in tumor metastasis has been widely studied in recent years. Ezetimibe is currently the only selective cholesterol uptake inhibitor on the market. Here, we explored the effect of ezetimibe on breast cancer metastasis by studying its impact on breast cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT). Differential gene expression analysis and validation were also carried out to compare ezetimibe-treated and untreated breast cancer cells. Finally, breast cancer cells overexpressing TGFβ2 were constructed, and the effect of TGFβ2 on the migration and invasion of ezetimibe-treated breast cancer cells was examined. Our results show that ezetimibe treatment of breast cancer cells inhibited cell migration, invasion, and EMT, and it significantly suppressed the expression of TGFβ2. Overexpression of TGFβ2 reversed the inhibitory effect of ezetimibe on the migration and invasion of breast cancer cells. Taken together, our results suggest that ezetimibe might be a potential candidate for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Lingkai Kong
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Weiwei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong LaboratoryChina
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong LaboratoryChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical SchoolNanjing UniversityChina
| |
Collapse
|
11
|
Kajdaniuk D, Hudy D, Strzelczyk JK, Młynarek K, Słomian S, Potyka A, Szymonik E, Strzelczyk J, Foltyn W, Kos-Kudła B, Marek B. Transforming growth factors β and their signaling pathway in renal cell carcinoma and peritumoral space-transcriptome analysis. Clin Transl Oncol 2024; 26:1229-1239. [PMID: 38085441 PMCID: PMC11026247 DOI: 10.1007/s12094-023-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 04/20/2024]
Abstract
PURPOSE The aim of the study was to verify hypotheses: Are transforming growth factors TGFβ1-3, their receptors TGFβI-III, and intracellular messenger proteins Smad1-7 involved in the pathogenesis of kidney cancer? What is the expression of genes of the TGFβ/Smads pathway in renal cell carcinoma (RCC) tissues, peritumoral tissues (TME; tumor microenvironment), and in normal kidney (NK) tissue?. METHODS Twenty patients with RCC who underwent total nephrectomy were included into the molecular analysis. The mRNA expression of the genes was quantified by RT-qPCR. RESULTS The study showed that the expression of the genes of TGFβ/Smads pathway is dysregulated in both RCC and the TME: TGFβ1, TGFβ3 expression is increased in the TME in comparison to the NK tissues; TGFβ2, TGFβ3, TGFβRI, TGFβRIII, Smad1, Smad2, Smad3, and Smad6 are underexpressed in RCC comparing to the TME tissues; TGFβRI, TGFβRIII, and Smad2 are underexpressed in RCC in comparison to the NK tissues. CONCLUSION On the one hand, the underexpression of the TGFβ signaling pathway genes within the malignant tumor may result in the loss of the antiproliferative and pro-apoptotic activity of this cytokine. On the other hand, the overexpression of the TGFβ/Smads pathway genes in the TME than in tumor or NK tissues most probably results in an immunosuppressive effect in the space surrounding the tumor and may have an antiproliferative and pro-apoptotic effect on non-neoplastic cells present in the TME. The functional and morphological consistency of this area may determine the aggressiveness of the tumor and the time in which the neoplastic process will spread.
Collapse
Affiliation(s)
- Dariusz Kajdaniuk
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland.
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyna Młynarek
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Szymon Słomian
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Andrzej Potyka
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Ewa Szymonik
- Department of Anesthesiology and Intensive Care, Brothers Hospitallers of Saint John of God Hospital in Katowice, Katowice, Poland
| | - Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wanda Foltyn
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bogdan Marek
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland
| |
Collapse
|
12
|
Mittra A, Coyne GHOS, Zlott J, Kummar S, Meehan R, Rubinstein L, Juwara L, Wilsker D, Ji J, Miller B, Navas T, Ferry-Galow KV, Voth AR, Chang TC, Jiwani S, Parchment RE, Doroshow JH, Chen AP. Pharmacodynamic effects of the PARP inhibitor talazoparib (MDV3800, BMN 673) in patients with BRCA-mutated advanced solid tumors. Cancer Chemother Pharmacol 2024; 93:177-189. [PMID: 38010394 PMCID: PMC10902014 DOI: 10.1007/s00280-023-04600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Talazoparib is an inhibitor of the poly (ADP-ribose) polymerase (PARP) family of enzymes and is FDA-approved for patients with (suspected) deleterious germline BRCA1/2-mutated, HER2‑negative, locally advanced or metastatic breast cancer. Because knowledge of the pharmacodynamic (PD) effects of talazoparib in patients has been limited to studies of PARP enzymatic activity (PARylation) in peripheral blood mononuclear cells, we developed a study to assess tumoral PD response to talazoparib treatment (NCT01989546). METHODS We administered single-agent talazoparib (1 mg/day) orally in 28-day cycles to adult patients with advanced solid tumors harboring (suspected) deleterious BRCA1 or BRCA2 mutations. The primary objective was to examine the PD effects of talazoparib; the secondary objective was to determine overall response rate (ORR). Tumor biopsies were mandatory at baseline and post-treatment on day 8 (optional at disease progression). Biopsies were analyzed for PARylation, DNA damage response (γH2AX), and epithelial‒mesenchymal transition. RESULTS Nine patients enrolled in this trial. Four of six patients (67%) evaluable for the primary PD endpoint exhibited a nuclear γH2AX response on day 8 of treatment, and five of six (83%) also exhibited strong suppression of PARylation. A transition towards a more mesenchymal phenotype was seen in 4 of 6 carcinoma patients, but this biological change did not affect γH2AX or PAR responses. The ORR was 55% with the five partial responses lasting a median of six cycles. CONCLUSION Intra-tumoral DNA damage response and inhibition of PARP enzymatic activity were confirmed in patients with advanced solid tumors harboring BRCA1/2 mutations after 8 days of talazoparib treatment.
Collapse
Affiliation(s)
- Arjun Mittra
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Division of Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA
| | - Geraldine H O' Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Jennifer Zlott
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert Meehan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Lawrence Rubinstein
- Biometric Research Program, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lamin Juwara
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jiuping Ji
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brandon Miller
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tony Navas
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, 10591, USA
| | - Katherine V Ferry-Galow
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Andrea Regier Voth
- Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ting-Chia Chang
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shahanawaz Jiwani
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamics Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Martínez-Campa C, Álvarez-García V, Alonso-González C, González A, Cos S. Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer. Cancers (Basel) 2024; 16:956. [PMID: 38473317 DOI: 10.3390/cancers16050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
Collapse
Affiliation(s)
- Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alicia González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
14
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Imodoye SO, Adedokun KA. EMT-induced immune evasion: connecting the dots from mechanisms to therapy. Clin Exp Med 2023; 23:4265-4287. [PMID: 37966552 DOI: 10.1007/s10238-023-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic program crucial for organismal development and tissue regeneration. Unfortunately, this program is often hijacked by epithelial tumors to facilitate metastasis. Beyond its role in cancer spread, EMT increases cancer cell survival by activating stem cell programs and bypassing apoptotic programs. Importantly, the capacity of EMT to enforce tumor progression by altering the tumor cell phenotype without triggering immune responses opens the intriguing possibility of a mechanistic link between EMT-driven cancers and immune evasion. Indeed, EMT has been acknowledged as a of driver immune evasion, but the mechanisms are still evolving. Here, we review recent insights into the influence of EMT on tumor immune evasion. Specifically, we focus on the mechanistic roles of EMT in immune escape as the basis that may provide a platform for innovative therapeutic approaches in advanced tumors. We summarize promising therapeutic approaches currently in clinical trials and trending preclinical studies aimed at reinvigorating the tumor microenvironment to create immune-permissive conditions that facilitates immune-mediated tumor clearance. We anticipate that this will assist researchers and pharmaceutical companies in understanding how EMT compromises the immune response, potentially paving the way for effective cancer therapies.
Collapse
Affiliation(s)
- Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA.
| | - Kamoru A Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
16
|
Li X, Jiang O, Wang S. Molecular mechanisms of cellular metabolic homeostasis in stem cells. Int J Oral Sci 2023; 15:52. [PMID: 38040705 PMCID: PMC10692173 DOI: 10.1038/s41368-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
Many tissues and organ systems have intrinsic regeneration capabilities that are largely driven and maintained by tissue-resident stem cell populations. In recent years, growing evidence has demonstrated that cellular metabolic homeostasis plays a central role in mediating stem cell fate, tissue regeneration, and homeostasis. Thus, a thorough understanding of the mechanisms that regulate metabolic homeostasis in stem cells may contribute to our knowledge on how tissue homeostasis is maintained and provide novel insights for disease management. In this review, we summarize the known relationship between the regulation of metabolic homeostasis and molecular pathways in stem cells. We also discuss potential targets of metabolic homeostasis in disease therapy and describe the current limitations and future directions in the development of these novel therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Li
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Ou Jiang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Shi J, Li W, Jia Z, Peng Y, Hou J, Li N, Meng R, Fu W, Feng Y, Wu L, Zhou L, Wang D, Shen J, Chang J, Wang Y, Cao J. Synaptotagmin 1 Suppresses Colorectal Cancer Metastasis by Inhibiting ERK/MAPK Signaling-Mediated Tumor Cell Pseudopodial Formation and Migration. Cancers (Basel) 2023; 15:5282. [PMID: 37958455 PMCID: PMC10649299 DOI: 10.3390/cancers15215282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Although synaptotagmin 1 (SYT1) has been identified participating in a variety of cancers, its role in colorectal cancer (CRC) remains an enigma. This study aimed to demonstrate the effect of SYT1 on CRC metastasis and the underlying mechanism. We first found that SYT1 expressions in CRC tissues were lower than in normal colorectal tissues from the CRC database and collected CRC patients. In addition to this, SYT1 expression was also lower in CRC cell lines than in the normal colorectal cell line. SYT1 expression was downregulated by TGF-β (an EMT mediator) in CRC cell lines. In vitro, SYT1 overexpression repressed pseudopodial formation and reduced cell migration and invasion of CRC cells. SYT1 overexpression also suppressed CRC metastasis in tumor-bearing nude mice in vivo. Moreover, SYT1 overexpression promoted the dephosphorylation of ERK1/2 and downregulated the expressions of Slug and Vimentin, two proteins tightly associated with EMT in tumor metastasis. In conclusion, SYT1 expression is downregulated in CRC. Overexpression of SYT1 suppresses CRC cell migration, invasion, and metastasis by inhibiting ERK/MAPK signaling-mediated CRC cell pseudopodial formation. The study suggests that SYT1 is a suppressor of CRC and may have the potential to be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Jianyun Shi
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Wenjing Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Zhenhua Jia
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Ying Peng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan 030071, China
| | - Ning Li
- Department of Gastrointestinal and Pancreatic Surgery & Hernia and Abdominal Surgery, Shanxi Provincial People’s Hospital, Taiyuan 030045, China
| | - Ruijuan Meng
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Wei Fu
- Department of Radiology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030606, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lifei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| | - Yanqiang Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan 030606, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030606, China
| |
Collapse
|
18
|
He Q, Kong L, Shi W, Ma D, Liu K, Yang S, Xin Q, Jiang C, Wu J. Ezetimibe inhibits triple-negative breast cancer proliferation and promotes cell cycle arrest by targeting the PDGFR/AKT pathway. Heliyon 2023; 9:e21343. [PMID: 38027998 PMCID: PMC10651468 DOI: 10.1016/j.heliyon.2023.e21343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cholesterol levels were strongly associated with tumor progression and metastasis. Targeted cholesterol metabolism has broad prospects in tumor treatment. Ezetimibe, the only FDA-approved inhibitor of cholesterol absorption, has been reported to be able to inhibit angiogenesis in liver cancer. However, the efficacy and specific mechanisms of Ezetimibe in the treatment of Triple-Negative Breast Cancer (TNBC)have not been reported. Our research shows Ezetimibe inhibits TNBC cell proliferation and blocks the cell cycle in the G1 phase. Mechanistically, Ezetimibe inhibits the activation of PDGFRβ/AKT pathway, thereby promoting cell cycle arrest and inhibiting cell proliferation. By overexpressing PDGFRβ in TNBC cells, we found that PDGFRβ significantly reduced the inhibitory effect of Ezetimibe on TNBC cell proliferation and the cell cycle. Similarly, SC79, an AKT agonist, can reduce the proliferation inhibitory and cycle-blocking effects of Ezetimibe on TNBC cells. Furthermore, the AKT inhibitor MK2206 enhanced the inhibitory effect of Ezetimibe on the cell cycle and proliferation ability of TNBC cells overexpressing PDGFRβ. In xenograft tumor models, we also found that Ezetimibe inhibited TNBC growth, an effect that can be blocked by overexpression of PDGFR or activation of AKT. In summary, we have demonstrated that EZ inhibits the PDGFR/AKT pathway, thereby halting TNBC cycle progression and tumor growth.
Collapse
Affiliation(s)
- Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Weiwei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Shuwei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Medical School, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093 China
| |
Collapse
|
19
|
Ujlaki G, Kovács T, Vida A, Kókai E, Rauch B, Schwarcz S, Mikó E, Janka E, Sipos A, Hegedűs C, Uray K, Nagy P, Bai P. Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition. Molecules 2023; 28:5898. [PMID: 37570868 PMCID: PMC10420980 DOI: 10.3390/molecules28155898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol-d-mannose, 1-butanol-butyric acid, ethylene glycol-glycolic acid-oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties.
Collapse
Affiliation(s)
- Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Boglára Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group ELKH, 4032 Debrecen, Hungary
| |
Collapse
|
20
|
Ladel L, Tan WY, Jeyakanthan T, Sailo B, Sharma A, Ahuja N. The Promise of Epigenetics Research in the Treatment of Appendiceal Neoplasms. Cells 2023; 12:1962. [PMID: 37566041 PMCID: PMC10417136 DOI: 10.3390/cells12151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Appendiceal cancers (AC) are a rare and heterogeneous group of malignancies. Historically, appendiceal neoplasms have been grouped with colorectal cancers (CRC), and treatment strategies have been modeled after CRC management guidelines due to their structural similarities and anatomical proximity. However, the two have marked differences in biological behavior and treatment response, and evidence suggests significant discrepancies in their respective genetic profiles. In addition, while the WHO classification for appendiceal cancers is currently based on traditional histopathological criteria, studies have demonstrated that histomorphology does not correlate with survival or treatment response in AC. Due to their rarity, appendiceal cancers have not been studied as extensively as other gastrointestinal cancers. However, their incidence has been increasing steadily over the past decade, making it crucial to identify new and more effective strategies for detection and treatment. Recent efforts to map and understand the molecular landscape of appendiceal cancers have unearthed a wealth of information that has made it evident that appendiceal cancers possess a unique molecular profile, distinct from other gastrointestinal cancers. This review focuses on the epigenetic landscape of epithelial appendiceal cancers and aims to provide a comprehensive overview of the current state of knowledge of epigenetic changes across different appendiceal cancer subtypes, highlighting the challenges as well as the promise of employing epigenetics in the quest for the detection of biomarkers, therapeutic targets, surveillance markers, and predictors of treatment response and survival in epithelial appendiceal neoplasms.
Collapse
Affiliation(s)
- Luisa Ladel
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
- Affiliated Internal Medicine Residency Program at Norwalk Hospital, Department of Internal Medicine, Norwalk Hospital, Yale University, Norwalk, CT 06850, USA
| | - Wan Ying Tan
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
- Affiliated Internal Medicine Residency Program at Norwalk Hospital, Department of Internal Medicine, Norwalk Hospital, Yale University, Norwalk, CT 06850, USA
| | - Thanushiya Jeyakanthan
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
- Affiliated Internal Medicine Residency Program at Norwalk Hospital, Department of Internal Medicine, Norwalk Hospital, Yale University, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
| | - Anup Sharma
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
| | - Nita Ahuja
- Surgical Oncology Research Laboratories, Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, Yale University, New Haven, CT 06519, USA; (L.L.); (W.Y.T.); (T.J.); (B.S.); (A.S.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
21
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|
22
|
Devos H, Zoidakis J, Roubelakis MG, Latosinska A, Vlahou A. Reviewing the Regulators of COL1A1. Int J Mol Sci 2023; 24:10004. [PMID: 37373151 DOI: 10.3390/ijms241210004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The collagen family contains 28 proteins, predominantly expressed in the extracellular matrix (ECM) and characterized by a triple-helix structure. Collagens undergo several maturation steps, including post-translational modifications (PTMs) and cross-linking. These proteins are associated with multiple diseases, the most pronounced of which are fibrosis and bone diseases. This review focuses on the most abundant ECM protein highly implicated in disease, type I collagen (collagen I), in particular on its predominant chain collagen type I alpha 1 (COLα1 (I)). An overview of the regulators of COLα1 (I) and COLα1 (I) interactors is presented. Manuscripts were retrieved searching PubMed, using specific keywords related to COLα1 (I). COL1A1 regulators at the epigenetic, transcriptional, post-transcriptional and post-translational levels include DNA Methyl Transferases (DNMTs), Tumour Growth Factor β (TGFβ), Terminal Nucleotidyltransferase 5A (TENT5A) and Bone Morphogenic Protein 1 (BMP1), respectively. COLα1 (I) interacts with a variety of cell receptors including integrinβ, Endo180 and Discoidin Domain Receptors (DDRs). Collectively, even though multiple factors have been identified in association to COLα1 (I) function, the implicated pathways frequently remain unclear, underscoring the need for a more spherical analysis considering all molecular levels simultaneously.
Collapse
Affiliation(s)
- Hanne Devos
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Jerome Zoidakis
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | | | - Antonia Vlahou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
23
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
24
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
25
|
Gao W, Chen D, Liu J, Zang L, Xiao T, Zhang X, Li Z, Zhu H, Yu X. Interplay of four types of RNA modification writers revealed distinct tumor microenvironment and biological characteristics in pancreatic cancer. Front Immunol 2022; 13:1031184. [PMID: 36601127 PMCID: PMC9806142 DOI: 10.3389/fimmu.2022.1031184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most lethal malignancies and carries a dismal mortality and morbidity. Four types of RNA modification (namely m6A, m1A, APA and A-to-I) could be catalyzed by distinct enzymatic compounds ("writers"), mediating numerous epigenetic events in carcinogenesis and immunomodulation. We aim to investigate the interplay mechanism of these writers in immunogenomic features and molecular biological characteristics in PC. Methods We first accessed the specific expression pattern and transcriptional variation of 26 RNA modification writers in The Cancer Genome Atlas (TCGA) dataset. Unsupervised consensus clustering was performed to divide patients into two RNA modification clusters. Then, based on the differentially expressed genes (DEGs) among two clusters, RNA modification score (WM_Score) model was established to determine RNA modification-based subtypes and was validated in International Cancer Genome Consortium (ICGC) dataset. What's more, we manifested the unique status of WM_Score in transcriptional and post-transcriptional regulation, molecular biological characteristics, targeted therapies and immunogenomic patterns. Results We documented the tight-knit correlations between transcriptional expression and variation of RNA modification writers. We classified patients into two distinct RNA modification patterns (WM_Score_high and _low), The WM_Score_high subgroup was correlated with worse prognosis, Th2/Th17 cell polarization and oncogenic pathways (e.g. EMT, TGF-β, and mTORC1 signaling pathways), whereas the WM_Score_low subgroup associated with favorable survival rate and Th1 cell trend. WM_Score model also proved robust predictive power in interpreting transcriptional and post-transcriptional events. Additionally, the potential targeted compounds with related pathways for the WM_Score model were further identified. Conclusions Our research unfolds a novel horizon on the interplay network of four RNA modifications in PC. This WM_Score model demonstrated powerful predictive capacity in epigenetic, immunological and biological landscape, providing a theoretical basis for future clinical judgments of PC.
Collapse
Affiliation(s)
- Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China,State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jixing Liu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Longjun Zang
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tijun Xiao
- Department of General Surgery, Shaoyang University Affiliated Second Hospital, Shaoyang University, Shaoyang, Hunan, China
| | - Xianlin Zhang
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zheng Li
- Department of General Surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Hongwei Zhu, ; Xiao Yu,
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Hongwei Zhu, ; Xiao Yu,
| |
Collapse
|
26
|
Freire T, Landeira M, Giacomini C, Festari MF, Pittini Á, Cardozo V, Brosque A, Monin L, da Costa V, Faral-Tello P, Robello C, Osinaga E. Trypanosoma cruzi-Derived Molecules Induce Anti-Tumour Protection by Favouring Both Innate and Adaptive Immune Responses. Int J Mol Sci 2022; 23:ijms232315032. [PMID: 36499361 PMCID: PMC9739173 DOI: 10.3390/ijms232315032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer remains the leading cause of cancer mortality worldwide. Thus, the development of strategies against this type of cancer is of high value. Parasite infections can correlate with lower cancer incidence in humans and their use as vaccines has been recently explored in preclinical models. In this study, we investigated whether immunisations with a Trypanosoma cruzi lysate from epimastigotes protect from lung tumour growth in mice. We also explore the role of parasite glycans in the induction of the protective immune response. A pre-clinical murine cancer model using the lung tumour cell line LL/2 was used to evaluate the anti-tumour potential, both in preventive and therapeutic settings, of a T. cruzi epimastigote-derived protein lysate. Immunisation with the parasite lysate prevents tumour growth and induces both humoral and cellular anti-tumour immune responses to LL-2 cancer cells. The induced immunity and tumour protection were associated with the activation of natural killer (NK) cells, the production of interferon-γ (IFN-γ) and tumour cell cytotoxicity. We also show that mannose residues in the T. cruzi lysate induce Toll-like receptor (TLR) signalling. The evaluated T. cruzi lysate possesses anti-tumour properties likely by activating innate and adaptive immunity in a process where carbohydrates seem to be essential.
Collapse
Affiliation(s)
- Teresa Freire
- Laboratorio de Inmunomodulación y Vacunas, Departamento Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
- Correspondence: (T.F.); (E.O.)
| | - Mercedes Landeira
- Laboratorio de Inmunomodulación y Vacunas, Departamento Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
| | - Cecilia Giacomini
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral Flores 2124, Montevideo 11800, Uruguay
| | - María Florencia Festari
- Laboratorio de Inmunomodulación y Vacunas, Departamento Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
| | - Álvaro Pittini
- Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Viviana Cardozo
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Alina Brosque
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Leticia Monin
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Valeria da Costa
- Laboratorio de Inmunomodulación y Vacunas, Departamento Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero-Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo 11800, Uruguay
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Correspondence: (T.F.); (E.O.)
| |
Collapse
|