1
|
Abbas M, Gaye A. Emerging roles of noncoding RNAs in cardiovascular pathophysiology. Am J Physiol Heart Circ Physiol 2025; 328:H603-H621. [PMID: 39918596 DOI: 10.1152/ajpheart.00681.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025]
Abstract
This review comprehensively examines the diverse roles of noncoding RNAs (ncRNAs) in the pathogenesis and treatment of cardiovascular disease (CVD), focusing on microRNA (miRNA), long noncoding RNA (lncRNA), piwi-interacting RNA (piRNA), small-interfering RNA (siRNA), circular RNA (circRNA), and vesicle-associated RNAs. These ncRNAs are integral regulators of key cellular processes, including gene expression, inflammation, and fibrosis, and they hold great potential as both diagnostic biomarkers and therapeutic targets. The review highlights novel insights into how these RNA species, particularly miRNAs, lncRNAs, and piRNAs, contribute to various CVDs such as hypertension, atherosclerosis, and myocardial infarction. In addition, it explores the emerging role of extracellular vesicles (EVs) in intercellular communication and their therapeutic potential in cardiovascular health. The review underscores the need for continued research into ncRNAs and RNA-based therapies, with a focus on advancing delivery systems and expanding personalized medicine approaches to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Malak Abbas
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Amadou Gaye
- Department of Integrative Genomics and Epidemiology, School of Graduate Studies, Meharry Medical School, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, Nadeau A, Juncker D, Nerguizian V, Burnier JV. Leveraging nature's nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. SCIENCE ADVANCES 2025; 11:eads5249. [PMID: 40009680 PMCID: PMC11864201 DOI: 10.1126/sciadv.ads5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Naturally occurring extracellular vesicles (EVs) and synthetic nanoparticles like liposomes have revolutionized precision diagnostics and medicine. EVs excel in biocompatibility and cell targeting, while liposomes offer enhanced drug loading capacity and scalability. The clinical translation of EVs is hindered by challenges including low yield and heterogeneity, whereas liposomes face rapid immune clearance and limited targeting efficiency. To bridge these gaps, biomimetic synthetic vesicles (SVs) have emerged as innovative platforms, combining the advantageous properties of EVs and liposomes. This review emphasizes critical aspects of EV biology, such as mechanisms of EV-cell interaction and source-dependent functionalities in targeting, immune modulation, and tissue regeneration, informing biomimetic SV engineering. We reviewed a broad array of biomimetic SVs, with a focus on lipid bilayered vesicles functionalized with proteins. These include cell-derived nanovesicles, protein-functionalized liposomes, and hybrid vesicles. By addressing current challenges and highlighting opportunities, this review aims to advance biomimetic SVs for transformative biomedical applications.
Collapse
Affiliation(s)
- Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Ishman Kaur
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- École de technologie supérieure ÉTS, Montreal, QC, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - David Juncker
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | | | - Julia V. Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Furioso Ferreira R, Ghaffari MH, Ceciliani F, Fontana M, Caruso D, Audano M, Savoini G, Agazzi A, Mrljak V, Sauerwein H. Untargeted lipidomics reveals unique lipid signatures of extracellular vesicles from porcine colostrum and milk. PLoS One 2025; 20:e0313683. [PMID: 39946395 PMCID: PMC11825007 DOI: 10.1371/journal.pone.0313683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/30/2024] [Indexed: 02/16/2025] Open
Abstract
Extracellular vesicles (EV) are membranous vesicles considered as significant players in cell-to-cell communication. Milk provides adequate nutrition, transfers immunity, and promotes neonatal development, and milk EV are suggested to play a crucial role in these processes. Milk samples were obtained on days 0, 7, and 14 after parturition from sows receiving either a standard diet (ω-6:ω-3 = 13:1) or a test diet enriched in ω-3 (ω-6:ω-3 = 4:1). EV were isolated using ultracentrifugation coupled with size exclusion chromatography, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and assessment of EV markers via Western blotting. The lipidome was determined following a liquid chromatography-quadrupole time-of-flight mass spectrometry approach. Here, we show that different stages of lactation (colostrum vs mature milk) have a distinct extracellular vesicle lipidomic profile. The distinct lipid content can be further explored to understand and regulate milk EV functionalities and primordial for enabling their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rafaela Furioso Ferreira
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Morteza H. Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Audano
- Unitech OMICs, Università degli Studi di Milano, Milano, Italy
| | - Giovanni Savoini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Agazzi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, García-García F, Pascual M. Unraveling the Impact of TLR4 and Sex on Chronic Alcohol Consumption-Induced Lipidome Dysregulation in Extracellular Vesicles. J Proteome Res 2025. [PMID: 39907520 DOI: 10.1021/acs.jproteome.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The lipids that form extracellular vesicles (EVs) play critical structural and regulatory roles, and cutting-edge bioinformatics strategies have shown the ability to decipher lipid metabolism and related molecular mechanisms. We previously demonstrated that alcohol abuse induces an inflammatory immune response through Toll-like receptor 4 (TLR4), leading to structural and cognitive dysfunction. This study evaluated how TLR4 and sex as variables (male/female) impact the lipidome of plasma-resident EVs after chronic alcohol exposure. Using a mouse model of chronic ethanol exposure in wild-type and TLR4-deficient mice, enrichment networks generated by LINEX2 highlighted significant ethanol-induced changes in the EV lipid substrate-product of enzyme reactions associated with glycerophospholipid metabolism. We also demonstrated ethanol-induced differences in Lipid Ontology enrichment analysis in EVs, focusing on terms related to lipid bilayer properties. A lipid abundance analysis revealed higher amounts of significant lipid subclasses in all experimental comparisons associated with inflammatory responses and EV biogenesis/secretion. These findings suggest that interrogating EV lipid abundance with a sensitive lipidomic-based strategy can provide deep insight into the molecular mechanisms underlying biological processes associated with sex, alcohol consumption, and TLR4 immune responses and open new avenues for biomarker identification and therapeutic development.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Cristina Galiana-Roselló
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Parlatan U, Boudreau L, Torun H, Fan L, Aygun U, Gokaltun AA, Akin D, Usta OB, Demirci U. SHINE: SERS-based Hepatotoxicity detection using Inference from Nanoscale Extracellular vesicle content. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635446. [PMID: 39974950 PMCID: PMC11838255 DOI: 10.1101/2025.01.30.635446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Extracellular vesicles (EV) are becoming crucial tools in liquid biopsy, diagnostics, and therapeutic applications, yet their nanoscale characterization remains challenging. In this context, the detection of drug-induced liver injury, i.e., hepatotoxicity, through extracellular vesicle molecular content remains an unexplored frontier. To this end, we present a label-free surface-enhanced Raman (SERS) spectroscopy approach, which provides rapid EV content analysis under ten minutes and requires only 1.3 microliters of sample. Using hepatic cultures as a model, our platform captures distinct and reproducible EV molecular changes in response to acetaminophen-induced hepatoxicity. Our platform achieves exceptional accuracy with root mean squared error values as low as 3.80%, establishing strong correlations between EV spectra and conventional toxicity biomarkers. Unlike previous EV-SERS studies limited to vesicle identification and disease markers, this approach reveals EV drug-response signatures strongly correlated with conventional toxicity markers. These findings establish EVs as dynamic reporters of cellular drug responses and demonstrate use of SERS-based EV detection of hepatotoxicity.
Collapse
Affiliation(s)
- Ugur Parlatan
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, 94304, USA
| | - Luke Boudreau
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Hulya Torun
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, 94304, USA
| | - Letao Fan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Ugur Aygun
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, 94304, USA
- Department of Electrical and Electronics Engineering, Koç University, Istanbul, 34450, Turkiye
| | - Ayse Aslihan Gokaltun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, 94304, USA
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Lab, Canary Center at Stanford, Department of Radiology, School of Medicine, Stanford University, California, CA, 94304, USA
- Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Ouro A, Castro-Mosquera M, Rodríguez-Arrizabalaga M, Debasa-Mouce M, Custodia A, Aramburu-Núñez M, Romaus-Sanjurjo D, Casas J, Lema I, Castillo J, Leira R, Sobrino T. Elevated Serum Levels of Acid Sphingomyelinase in Female Patients with Episodic and Chronic Migraine. Antioxidants (Basel) 2025; 14:159. [PMID: 40002346 PMCID: PMC11851676 DOI: 10.3390/antiox14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Migraine is one of the most common neurological disorders and the second most disabling human condition. The molecular mechanisms of migraine have been linked to neuropeptide release, endothelial dysfunction, oxidative stress and inflammatory processes. Acid sphingomyelinase (aSMase) is a secreted enzyme that leads to sphingomyelin degradation to produce ceramide. Its activity has been associated with several molecular processes involved in migraine. Therefore, this cross-sectional study aims to study the potential role of aSMase in patients with episodic and chronic migraine. In this cross-sectional pilot study, serum samples from female healthy controls (n = 23), episodic migraine (EM) patients (n = 31), and chronic migraine (CM) patients (n = 28) were studied. The total serum levels of aSMase were determined by ELISA. In addition, the serum levels of sphingomyelin (SM), dihydro-sphingomyelin (dhSM), ceramide (Cer), and dihydro-ceramide (dhCer) were determined by mass spectrometry as biomarkers involved in the main molecular pathways associated with aSMase. aSMase serum levels were found significantly elevated in both EM (3.62 ± 1.25 ng/mL) and CM (3.07 ± 0.95 ng/mL) compared with controls (1.58 ± 0.72 ng/mL) (p < 0.0001). ROC analysis showed an area under the curve (AUC) of 0.94 (95% CI: 0.89-0.99, p < 0.0001) and 0.90 (95% CI: 0.81-0.99, p < 0.0001) for EM and CM compared to controls, respectively. Regarding other biomarkers associated with aSMase's pathways, total SM serum levels were significantly decreased in both EM (173,534 ± 39,096 pmol/mL, p < 0.01) and CM (158,459 ± 40,010 pmol/mL, p < 0.0001) compared to the control subjects (219,721 ± 36,950 pmol/mL). Elevated serum levels of aSMase were found in EM and CM patients compared to the control subjects. The decreased SM levels found in both EM and CM indicate that aSMase activity plays a role in migraine. Therefore, aSMase may constitute a new therapeutic target in migraine that should be further investigated.
Collapse
Affiliation(s)
- Alberto Ouro
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mónica Castro-Mosquera
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
| | - Mariña Rodríguez-Arrizabalaga
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
| | - Manuel Debasa-Mouce
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
| | - Antía Custodia
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aramburu-Núñez
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain;
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
- Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Instituto Galego de Oftalmoloxía (INGO), Hospital Provincial de Conxo, 15706 Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Rogelio Leira
- Department of Neurology, Hospital Clínico Universitario, Universidad de Santiago de Compostela, 15705 Santiago de Compostela, Spain;
| | - Tomás Sobrino
- NeuroAging Group Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.C.-M.); (M.R.-A.); (M.D.-M.); (A.C.); (M.A.-N.); (D.R.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Orefice NS, Petrillo G, Pignataro C, Mascolo M, De Luca G, Verde S, Pentimalli F, Condorelli G, Quintavalle C. Extracellular vesicles and microRNAs in cancer progression. Adv Clin Chem 2025; 125:23-54. [PMID: 39988407 DOI: 10.1016/bs.acc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Extracellular vesicles (EVs) have emerged as critical mediators of intercellular communication in cancer. These membranous structures, secreted by normal and cancerous cells, carry a cargo of bioactive molecules including microRNAs (miRNAs) that modulate various cellular processes. miRNAs are small non-coding RNAs that play pivotal roles in post-transcriptional gene regulation and have been implicated in cancer initiation, progression, and metastasis. In cancer, tumor-derived EVs transport specific miRNAs to recipient cells, modulating tumorigenesis, growth, angiogenesis, and metastasis. Dysregulation of miRNA expression profiles within EVs contributes to the acquisition of cancer hallmarks that include increased proliferation, survival, and migration. EV miRNAs influence the tumor microenvironment, promoting immune evasion, remodeling the extracellular matrix, and establishing pre-metastatic niches. Understanding the complex interplay between EVs, miRNAs, and cancer holds significant promise for developing novel diagnostic and therapeutic strategies. This chapter provides insights into the role of EV-mediated miRNA signaling in cancer pathogenesis, highlighting its potential as a biomarker for cancer detection, prognosis, and treatment response assessment.
Collapse
Affiliation(s)
- Nicola S Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Claudia Pignataro
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Giada De Luca
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| | - Sara Verde
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Aka biotech S.r.l., Napoli, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", Bari, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy; Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy.
| | - Cristina Quintavalle
- Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI) National Research Council (CNR), Naples, Italy
| |
Collapse
|
8
|
Sima N, Ayllon-Hermida A, Fernández-Becerra C, Del Portillo HA. Extracellular vesicles in malaria: proteomics insights, in vitro and in vivo studies indicate the need for transitioning to natural human infections. mBio 2025:e0230424. [PMID: 39868784 DOI: 10.1128/mbio.02304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
Globally, an estimated 2.1 billion malaria cases and 11.7 million malaria deaths were averted in the period 2000-2022. Noticeably, despite effective control measurements, in 2022 there were an estimated 249 million malaria cases in 85 malaria-endemic countries and an increase of 5 million cases compared with 2021. Further understanding the biology, epidemiology, and pathogenesis of human malaria is therefore essential for achieving malaria elimination. Extracellular vesicles (EVs) are membrane-enclosed nanoparticles pivotal in intercellular communication and secreted by all cell types. Here, we will review what is currently known about EVs in malaria, from biogenesis and cargo to molecular insights of pathophysiology. Of relevance, a meta-analysis of proteomics cargo, and comparisons between in vitro and in vivo human studies revealed striking differences with those few studies reported from patients. Thus, indicating the need for rigor standardization of methodologies and for transitioning to human infections to elucidate their physiological role. We conclude with a focus on translational aspects in diagnosis and vaccine development and highlight key gaps in the knowledge of EVs in malaria research.
Collapse
Affiliation(s)
- Núria Sima
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
| | - Alberto Ayllon-Hermida
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Carmen Fernández-Becerra
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Hernando A Del Portillo
- ISGlobal, Barcelona, Spain
- IGTP, Germans Trias i Pujol Research Institute, Badalona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Kim G, Zhu R, Yu S, Fan B, Jeon H, Leon J, Webber MJ, Wang Y. Enhancing Gene Delivery to Breast Cancer with Highly Efficient siRNA Loading and pH-Responsive Small Extracellular Vesicles. ACS Biomater Sci Eng 2025; 11:213-227. [PMID: 39713992 DOI: 10.1021/acsbiomaterials.4c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs. We report an enhanced gene delivery system using multifunctional sEVs for highly efficient siRNA loading and delivery. The integration of chiral graphene quantum dots enhanced the loading capacity while preserving the structural integrity of the sEVs. Additionally, lysosomal escape is facilitated by functionalizing sEVs with pH-responsive peptides, fully harnessing the inherent homing effect of sEVs for targeted and precise delivery. These sEVs achieved a 1.74-fold increase in cytosolic cargo delivery compared to unmodified sEVs, resulting in substantial gene silencing of around 73%. Our approach has significant potential to advance sEV-based gene delivery in order to accelerate clinical progress.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Sihan Yu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Bowen Fan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Jennifer Leon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States
| |
Collapse
|
10
|
Wu RW, Lin YH, Lu CH, Su CH, Chen YS, Wang FS, Lian WS. Gold nanomaterials capped with bovine serum albumin for cell and extracellular vesicle imaging. NANOTECHNOLOGY 2025; 36:105101. [PMID: 39780321 DOI: 10.1088/1361-6528/ada3da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Bovine serum albumin-capped gold nanoclusters (AuNC@BSA) are ionic, ultra-small, and eco-friendly nanomaterials that exhibit red fluorescence emission. Upon modification, these nanomaterials can serve as imaging probes with multimodal functionality. Owing to their nanoscale properties, AuNC@BSA-based nanomaterials can be readily endocytosed by cells for imaging. With the increasing interest in cell therapy, extracellular vesicles (EVs) have attracted considerable attention from researchers; however, effective methods for imaging EVs remain limited. Although several studies have explored imaging strategies for cells and EVs using compounds, nuclear pharmaceuticals, nanoparticles, or genetic constructs, the use of AuNC@BSA-based nanomaterials for labeling EVs and their parental cells has rarely been discussed, with even less attention paid to their multimodal potential. To address this gap, we utilized three types of AuNC@BSA-based derivatives: AuNC@BSA, AuNC@BSA-Gd, and AuNC@BSA-Gd-I. Our findings demonstrate that these derivatives can effectively label both cells and EVs using a simple direct labeling approach, which is particularly notable for EVs, as they typically require more complex labeling procedures. Furthermore, the multimodal potential of labeled cells and EVs was evaluated, revealing their capabilities for multimodal imaging. In summary, this study presents an effective strategy for labeling EVs and their parental cells using multimodal nanomaterials. These findings will contribute to accelerating the development of drug delivery systems, cell- and EV-based therapies, and advanced imaging strategies.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Han Lin
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Cheng-Hsiu Lu
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chia-Hao Su
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Radiological Research, Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Feng-Sheng Wang
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Medical Research, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Core Laboratory for Phenomics and Diagnostic, College of Medicine Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
11
|
Hirai K, Saito H, Kato M, Kiyama M, Hanzawa H, Nakane A, Sekiya S, Yoshida K, Kishino A, Ikeda A, Kimura T, Takahashi J, Takeda S. Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. J Biosci Bioeng 2025; 139:44-52. [PMID: 39419642 DOI: 10.1016/j.jbiosc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.
Collapse
Affiliation(s)
- Kakuro Hirai
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hikaru Saito
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Midori Kato
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masaharu Kiyama
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroko Hanzawa
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Nakane
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe KIMEC Center Building 5th Fl, 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sayaka Sekiya
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Kenji Yoshida
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Atsushi Ikeda
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe KIMEC Center Building 5th Fl, 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toru Kimura
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shizu Takeda
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
12
|
Ebrahimi F, Kumari A, Ghadami S, Al Abdullah S, Dellinger K. The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead. Adv Biol (Weinh) 2024:e2400623. [PMID: 39739455 DOI: 10.1002/adbi.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising tools in diagnostics and therapy for chronic diseases, including cancer and Alzheimer's. Small EVs, also called exosomes, are lipid-bound particles (≈30-150 nm) that play a role in healthy and pathophysiological interactions, including intercellular communication, by transporting bioactive molecules, including proteins, lipids, and nucleic acids. Their ability to cross biological barriers, such as the blood-brain barrier, makes them ideal candidates for targeted therapeutic interventions. In the context of chronic diseases, exosomes can be engineered to deliver active agents, including small molecules and siRNAs to specific target cells, providing a novel approach to precision medicine. Moreover, exosomes show great promise as repositories for diagnostic biomarkers. Their cargo can reflect the physiological and pathological status of the parent cells, making them valuable indicators of disease progression and response to treatment. This paper presents a comprehensive review of the application of exosomes in four chronic diseases: cancer, cardiovascular disease, neurodegenerative disease, and orthopedic disease, which significantly impact global public health due to their high prevalence and associated morbidity and mortality rates. Furthermore, the potential of exosomes as valuable tools for theranostics and disease management is highlighted. Finally, the challenges associated with exosomes and their demonstrated potential for advancing future nanomedicine applications are discussed.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Samaneh Ghadami
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| |
Collapse
|
13
|
Pereira-Silva GC, Medina JM, Paschoaletto L, Mangeth L, Coelho FS, Attias M, Domont GB, Nogueira FCS, Sosa-Acosta P, de Oliveira Santos E, Ferreira CV, de Miranda BT, Mignaco JA, Calegari-Silva T, Lopes UG, Saraiva EM. Leishmania amazonensis-derived extracellular vesicles (EVs) induce neutrophil extracellular traps (NETs). J Leukoc Biol 2024; 117:qiae196. [PMID: 39241110 DOI: 10.1093/jleuko/qiae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/08/2024] Open
Abstract
Neutrophils interact with Leishmania when the sandfly vector inoculates these parasites in the host with saliva and promastigotes-derived extracellular vesicles (EVs). It has been shown that this co-injection induces inflammation and exacerbates leishmaniasis lesions. EVs are a heterogeneous group of vesicles released by cells that play a crucial role in intercellular communication. Neutrophils are among the first cells to interact with the parasites and release neutrophil extracellular traps (NETs) that ensnare and kill the promastigotes. Here, we show that Leishmania amazonensis EVs induce NET formation and identify molecular mechanisms involved. We showed the requirement of neutrophils' toll-like receptors for EVs-induced NET. EVs carrying the virulence factors lipophosphoglycan and the zinc metalloproteases were endocytosed by some neutrophils and snared by NETs. EVs-induced NET formation required reactive oxygen species, myeloperoxidase, elastase, peptidyl arginine deiminase, and Ca++. The proteomic analysis of the EVs cargo revealed 1,189 proteins; the 100 most abundant identified comprised some known Leishmania virulent factors. Importantly, L. amazonensis EVs-induced NETs lead to the killing of promastigotes and could participate in the exacerbated inflammatory response induced by the EVs, which may play a role in the pathogenesis process.
Collapse
Affiliation(s)
- Gean C Pereira-Silva
- Laboratório de Imunidade Inata, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Jorge Mansur Medina
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Letícia Paschoaletto
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Luana Mangeth
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Felipe Soares Coelho
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gilberto B Domont
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Fábio C S Nogueira
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Patrícia Sosa-Acosta
- Centro de Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Eidy de Oliveira Santos
- Laboratório de Tecnologia em Bioquímica e Microbiologia, Faculdade de Ciências Biológicas e Saúde, Universidade Estadual do Rio de Janeiro (UERJ), Rio de Janeiro 20950-000, Brazil
| | - Carlos Vinicius Ferreira
- Laboratório de Microbiologia, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Beatriz Toja de Miranda
- Laboratório de Cardiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-599, Brazil
| | - Julio Alberto Mignaco
- Laboratório de Estrutura e Regulação de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Teresa Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Ulisses Gazos Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
14
|
Fu E, Pan K, Li Z. Engineering extracellular vesicles for targeted therapeutics in cardiovascular disease. Front Cardiovasc Med 2024; 11:1503830. [PMID: 39749310 PMCID: PMC11693616 DOI: 10.3389/fcvm.2024.1503830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles secreted by cells that play crucial roles in intercellular communication, especially in the context of cardiovascular diseases (CVDs). These vesicles carry complex cargo, including proteins, lipids, and nucleic acids, that reflects the physiological or pathological state of their cells of origin. Multiomics analysis of cell-derived EVs has provided valuable insights into the molecular mechanisms underlying CVDs by identifying specific proteins and EV-bound targets involved in disease progression. Recent studies have demonstrated that engineered EVs, which are designed to carry specific therapeutic molecules or modified to enhance their targeting capabilities, hold promise for treating CVDs. Analysis of the EV proteome has been instrumental in identifying key proteins that can be targeted or modulated within these engineered vesicles. For example, proteins involved in inflammation, thrombosis, and cardiac remodeling have been identified as potential therapeutic targets. Furthermore, the engineering of EVs to increase their delivery to specific tissues, such as the myocardium, or to modulate their immunogenicity and therapeutic efficacy is an emerging area of research. By leveraging the insights gained from multiomics analyses, researchers are developing EV-based therapies that can selectively target pathological processes in CVDs, offering a novel and potentially more effective treatment strategy. This review integrates the core findings from EV multiomics analysis in the context of CVDs and highlights the potential of engineered EVs in therapeutic applications.
Collapse
Affiliation(s)
- Enze Fu
- School of Medicine, Nankai University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
| | - Kai Pan
- School of Medicine, Nankai University, Tianjin, China
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Seventh People's Hospital, Zhengzhou, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China
- Institute of Ophthalmology, Nankai University, Tianjin, China
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Seventh People's Hospital, Zhengzhou, China
- National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Zhang Y, Mou Z, Song W, He X, Yi Q, Wang Z, Mao X, Wang W, Xu Y, Shen Y, Ma P, Yu K. Sparstolonin B potentiates the antitumor activity of nanovesicle-loaded drugs by suppressing the phagocytosis of macrophages in vivo. J Nanobiotechnology 2024; 22:759. [PMID: 39696573 DOI: 10.1186/s12951-024-03001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and extruded nanovesicles (ENVs) are promising nanovesicles (NVs) for drug delivery. However, the application of these NVs is strongly hindered by their short half-life in the circulation. Macrophages (Mφs) in the liver and spleen contribute to the rapid depletion of NVs, but the underlying mechanism is unclear. METHODS By collecting the supernatant of PANC-1 cells and squeezing PANC-1 cells, EVs and ENVs derived from PANC-1 cells were prepared via ultracentrifugation. NVs were subsequently identified via western blot, particle size measurement, and electron microscopy. The distribution of NVs in mouse bodies was observed with a live animal imaging system. Liver Mφs were extracted and isolated after NVs were administered, and transcriptome profiling was applied to determine differentially expressed genes (DEGs). siRNAs targeting interested genes were designed and synthesized. In vitro experiments, Mφs were transfected with siRNA or treated with the corresponding inhibitor, after which NV uptake was recorded. Doxorubicin (DOX) was encapsulated in ENVs using an ultrasound method. PANC-1 cell-derived tumors were established in nude mice in vivo, inhibitor pretreatment or no treatment was administered before intravenous injection of ENVs-DOX, and the therapeutic efficacy of ENVs-DOX was evaluated. RESULTS NVs derived from PANC-1 cells were first prepared and identified. After intravenous injection, most NVs were engulfed by Mφs in the liver and spleen. Seven genes of interest were selected via transcriptome sequencing and validated via RT‒PCR. These results confirmed that the TLR2 signaling pathway is responsible for phagocytosis. siTLR2 and its inhibitor sparstolonin B (SpB) significantly inhibited the internalization of NVs by Mφs and downregulated the activity of the TLR2 pathway. The accumulation of ENVs-DOX in the liver was inhibited in vivo by pretreatment with SpB 40 min before intravenous injection, ultimately delaying tumor progression. CONCLUSION The TLR2 pathway plays a crucial role in the sequestration of NVs by Mφs. A novel antiphagocytic strategy in which pretreatment of mice with SpB inhibits the clearance of NVs and prolongs their half-life in vivo, thereby improving delivery efficiency, was identified.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuo Mou
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Song
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Teaching Office, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qin Yi
- The First Clinical College, Wuhan University, Wuhan, China
| | - Zhekai Wang
- The First Clinical College, Wuhan University, Wuhan, China
| | - Xietong Mao
- The First Clinical College, Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangtao Xu
- The First Clinical College, Wuhan University, Wuhan, China
| | - Yang Shen
- The First Clinical College, Wuhan University, Wuhan, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Li C, Enciso-Martinez A, Koning RI, Shahsavari M, Ten Dijke P. TGF-β regulates the release of breast cancer cell-derived extracellular vesicles and the sorting of their protein cargo by downregulating RAB27B expression. J Extracell Vesicles 2024; 13:e70026. [PMID: 39723610 DOI: 10.1002/jev2.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. The cytokine transforming growth factor-β (TGF-β) facilitates cancer progression via EVs secreted by cancer cells, which act on recipient cells in the tumour microenvironment. However, the mechanisms of how TGF-β affects cancer cell EV release and composition are incompletely understood. Here, we systematically investigate the effects of TGF-β on the release and protein composition of EVs from breast cancer cells. TGF-β suppresses the transcription of RAB27B mediated by SMAD3 and thereby hampers EV release. Using click chemistry and quantitative proteomics, we found that TGF-β increases the quantity of protein cargo and changes the composition of EVs by downregulating RAB27B expression. The recomposed EVs, induced by TGF-β or RAB27B depletion, inhibit CD8+ T cell-mediated breast cancer killing. Our findings reveal the critical roles of TGF-β and RAB27B in cancer development by regulating EV release and composition and thus provide potential targets to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Li
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustin Enciso-Martinez
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Engineering & Physics; Laboratory of Experimental Clinical Chemistry, Laboratory Specialized Diagnostics & Research, Department of Laboratory Medicine, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Mona Shahsavari
- Biomedical Engineering & Physics; Laboratory of Experimental Clinical Chemistry, Laboratory Specialized Diagnostics & Research, Department of Laboratory Medicine, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis and Ischemic Syndromes, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
17
|
Németh K, Kestecher BM, Ghosal S, Bodnár BR, Kittel Á, Hambalkó S, Kovácsházi C, Giricz Z, Ferdinandy P, Osteikoetxea X, Burkhardt R, Buzas EI, Orsó E. Therapeutic and pharmacological applications of extracellular vesicles and lipoproteins. Br J Pharmacol 2024; 181:4733-4749. [PMID: 39491825 DOI: 10.1111/bph.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 07/13/2024] [Indexed: 11/05/2024] Open
Abstract
In recent years, various approaches have been undertaken to eliminate lipoproteins co-isolated with extracellular vesicles, as they were initially regarded as contaminating entities. However, novel discoveries are reshaping our perspective. In body fluids, these distinct particles not only co-exist, but also interactions between them are likely to occur. Extracellular vesicles and lipoproteins can associate with each other, share cargo, influence each other's functions, and jointly have a role in the pathomechanisms of diseases. Additionally, their association carries important implications for therapeutic and pharmacological aspects of lipid-lowering strategies. Extracellular vesicles and lipoprotein particles may have roles in the elimination of each other from the circulation. The objective of this minireview is to delve into these aspects. Here, we show that under certain physiological and pathological conditions, extracellular vesicles and lipoproteins are 'partners' rather than 'strangers' or 'rivals'.
Collapse
Affiliation(s)
- Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Brachyahu M Kestecher
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Sayam Ghosal
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Bernadett R Bodnár
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ágnes Kittel
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HUN-REN, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Hambalkó
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csenger Kovácsházi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Edit I Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary
| | - Evelyn Orsó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Richard M, Moreau R, Croyal M, Mathiot L, Frénel J, Campone M, Dupont A, Gavard J, André‐Grégoire G, Guével L. Monitoring concentration and lipid signature of plasma extracellular vesicles from HR + metastatic breast cancer patients under CDK4/6 inhibitors treatment. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70013. [PMID: 39691590 PMCID: PMC11650302 DOI: 10.1002/jex2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 12/19/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived small membrane structures that transport various molecules. They have emerged as potential circulating biomarkers for monitoring responses to cancer therapies. This study aimed to comprehensively characterize plasma-carried EVs in hormone receptor-positive (HR+) metastatic breast cancer (MBC) patients treated with first-line CDK4/6 inhibitors (iCDK4/6) combined with endocrine therapy. MBC patients were classified into three groups based on their response to therapy: resistant, intermediate or sensitive. In a prospective cohort, we monitored the concentration of circulating EVs, analyzed their lipid signature and correlated these factors with treatment response. To facilitate the translation of EV research to clinical practice, we established a three-step procedure: (1) EVs were isolated from plasma using semi-automatized size exclusion chromatography (SEC); (2) EV concentration, termed vesiclemia, was determined by drop counting via interferometric light microscopy (ILM); and (3) EV lipid composition was analyzed by mass spectrometry. ILM-based vesiclemia values were highly fluctuating upon iCDK4/6 treatment, while early increase associated with accelerated progression. Of note, vesiclemia remained a steady parameter over a 1-year period in age-matched healthy women. Additionally, analysis of the EV cargo unveiled a distinct sphingolipid profile, characterized by increased levels of ceramides and sphingomyelins in resistant patients within the first 2 months of treatment. Based on 16 sphingolipid species, sensitive and resistant patients were correctly classified with an overall accuracy of 82%. This specific sphingolipid pattern was exclusively discernible within EVs, and not in plasma, highlighting the significance of EVs in the early prediction of individual responses to iCDK4/6 and disease progression. Overall, this study provides insights of the longitudinal characterization of plasma-borne EVs in both a healthy group and HR+ MBC patients under iCDK4/6 therapies. Combined vesiclemia and EV sphingolipid profile emphasize the promising potential of EVs as non-invasive biomarkers for monitoring early treatment response.
Collapse
Affiliation(s)
- Mathilde Richard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Rosalie Moreau
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, INSERMNantesFrance
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556NantesFrance
- CRNH‐Ouest Mass Spectrometry Core FacilityNantesFrance
| | - Laurent Mathiot
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | | | - Mario Campone
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Aurélien Dupont
- SFR UMS CNRS 3480, INSERM 018, Biosit biologie, santé, innovation technologiqueRennesFrance
| | - Julie Gavard
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Gwennan André‐Grégoire
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
- Institut de Cancérologie de l'Ouest (ICO), Site Rene GauducheauSaint HerblainFrance
| | - Laëtitia Guével
- Team SOAP, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes‐Angers (CRCINA), InsermCNRS, Nantes UniversitéNantesFrance
- Équipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
19
|
Nix C, Sulejman S, Fillet M. Development of complementary analytical methods to characterize extracellular vesicles. Anal Chim Acta 2024; 1329:343171. [PMID: 39396273 DOI: 10.1016/j.aca.2024.343171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) are involved in intercellular communication and various biological processes. They hold clinical promise for the diagnosis and management of a wide range of pathologies, including cancer, cardiovascular diseases and degenerative diseases, and are of interest as regenerative therapies. Understanding the complex structure of these EVs is essential to perceive the current challenges associated with their analysis and characterization. Today, challenges remain in terms of access to high-yield, high-purity isolation methods, as well as analytical methods for characterizing and controlling the quality of these products for clinical use. RESULTS We isolated EVs from the same immortalized human cell culture supernatant using two commonly used approaches, namely differential ultracentrifugation and membrane affinity. Then we evaluated EV morphology, size, zeta potential, particle and protein content, as well as protein identity using cryogenic electron microscopy, nanoparticle tracking analysis, asymmetric field flow fractionation (AF4) and size exclusion chromatography (SEC) coupled to multi angle light scattering, bicinchoninic acid assay, electrophoretic light scattering, western blotting and high-resolution mass spectrometry. Compared to membrane affinity isolation, dUC is a more efficient isolation process for obtaining particles with the characteristics expected for EVs and more specifically for exosomes. To validate an isolation process, cryogenic electron microscopy is essential to confirm vesicles with membranes. High resolution mass spectrometry is powerful for understanding the mechanism of action of vesicles. Separative methods, such as AF4 and SEC, are interesting for separating vesicle subpopulations and contaminants. SIGNIFICANCE This study provides a critical assessment of eight different techniques for analyzing EVs, some of which are mandatory for in-depth characterization and deciphering, while others are more appropriate for routine analysis, once the production and isolation process has been validated. The strengths and limitations of the different approaches used are highlighted.
Collapse
Affiliation(s)
- Cindy Nix
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Sanije Sulejman
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmacy, CIRM, University of Liege, Avenue Hippocrate 15, B36 Tour 4 +3, 4000, Liège, Belgium.
| |
Collapse
|
20
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
21
|
Shafiq M, Matamoros-Angles A, Meister SC, Glatzel M. Comment on "Extracellular Vesicles Slow Down Aβ(1-42) Aggregation by Interfering with the Amyloid Fibril Elongation Step". ACS Chem Neurosci 2024; 15:3791-3793. [PMID: 39382326 PMCID: PMC11587504 DOI: 10.1021/acschemneuro.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Halipi et al. explored the impact of extracellular vesicles (EVs) on amyloid-β (Aβ) aggregation. They concluded that EVs reduce Aβ aggregation, as seen by shorter and thicker fibrils. While we agree with the complex role of EVs in Alzheimer's disease, we are sceptical of the claim that EVs slow down Aβ aggregation, noting missing key references. Previous literature rather suggests that EVs (derived from neuronal cell lines) accelerate the process of Aβ fibrillation and plaque formation. Halipi et al.'s findings may be skewed due to the lack of essential neuronally expressed Aβ-binding partners, like the prion protein (PrPC) in their EV samples. The commentary, in the light of included original experiments and cited literature, suggests that membrane proteins like PrPC are crucial to fully understand the role of EVs in Aβ aggregation, and Halipi et al.'s conclusions should be reexamined in light of these factors.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sussane Caroline Meister
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
22
|
Ghosh M, Pearse DD. The Yin and Yang of Microglia-Derived Extracellular Vesicles in CNS Injury and Diseases. Cells 2024; 13:1834. [PMID: 39594583 PMCID: PMC11592485 DOI: 10.3390/cells13221834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in maintaining neural homeostasis but can also contribute to disease and injury when this state is disrupted or conversely play a pivotal role in neurorepair. One way that microglia exert their effects is through the secretion of small vesicles, microglia-derived exosomes (MGEVs). Exosomes facilitate intercellular communication through transported cargoes of proteins, lipids, RNA, and other bioactive molecules that can alter the behavior of the cells that internalize them. Under normal physiological conditions, MGEVs are essential to homeostasis, whereas the dysregulation of their production and/or alterations in their cargoes have been implicated in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), spinal cord injury (SCI), and traumatic brain injury (TBI). In contrast, MGEVs may also offer therapeutic potential by reversing inflammation or being amenable to engineering for the delivery of beneficial biologics or drugs. The effects of MGEVs are determined by the phenotypic state of the parent microglia. Exosomes from anti-inflammatory or pro-regenerative microglia support neurorepair and cell survival by delivering neurotrophic factors, anti-inflammatory mediators, and molecular chaperones. Further, MGEVs can also deliver components like mitochondrial DNA (mtDNA) and proteins to damaged neurons to enhance cellular metabolism and resilience. MGEVs derived from pro-inflammatory microglia can have detrimental effects on neural health. Their cargo often contains pro-inflammatory cytokines, molecules involved in oxidative stress, and neurotoxic proteins, which can exacerbate neuroinflammation, contribute to neuronal damage, and impair synaptic function, hindering neurorepair processes. The role of MGEVs in neurodegeneration and injury-whether beneficial or harmful-largely depends on how they modulate inflammation through the pro- and anti-inflammatory factors in their cargo, including cytokines and microRNAs. In addition, through the propagation of pathological proteins, such as amyloid-beta and alpha-synuclein, MGEVs can also contribute to disease progression in disorders such as AD and PD, or by the transfer of apoptotic or necrotic factors, they can induce neuron toxicity or trigger glial scarring during neurological injury. In this review, we have provided a comprehensive and up-to-date understanding of the molecular mechanisms underlying the multifaceted role of MGEVs in neurological injury and disease. In particular, the role that specific exosome cargoes play in various pathological conditions, either in disease progression or recovery, will be discussed. The therapeutic potential of MGEVs has been highlighted including potential engineering methodologies that have been employed to alter their cargoes or cell-selective targeting. Understanding the factors that influence the balance between beneficial and detrimental exosome signaling in the CNS is crucial for developing new therapeutic strategies for neurodegenerative diseases and neurotrauma.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Damien D. Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Veterans Affairs, Veterans Affairs Medical Center, Miami, FL 33136, USA
- The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
23
|
D'Mello R, Hüttmann N, Minic Z, V Berezovski M. Untargeted metabolomic profiling of small extracellular vesicles reveals potential new biomarkers for triple negative breast cancer. Metabolomics 2024; 20:123. [PMID: 39487276 DOI: 10.1007/s11306-024-02191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Breast Cancer (BC) is one of the most diagnosed malignancies among women and the second leading cause of cancer related death in North America. Triple Negative BC (TNBC), one of the most severe subtypes of BC, is extremely aggressive and has a higher chance of occurrence in women under 50 years of age. Due to a lack of regular mammographic testing in women under 50, many individuals with TNBC are diagnosed late which can decrease their survival rate. Currently, liquid biopsy is being investigated as a potentially less-invasive alternative to traditional breast tissue biopsy, but this approach is not completely reliable. Blood contains extracellular vesicles (EVs), which carry biomolecular cargo and play a role in BC progression and metastasis. Examination of small EVs could potentially yield metabolite biomarkers for early BC diagnosis. OBJECTIVE We aim to study metabolites in small EVs to find biomarkers for BC diagnosis. METHODS In this work, an untargeted nano-LC MS/MS metabolomics approach was used to analyze metabolites from small EVs derived from metastatic MDA-MB-231 and compare it with a non-cancerous MCF10A cell line. RESULTS Two metabolites, LysoPC 22:6/0:0 and N-acetyl-L-Phenylalanine, unique to sEVs of MDA-MB-231, were identified, validated, and proposed as potential BC biomarkers. CONCLUSION Metabolites from sEVs may be used for BC diagnosis.
Collapse
Affiliation(s)
- Rochelle D'Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Nico Hüttmann
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada
| | - Zoran Minic
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
- John L. Holmes Biological Mass Spectrometry Facility, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
24
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 PMCID: PMC11799831 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
25
|
Yi S, Jung E, Kim H, Choi J, Kim S, Lim EK, Kim KS, Kang T, Jung J. Harnessing Lactobacillus reuteri-Derived Extracellular Vesicles for Multifaceted Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406094. [PMID: 39422169 DOI: 10.1002/smll.202406094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs) have emerged as valuable biological materials for treating intractable diseases. Extensive studies are conducted on EVs derived from various cellular sources. In this study, EVs derived from Lactobacillus reuteri (L. reuteri), a probiotic, exhibit remarkable cancer therapeutic efficacy when administered orally is reported. These L. reuteri-derived EVs (REVs) demonstrate stability in the gastrointestinal tract and exert significant anti-tumor effects. Using A549 cells and murine models, we confirmed that REVs mediate their therapeutic effects by modulating apoptotic signaling pathways. Furthermore, the combination of REV with drugs enhances tumor ablation and induces immunogenic cell death. In a mouse model, oral administration of REVs encapsulating indocyanine green followed by photothermal therapy led to complete tumor elimination within 32 days. REVs represent a promising biological therapeutic platform for cancer treatment, either independently or in combination with other therapies, depending on the treatment objectives.
Collapse
Grants
- KGM5472413 Korea Research Institute of Bioscience and Biotechnology
- National NanoFab Center
- RS-2024-00401639 Ministry of Agriculture, Food and Rural Affairs
- 2021003370003 Ministry of Environment
- RS-2022-00154853 Ministry of Trade, Industry and Energy
- RS-2024-00403563 Ministry of Trade, Industry and Energy
- RS-2024-00432382 Ministry of Trade, Industry and Energy
- 2021M3H4A1A02051048 Ministry of Science and ICT, South Korea
- 2023R1A2C2005185 Ministry of Science and ICT, South Korea
- 2021M3E5E3080844 Ministry of Science and ICT, South Korea
- 2022R1C1C1008815 Ministry of Science and ICT, South Korea
- RS-2024-00348576 Ministry of Science and ICT, South Korea
- RS-2024-00438316 Ministry of Science and ICT, South Korea
- RS-2024-00459749 Ministry of Science and ICT, South Korea
Collapse
Affiliation(s)
- Soyeon Yi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eunkyeong Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeran Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinsol Choi
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Suhyeon Kim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, 2 Busandaehak-ro, Geumjeon-gu, Busan, 46241, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
26
|
Lawrence SR, Shah KM. Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer. BIOLOGY 2024; 13:694. [PMID: 39336121 PMCID: PMC11428408 DOI: 10.3390/biology13090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management.
Collapse
Affiliation(s)
- Samuel R Lawrence
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karan M Shah
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
27
|
Lee JC, Ray RM, Scott TA. Prospects and challenges of tissue-derived extracellular vesicles. Mol Ther 2024; 32:2950-2978. [PMID: 38910325 PMCID: PMC11403234 DOI: 10.1016/j.ymthe.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Extracellular vesicles (EVs) are considered a vital component of cell-to-cell communication and represent a new frontier in diagnostics and a means to identify pathways for therapeutic intervention. Recently, studies have revealed the importance of tissue-derived EVs (Ti-EVs), which are EVs present in the interstitial spaces between cells, as they better represent the underlying physiology of complex, multicellular tissue microenvironments in biology and disease. EVs are native, lipid bilayer membraned nano-sized particles produced by all cells that are packaged with varied functional biomolecules including proteins, lipids, and nucleic acids. They are implicated in short- and long-range cellular communication and may elicit functional responses in recipient cells. To date, studies have often utilized cultured cells or biological fluids as a source for EVs that do not capture local molecular signatures of the tissue microenvironment. Recent work utilizing Ti-EVs has elucidated novel biomarkers for disease and provided insights into disease mechanisms that may lead to the development of novel therapeutic agents. Still, there are considerable challenges facing current studies. This review explores the vast potential and unique challenges for Ti-EV research and provides considerations for future studies that seek to advance this exciting field.
Collapse
Affiliation(s)
- Justin C Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roslyn M Ray
- Gene Therapy Research, CSL Behring, Pasadena, CA 91106, USA
| | - Tristan A Scott
- Center for Gene Therapy, City of Hope, Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute, Duarte, CA 91010, USA.
| |
Collapse
|
28
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn BC. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
29
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
30
|
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, Thalamati D, Ahalliya RM, Kanniappan GV, Mironescu M. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102359. [PMID: 38821418 DOI: 10.1016/j.arr.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Research Center in Biotechnology and Food Engineering, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, Sibiu 550024, Romania.
| |
Collapse
|
31
|
Chandran D, Krishnan S, Urulangodi M, Gopala S. Exosomal microRNAs in Parkinson's disease: insights into biomarker potential and disease pathology. Neurol Sci 2024; 45:3625-3639. [PMID: 38532190 DOI: 10.1007/s10072-024-07439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative condition primarily affecting the elderly population. Despite its high incidence in aged individuals, there are no reliable blood-based biomarkers for clinical diagnosis of PD and early screening of susceptible individuals. Recent studies have revealed the significance of exosomes in mediating cell-to-cell communications by transferring bioactive molecules, such as proteins, nucleic acids (including miRNAs), lipids, and metabolites, between cells. Due to their ability to carry diverse molecular cargo and their involvement in various physiological and pathological processes, exosomes have gained significant attention as potential disease biomarkers. Notably, exosomes have the ability to cross the blood-brain barrier, and as a result, they can be found in circulating body fluids, including cerebrospinal fluid (CSF), serum, and plasma. Therefore, the identification of PD-specific exosomes in blood samples could be a promising avenue with biomarker potential for advancing clinical diagnosis and planning therapeutic strategies. This review highlights the current understanding of exosomal miRNAs in PD pathology, emphasising their potential for clinical utility as biomarkers even though several challenges may have to be overcome to precisely utilize exosomal miRNAs as biomarkers specific to PD.
Collapse
Affiliation(s)
- Deepthy Chandran
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Medical College POST, Trivandrum, Kerala, 695011, India
| | - Syam Krishnan
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Medical College POST, Trivandrum, Kerala, 695011, India
| | - Madhusoodanan Urulangodi
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Medical College POST, Trivandrum, Kerala, 695011, India.
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Medical College POST, Trivandrum, Kerala, 695011, India.
| |
Collapse
|
32
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
33
|
Li Y, Ma L, Chen H, Jin Z, Yang W, Qiao Y, Ji Z, Liu G. Knowledge mapping of exosomes in prostate cancer from 2003 to 2022: a bibliometric analysis. Discov Oncol 2024; 15:307. [PMID: 39048891 PMCID: PMC11269540 DOI: 10.1007/s12672-024-01183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is highly prevalent among males worldwide. The investigation of exosomes in PCa has emerged as a dynamic and important research area. To visually depict the prominent research areas and evolutionary patterns of exosomes in PCa, we performed a comprehensive analysis via bibliometric methods. METHODS Studies were retrieved from the Web of Science Core Collection. CiteSpace, VOSviewers, and the R package "bibliometrix" were employed to analyze the relationships and collaborations among countries/regions, organizations, authors, journals, references, and keywords. RESULTS Over the past 20 years (2003-2022), 995 literatures on exosomes in PCa have been collected. The findings indicate a consistent upward trend in annual publications with the United States being the leading contributor. Cancers is widely recognized as the most prominent journal in this area. In total, 5936 authors have contributed to these publications, with Alicia Llorente being the most prolific. The primary keywords associated with research hotspots include "liquid biopsy", "identification", "growth", "microRNAs", and "tumor-derived exosomes". CONCLUSION Our analysis reveals that investigating the intrinsic mechanisms of exosomes in PCa pathogenesis and exploring the potential of exosomes as biomarkers of PCa constitute the principal focal points in this domain of research.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yi Qiao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Guanghua Liu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
34
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
35
|
Hamed MA, Wasinger V, Wang Q, Graham P, Malouf D, Bucci J, Li Y. Prostate cancer-derived extracellular vesicles metabolic biomarkers: Emerging roles for diagnosis and prognosis. J Control Release 2024; 371:126-145. [PMID: 38768661 DOI: 10.1016/j.jconrel.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Prostate cancer (PCa) is a global health concern, ranking as the most common cancer among men in Western countries. Traditional diagnostic methods are invasive with adverse effects on patients. Due to the heterogeneous nature of PCa and their multifocality, tissue biopsies often yield false-negative results. To address these challenges, researchers are exploring innovative approaches, particularly in the realms of proteomics and metabolomics, to identify more reliable biomarkers and improve PCa diagnosis. Liquid biopsy (LB) has emerged as a promising non-invasive strategy for PCa early detection, biopsy selection, active surveillance for low-risk cases, and post-treatment and progression monitoring. Extracellular vesicles (EVs) are lipid-bilayer nanovesicles released by all cell types and play an important role in intercellular communication. EVs have garnered attention as a valuable biomarker resource in LB for PCa-specific biomarkers, enhancing diagnosis, prognostication, and treatment guidance. Metabolomics provides insight into the body's metabolic response to both internal and external stimuli, offering quantitative measurements of biochemical alterations. It excels at detecting non-genetic influences, aiding in the discovery of more accurate cancer biomarkers for early detection and disease progression monitoring. This review delves into the potential of EVs as a resource for LB in PCa across various clinical applications. It also explores cancer-related metabolic biomarkers, both within and outside EVs in PCa, and summarises previous metabolomic findings in PCa diagnosis and risk assessment. Finally, the article addresses the challenges and future directions in the evolving field of EV-based metabolomic analysis, offering a comprehensive overview of its potential in advancing PCa management.
Collapse
Affiliation(s)
- Mahmoud Assem Hamed
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Qi Wang
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - David Malouf
- Department of Urology, St, George Hospital, Kogarah, NSW 2217, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
36
|
Dracheva KV, Pobozheva IA, Anisimova KA, Panteleeva AA, Garaeva LA, Balandov SG, Hamid ZM, Vasilevsky DI, Pchelina SN, Miroshnikova VV. Extracellular Vesicles Secreted by Adipose Tissue during Obesity and Type 2 Diabetes Mellitus Influence Reverse Cholesterol Transport-Related Gene Expression in Human Macrophages. Int J Mol Sci 2024; 25:6457. [PMID: 38928163 PMCID: PMC11204239 DOI: 10.3390/ijms25126457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRβ (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRβ mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status.
Collapse
Affiliation(s)
- Kseniia V. Dracheva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia
| | - Irina A. Pobozheva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia
| | - Kristina A. Anisimova
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia; (K.A.A.); (S.G.B.); (Z.M.H.); (D.I.V.)
| | - Aleksandra A. Panteleeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia
| | - Luiza A. Garaeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
| | - Stanislav G. Balandov
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia; (K.A.A.); (S.G.B.); (Z.M.H.); (D.I.V.)
| | - Zarina M. Hamid
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia; (K.A.A.); (S.G.B.); (Z.M.H.); (D.I.V.)
| | - Dmitriy I. Vasilevsky
- Center for Surgical Treatment of Obesity and Metabolic Disorders, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia; (K.A.A.); (S.G.B.); (Z.M.H.); (D.I.V.)
| | - Sofya N. Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia
- Federal State Budgetary Research Institution “Institute of Experimental Medicine”, 197022 St.-Petersburg, Russia
| | - Valentina V. Miroshnikova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”, 188300 Gatchina, Russia; (K.V.D.); (I.A.P.); (A.A.P.); (L.A.G.); (S.N.P.)
- Department of Molecular-Genetic and Nanobiological Technologies, Scientific Research Center, Pavlov First Saint Petersburg State Medical University, 197022 St.-Petersburg, Russia
| |
Collapse
|
37
|
Smack C, Johnson B, Nyalwidhe JO, Semmes OJ, Yang L. Small extracellular vesicles: Roles and clinical application in prostate cancer. Adv Cancer Res 2024; 161:119-190. [PMID: 39032949 DOI: 10.1016/bs.acr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is a significant health problem in the United States. It is remarkably heterogenous, ranging from slow growing disease amenable to active surveillance to highly aggressive forms requiring active treatments. Therefore, being able to precisely determine the nature of disease and appropriately match patients to available and/or novel therapeutics is crucial to improve patients' overall outcome and quality of life. Recently small extracellular vesicles (sEVs), a subset of nanoscale membranous vesicles secreted by various cells, have emerged as important analytes for liquid biopsy and promising vehicles for drug delivery. sEVs contain various biomolecules such as genetic material, proteins, and lipids that recapitulate the characteristics and state of their donor cells. The application of existing and newly developed technologies has resulted in an increased depth of knowledge about biophysical structures, biogenesis, and functions of sEVs. In prostate cancer patients, tumor-derived sEVs can be isolated from biofluids, commonly urine and blood. They mediate intercellular signaling within the tumor microenvironment and distal organ-specific sites, supporting cancer initiation, progression, and metastasis. A mounting body of evidence suggests that sEV components can be potent biomarkers for prostate cancer diagnosis, prognosis, and prediction of disease progression and treatment response. Due to enhanced circulation stability and bio-barrier permeability, sEVs can be also used as effective drug delivery carriers to improve the efficacy and specificity of anti-tumor therapies. This review discusses recent studies on sEVs in prostate cancer and is focused on their role as biomarkers and drug delivery vehicles in the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Caleb Smack
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Benjamin Johnson
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Julius O Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - O John Semmes
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
38
|
Sharma A, Yadav A, Nandy A, Ghatak S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024; 16:709. [PMID: 38931833 PMCID: PMC11206934 DOI: 10.3390/pharmaceutics16060709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Of all the numerous nanosized extracellular vesicles released by a cell, the endosomal-originated exosomes are increasingly recognized as potential therapeutics, owing to their inherent stability, low immunogenicity, and targeted delivery capabilities. This review critically evaluates the transformative potential of exosome-based modalities across pharmaceutical and precision medicine landscapes. Because of their precise targeted biomolecular cargo delivery, exosomes are posited as ideal candidates in drug delivery, enhancing regenerative medicine strategies, and advancing diagnostic technologies. Despite the significant market growth projections of exosome therapy, its utilization is encumbered by substantial scientific and regulatory challenges. These include the lack of universally accepted protocols for exosome isolation and the complexities associated with navigating the regulatory environment, particularly the guidelines set forth by the U.S. Food and Drug Administration (FDA). This review presents a comprehensive overview of current research trajectories aimed at addressing these impediments and discusses prospective advancements that could substantiate the clinical translation of exosomal therapies. By providing a comprehensive analysis of both the capabilities and hurdles inherent to exosome therapeutic applications, this article aims to inform and direct future research paradigms, thereby fostering the integration of exosomal systems into mainstream clinical practice.
Collapse
Affiliation(s)
| | | | | | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; (A.S.); (A.Y.); (A.N.)
| |
Collapse
|
39
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
40
|
Zheng J, Zhou R, Wang B, He C, Bai S, Yan H, Yu J, Li H, Peng B, Gao Z, Yu X, Li C, Jiang C, Guo K. Electrochemical detection of extracellular vesicles for early diagnosis: a focus on disease biomarker analysis. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:165-179. [PMID: 39698540 PMCID: PMC11648401 DOI: 10.20517/evcna.2023.72] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 12/20/2024]
Abstract
This review article presents a detailed examination of the integral role that electrochemical detection of extracellular vesicles (EVs) plays, particularly focusing on the potential application for early disease diagnostics through EVs biomarker analysis. Through an exploration of the benefits and challenges presented by electrochemical detection vetted for protein, lipid, and nucleic acid biomarker analysis, we underscore the significance of these techniques. Evidence from recent studies renders this detection modality imperative in identifying diverse biomarkers from EVs, leading to early diagnosis of diseases such as cancer and neurodegenerative disorders. Recent advancements that have led to enhanced sensitivity, specificity and point-of-care testing (POCT) potential are elucidated, along with equipment deployed for electrochemical detection. The review concludes with a contemplation of future perspectives, recognizing the potential shifts in disease diagnostics and prognosis, necessary advances for broad adoption, and potential areas of ongoing research. The objective is to propel further investigation into this rapidly burgeoning field, thereby facilitating a potential paradigm shift in disease detection, monitoring, and treatment toward human health management.
Collapse
Affiliation(s)
- Jintao Zheng
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Authors contributed equally
| | - Runzhi Zhou
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Authors contributed equally
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Chang He
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Authors contributed equally
| | - Shiyao Bai
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Haoyang Yan
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
| | - Jiacheng Yu
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
| | - Huaiguang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an 710072, shaanxi, China
| | - Zhaoli Gao
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiean Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen 518057, Guangdong, China
| | - Chenzhong Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Cheng Jiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Keying Guo
- Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, Guangdong, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, Parkville VIC 3052, Australia
| |
Collapse
|
41
|
Choi W, Park DJ, Eliceiri BP. Defining tropism and activity of natural and engineered extracellular vesicles. Front Immunol 2024; 15:1363185. [PMID: 38660297 PMCID: PMC11039936 DOI: 10.3389/fimmu.2024.1363185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Extracellular vesicles (EVs) have important roles as mediators of cell-to-cell communication, with physiological functions demonstrated in various in vivo models. Despite advances in our understanding of the biological function of EVs and their potential for use as therapeutics, there are limitations to the clinical approaches for which EVs would be effective. A primary determinant of the biodistribution of EVs is the profile of proteins and other factors on the surface of EVs that define the tropism of EVs in vivo. For example, proteins displayed on the surface of EVs can vary in composition by cell source of the EVs and the microenvironment into which EVs are delivered. In addition, interactions between EVs and recipient cells that determine uptake and endosomal escape in recipient cells affect overall systemic biodistribution. In this review, we discuss the contribution of the EV donor cell and the role of the microenvironment in determining EV tropism and thereby determining the uptake and biological activity of EVs.
Collapse
Affiliation(s)
- Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
| | - Brian P. Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA, United States
- Department of Dermatology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Poinsot V, Pizzinat N, Ong-Meang V. Engineered and Mimicked Extracellular Nanovesicles for Therapeutic Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:639. [PMID: 38607173 PMCID: PMC11013861 DOI: 10.3390/nano14070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Exosomes are spherical extracellular nanovesicles with an endosomal origin and unilamellar lipid-bilayer structure with sizes ranging from 30 to 100 nm. They contain a large range of proteins, lipids, and nucleic acid species, depending on the state and origin of the extracellular vesicle (EV)-secreting cell. EVs' function is to encapsulate part of the EV-producing cell content, to transport it through biological fluids to a targeted recipient, and to deliver their cargos specifically within the aimed recipient cells. Therefore, exosomes are considered to be potential biological drug-delivery systems that can stably deliver their cargo into targeted cells. Various cell-derived exosomes are produced for medical issues, but their use for therapeutic purposes still faces several problems. Some of these difficulties can be avoided by resorting to hemisynthetic approaches. We highlight here the uses of alternative exosome-mimes involving cell-membrane coatings on artificial nanocarriers or the hybridization between exosomes and liposomes. We also detail the drug-loading strategies deployed to make them drug-carrier systems and summarize the ongoing clinical trials involving exosomes or exosome-like structures. Finally, we summarize the open questions before considering exosome-like disposals for confident therapeutic delivery.
Collapse
Affiliation(s)
- Verena Poinsot
- Inserm, CNRS, Faculté de Santé, Université Toulouse III—Paul Sabatier, I2MC U1297, 31432 Toulouse, France; (N.P.); (V.O.-M.)
| | | | | |
Collapse
|
43
|
Halipi V, Sasanian N, Feng J, Hu J, Lubart Q, Bernson D, van Leeuwen D, Ahmadpour D, Sparr E, Esbjörner EK. Extracellular Vesicles Slow Down Aβ(1-42) Aggregation by Interfering with the Amyloid Fibril Elongation Step. ACS Chem Neurosci 2024; 15:944-954. [PMID: 38408014 PMCID: PMC10921407 DOI: 10.1021/acschemneuro.3c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Formation of amyloid-β (Aβ) fibrils is a central pathogenic feature of Alzheimer's disease. Cell-secreted extracellular vesicles (EVs) have been suggested as disease modulators, although their exact roles and relations to Aβ pathology remain unclear. We combined kinetics assays and biophysical analyses to explore how small (<220 nm) EVs from neuronal and non-neuronal human cell lines affected the aggregation of the disease-associated Aβ variant Aβ(1-42) into amyloid fibrils. Using thioflavin-T monitored kinetics and seeding assays, we found that EVs reduced Aβ(1-42) aggregation by inhibiting fibril elongation. Morphological analyses revealed this to result in the formation of short fibril fragments with increased thicknesses and less apparent twists. We suggest that EVs may have protective roles by reducing Aβ(1-42) amyloid loads, but also note that the formation of small amyloid fragments could be problematic from a neurotoxicity perspective. EVs may therefore have double-edged roles in the regulation of Aβ pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Vesa Halipi
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Nima Sasanian
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Julia Feng
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Jing Hu
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Quentin Lubart
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - David Bernson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Daniel van Leeuwen
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| | - Emma Sparr
- Division
of Physical Chemistry, Department of Chemistry, Lund University, SE-22100 Lund, Sweden
| | - Elin K. Esbjörner
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, S-412 96 Gothenburg, Sweden
| |
Collapse
|
44
|
Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, Zubkov V, Degtyarev D, Sukhikh G, Silachev D. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. Int J Mol Sci 2024; 25:2879. [PMID: 38474125 PMCID: PMC10932115 DOI: 10.3390/ijms25052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs. These nanoscale particles, secreted by a variety of organisms including animals, bacteria, fungi and plants, contain a repertoire of bioactive molecules with therapeutic potential. This review aims to provide a comprehensive assessment of the therapeutic effects of EVs and mechanistic insights into EVs from stem cells, biological fluids and non-animal sources, with a focus on common neonatal conditions such as hypoxic-ischemic encephalopathy, respiratory distress syndrome, bronchopulmonary dysplasia and necrotizing enterocolitis. This review summarizes evidence for the therapeutic potential of EVs, analyzes evidence of their mechanisms of action and discusses the challenges associated with the implementation of EV-based therapies in neonatal clinical practice.
Collapse
Affiliation(s)
- Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Mikhail Ivanov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulikov
- Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Artem Burov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Yulia Podurovskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Victor Zubkov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Dmitry Degtyarev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
45
|
Yan G, Xiao Q, Zhao J, Chen H, Xu Y, Tan M, Peng L. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J Control Release 2024; 367:425-440. [PMID: 38295998 DOI: 10.1016/j.jconrel.2024.01.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is characterized by complex heterogeneity, high recurrence and metastasis rates, and short overall survival, owing to the lack of endocrine and targeted receptors, which necessitates chemotherapy as the major treatment regimen. Exosome-like nanovesicles derived from medicinal plants have shown great potential as novel biotherapeutics for cancer therapy by delivering their incorporated nucleic acids, especially microRNAs (miRNAs), to mammalian cells. In this study, we isolated exosome-like nanovesicles derived from B. javanica (BF-Exos) and investigated their influence and underlying molecular mechanisms in TNBC. We found that BF-Exos delivered 10 functional miRNAs to 4T1 cells, significantly retarding the growth and metastasis of 4T1 cells by regulating the PI3K/Akt/mTOR signaling pathway and promoting ROS/caspase-mediated apoptosis. Moreover, BF-Exos were shown to inhibit the secretion of vascular endothelial growth factor, contributing to anti-angiogenesis in the tumor microenvironment. In vivo, BF-Exos inhibited tumor growth, metastasis, and angiogenesis in breast tumor mouse models, while maintaining high biosafety. Overall, BF-Exos are considered promising nanoplatforms for the delivery of medicinal plant-derived nucleic acids, with great potential to be developed into novel biotherapeutics for the treatment of TNBC.
Collapse
Affiliation(s)
- Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jingyu Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haoran Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China.
| |
Collapse
|
46
|
Yu J, Sane S, Kim JE, Yun S, Kim HJ, Jo KB, Wright JP, Khoshdoozmasouleh N, Lee K, Oh HT, Thiel K, Parvin A, Williams X, Hannon C, Lee H, Kim DK. Biogenesis and delivery of extracellular vesicles: harnessing the power of EVs for diagnostics and therapeutics. Front Mol Biosci 2024; 10:1330400. [PMID: 38234582 PMCID: PMC10791869 DOI: 10.3389/fmolb.2023.1330400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by a variety of cell types. These vesicles encapsulate a diverse range of molecules, including proteins, nucleic acids, lipids, metabolites, and even organelles derived from their parental cells. While EVs have emerged as crucial mediators of intercellular communication, they also hold immense potential as both biomarkers and therapeutic agents for numerous diseases. A thorough understanding of EV biogenesis is crucial for the development of EV-based diagnostic developments since the composition of EVs can reflect the health and disease status of the donor cell. Moreover, when EVs are taken up by target cells, they can exert profound effects on gene expression, signaling pathways, and cellular behavior, which makes these biomolecules enticing targets for therapeutic interventions. Yet, despite decades of research, the intricate processes underlying EV biogenesis by donor cells and subsequent uptake by recipient cells remain poorly understood. In this review, we aim to summarize current insights and advancements in the biogenesis and uptake mechanisms of EVs. By shedding light on the fundamental mechanisms governing EV biogenesis and delivery, this review underscores the potential of basic mechanistic research to pave the way for developing novel diagnostic strategies and therapeutic applications.
Collapse
Affiliation(s)
- Jivin Yu
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Saba Sane
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ji-Eun Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sehee Yun
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hyeon-Jai Kim
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Beom Jo
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jacob P. Wright
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- College of Arts and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nooshin Khoshdoozmasouleh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Kunwoo Lee
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ho Taek Oh
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Keaton Thiel
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Afrin Parvin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Xavier Williams
- Applied Technology Laboratory for Advanced Surgery (ATLAS) Studios Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Claire Hannon
- Applied Technology Laboratory for Advanced Surgery (ATLAS) Studios Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Hunsang Lee
- Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Dae-Kyum Kim
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
47
|
Rome S, Tacconi S. High-fat diets: You are what you eat….your extracellular vesicles too! J Extracell Vesicles 2024; 13:e12382. [PMID: 38151475 PMCID: PMC10752826 DOI: 10.1002/jev2.12382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023] Open
Abstract
Recent works indicate that the lipid composition of extracellular vesicles (EVs) can modify their biological functions and their incorporation into recipient cells. In particular high-fat diets affect EV biogenesis, EV lipid composition, EV targeting and consequently the cross-talk between tissues. This review connects different research topics to show that a vicious circle is established during the development of high-fat diet-induced obesity, connecting the alteration of lipid metabolism, the composition of extracellular vesicles and the spread of deleterious lipids between tissues, which participates in NAFLD/NASH and diabetes development. According to the studies described in this review, it is urgent to take an interest in this question as the modulation of EV lipid composition could be an important factor to take into account during the therapeutic management of patients suffering from metabolic syndrome and related pathologies such as obesity and diabetes. Furthermore, as lipid modification of EVs is a strategy currently being tested to enable better integration into their target tissue or cell, it is important to consider the impact of these lipid modifications on the homeostasis of these targets.
Collapse
Affiliation(s)
- Sophie Rome
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| | - Stefano Tacconi
- CarMeN Laboratory, INSERM 1060‐INRAE 1397, Department of Human Nutrition, Lyon Sud HospitalUniversity of LyonLyonFrance
| |
Collapse
|
48
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Fyfe J, Casari I, Manfredi M, Falasca M. Role of lipid signalling in extracellular vesicles-mediated cell-to-cell communication. Cytokine Growth Factor Rev 2023; 73:20-26. [PMID: 37648617 DOI: 10.1016/j.cytogfr.2023.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Lipid signalling plays a crucial role in extracellular vesicle (EV)-mediated cell-to-cell communication. Extracellular vesicles are small membrane-bound structures released by various cell types into the extracellular environment. They include exosomes, microvesicles, and apoptotic bodies. These vesicles contain a variety of bioactive molecules, including proteins, nucleic acids (such as miRNAs and mRNAs), and lipids. Lipids are important components of EVs and are involved in various aspects of their biogenesis, cargo sorting, and functional effects on target cells. In this review, we will discuss how lipid signalling is involved in EV-mediated cell-to-cell communication. In summary, lipid signalling is intricately involved in extracellular vesicle-mediated cell-to-cell communication. The lipid composition of EVs influences their biogenesis, cargo sorting, interactions with target cells, and functional effects on recipient cells. Understanding the role of lipids in EV-mediated communication is essential for deciphering the mechanisms underlying intercellular signalling and developing potential therapeutic strategies based on EVs.
Collapse
Affiliation(s)
- Jordan Fyfe
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marco Falasca
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|