1
|
Chen P, Hao JJ, Li MW, Bai J, Guo YT, Liu Z, Shi P. Integrative Functional Transcriptomic Analyses Implicate Shared Molecular Circuits in Sensorineural Hearing Loss. Front Cell Neurosci 2022; 16:857344. [PMID: 35370561 PMCID: PMC8964368 DOI: 10.3389/fncel.2022.857344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is referred to as the most common type of hearing loss and typically occurs when the inner ear or the auditory nerve is damaged. Aging, noise exposure, and ototoxic drugs represent three main causes of SNHL, leading to substantial similarities in pathophysiological characteristics of cochlear degeneration. Although the common molecular mechanisms are widely assumed to underlie these similarities, its validity lacks systematic examination. To address this question, we generated three SNHL mouse models from aging, noise exposure, and cisplatin ototoxicity, respectively. Through constructing gene co-expression networks for the cochlear transcriptome data across different hearing-damaged stages, the three models are found to significantly correlate with each other in multiple gene co-expression modules that implicate distinct biological functions, including apoptosis, immune, inflammation, and ion transport. Bioinformatics analyses reveal several potential hub regulators, such as IL1B and CCL2, both of which are verified to contribute to apoptosis accompanied by the increase of (ROS) in in vitro model system. Our findings disentangle the shared molecular circuits across different types of SNHL, providing potential targets for the broad effective therapeutic agents in SNHL.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Zhen Liu,
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Peng Shi,
| |
Collapse
|
2
|
Celaya AM, Rodríguez-de la Rosa L, Bermúdez-Muñoz JM, Zubeldia JM, Romá-Mateo C, Avendaño C, Pallardó FV, Varela-Nieto I. IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells 2021; 10:cells10071686. [PMID: 34359856 PMCID: PMC8304185 DOI: 10.3390/cells10071686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineural deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL). However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have 40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there was no associated hearing loss. However, noise exposure of these mice caused increased injury to sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the expression ratio of pro- and anti-inflammatory cytokines in Igf1+/- mice. Unbalanced inflammation led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and, consequently, greater susceptibility to stressors. This work provides the molecular bases to further understand hearing disorders linked to IGF-1 deficiency.
Collapse
Affiliation(s)
- Adelaida M. Celaya
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Jose M. Bermúdez-Muñoz
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
| | - José M. Zubeldia
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Allergy Service, Gregorio Marañon General University Hospital, 28009 Madrid, Spain
- Gregorio Marañon Health Research Institute (IiSGM), 28009 Madrid, Spain
| | - Carlos Romá-Mateo
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Carlos Avendaño
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Department of Anatomy, Histology & Neuroscience, Medical School, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Federico V. Pallardó
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Spain and FIHCUV-INCLIVA, 46010 Valencia, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (A.M.C.); (J.M.B.-M.); (J.M.Z.)
- Rare Diseases Biomedical Research Networking Centre (CIBERER), The Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; (C.R.-M.); (F.V.P.)
- Hospital La Paz Institute for Health Research (IdiPAZ), 28029 Madrid, Spain;
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
3
|
Jung SY, Yoo J, Yang KJ, Jang SY, Yi G, Kim DK, Koo H. Intratympanic administration of alpha-lipoic acid-loaded pluronic F-127 nanoparticles ameliorates acute hearing loss. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102329. [PMID: 33181275 DOI: 10.1016/j.nano.2020.102329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
We used antioxidant-containing nanoparticles (NPs) to treat acute hearing loss. Alpha-lipoic acid (ALA) served as the antioxidant; we employed Pluronic F127 to fabricate NPs. In vitro, ALA-NPs protected cells of the organ of Corti in HEI-OC1 mice, triggering nuclear translocation of NRF2 and increases in the levels of antioxidant proteins, including Nrf2, HO-1, SOD-1, and SOD-2. In vivo, the hearing of mice that received ALA-NP injections into the middle ear cavity was better preserved after induction of ototoxicity than in control animals. The cochlear Nrf2 level increased in test mice, indicating that the ALA-NPs protected hearing via the antioxidant mechanism observed in vitro. ALA-NPs effectively protected against acute hearing loss by activating the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- So Young Jung
- Clinical Research Institute, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jihye Yoo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keum-Jin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Seok-Young Jang
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gawon Yi
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Kee Kim
- Department of Otolaryngology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea.
| | - Heebeom Koo
- Department of Medical Life Sciences and Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Bahaloo M, Rezvani ME, Farashahi Yazd E, Zare Mehrjerdi F, Davari MH, Roohbakhsh A, Mollasadeghi A, Nikkhah H, Vafaei M, Mehrparvar AH. Effect of myricetin on the gene expressions of NOX3, TGF-β1, prestin, and HSP-70 and anti-oxidant activity in the cochlea of noise-exposed rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:594-599. [PMID: 32742596 PMCID: PMC7374988 DOI: 10.22038/ijbms.2020.41007.9693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective(s): Noise-induced hearing loss is one of the most common occupational diseases in industrialized countries and can be affected by various environmental and genetic factors. This study was designed to examine the effect of myricetin in preventing this disorder. Materials and Methods: Twenty-one Wistar rats were randomly divided into five groups: Non-exposed, noise exposure only, noise exposure with vehicle, noise exposure with myricetin 5 mg/Kg, and noise exposure with myricetin 10 mg/kg. All animals were sacrificed after last noise exposure. The left cochlea was dissected from each rat. It was used for mRNA expression analysis (NOX3, TGF-β1, prestin, and HSP-70). Blood samples were collected to assess superoxide dismutase (SOD) activity, 1, 1 diphenyl picrylhydrazyl (DPPH), and malondialdehyde (MDA) measurements. Results: Real time-PCR assay revealed that noise decreased NOX3 and increased TGF-β1, prestin, and HSP-70 gene expressions. Administration of myricetin at the dose of 5 mg/kg, but not at 10 mg/kg, significantly reversed these changes. Noise also increased MDA levels and decreased SOD and DPPH scavenging activities. Myricetin at the doses of 5 and 10 mg/kg also reversed these changes. Conclusion: The findings of this study showed that myricetin at the dose of 5 mg/Kg was able to reverse noise-induced abnormalities in gene expression and oxidant/anti-oxidant balance. It is a possibility that myricetin via enhancement of anti-oxidant activity induced these effects.
Collapse
Affiliation(s)
- Maryam Bahaloo
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mohammad Hossein Davari
- Department of Occupational Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Mollasadeghi
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Vafaei
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
5
|
Transcriptional suppression of androgen receptor by 18β-glycyrrhetinic acid in LNCaP human prostate cancer cells. Arch Pharm Res 2020; 43:433-448. [PMID: 32219716 DOI: 10.1007/s12272-020-01228-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) plays a pivotal role as a target for amplification/mutation in pathogenesis and tumor progression in prostate, and thus, controlling AR activity or expression might be a feasible therapeutic approach for the treatment of prostate cancer. Here, we report the novel mechanisms by which 18β-glycyrrhetinic acid (GA) targets AR to stimulate cell death in both hormone-responsive and -refractory prostate cancer cells. We found that miR-488, a tumor suppressive microRNA, was markedly induced by GA treatment, resulting in the down-regulation of AR expression and inhibition of cellular responses mediated by androgens. Moreover, GA not only suppressed the expression of androgen target genes (TMPRSS2, PSA, and NKX3.1), but also enhanced the suppressive effect of anti-androgens (bicalutamide and flutamide) on LNCaP cell growth. Our data further provides evidence that down-regulation of AR expression by GA may occur through transcriptional suppression at AR promoter region between - 1014 and - 829. Ectopic expression of SFR and E2F3α reversed the inhibitory effect of GA on AR promoter activity as well as protein expression, suggesting that GA may target transcription factors SRF and E2F3α to regulate AR expression. Taken together, our study provides new insights on AR regulation and GA as a potential therapeutic candidate for human prostate cancer.
Collapse
|
6
|
Mata-Castro N, Sanz-López L, Varillas-Delgado D, García-Fernández A. Intratympanic infliximab is a safe and effective rescue therapy for refractory immune-mediated hearing loss. Eur Arch Otorhinolaryngol 2019; 277:393-400. [PMID: 31691017 DOI: 10.1007/s00405-019-05716-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine the efficacy and safety of the intratympanic infiltration of infliximab at the hearing threshold of patients in follow-up for refractory immune-mediated hearing loss. METHODS 17 patients were collected with relapses, despite maintenance treatment with oral azathioprine associated or not with oral prednisone at low doses (between 5 and 7.5 ml/day) or refractory relapses to previous intratympanic corticoid treatment being 19 affected ears infiltrated. We measured the hearing threshold by Pure-Tone Average (PTA) 500-3000 Hz, 125-8000 Hz and 250-8000 Hz in pre-infiltration (baseline) and follow-up 3 weeks post-infiltration with auditory threshold at frequencies 125-8000 Hz. RESULTS The average age was 50.68 years (±15.23 years). After the administration of intratympanic infliximab, an improvement of the hearing threshold was showed in the Pure-Tone Average (PTA) calculated at 500-3000 Hz (p = 0.004), 125-8000 Hz (p = 0.001) and 250-8000 Hz (p = 0.006). An immediate improvement in low frequencies also was observed: 125, 250 and 500 Hz (p = 0.009, p = 0.002 and p < 0.001 respectively) also at 1000 Hz (p = 0.004) and a persistence of the effect at 3 months in the low frequencies: 125 Hz (p = 0.020), 250 Hz (p = 0.006) and 500 Hz (p = 0.002). CONCLUSIONS Infliximab intratympanic infiltration improves the hearing threshold in patients with immune-mediated hearing loss. The effect of improving the hearing threshold is higher in low frequencies and persists within 3 months of the infiltration. The administration of intratympanic infliximab is an effective and safe technique.
Collapse
Affiliation(s)
- Nieves Mata-Castro
- Department of Otolaryngology, Hospital Univeristario de Torrejón, Torrejón de Ardoz, Madrid, Spain. .,Universidad Francisco de Vitoria, Faculty of Medicine, Pozuelo de Alarcón, Madrid, Spain.
| | - Lorena Sanz-López
- Department of Otolaryngology, Hospital Univeristario de Torrejón, Torrejón de Ardoz, Madrid, Spain.,Universidad Francisco de Vitoria, Faculty of Medicine, Pozuelo de Alarcón, Madrid, Spain
| | - David Varillas-Delgado
- Universidad Francisco de Vitoria, Faculty of Medicine, Pozuelo de Alarcón, Madrid, Spain
| | - Alfredo García-Fernández
- Department of Otolaryngology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Complutense, Faculty of Medicine, Madrid, Spain
| |
Collapse
|
7
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|
8
|
OHC-TRECK: A Novel System Using a Mouse Model for Investigation of the Molecular Mechanisms Associated with Outer Hair Cell Death in the Inner Ear. Sci Rep 2019; 9:5285. [PMID: 30918314 PMCID: PMC6437180 DOI: 10.1038/s41598-019-41711-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Outer hair cells (OHCs) are responsible for the amplification of sound, and the death of these cells leads to hearing loss. Although the mechanisms for sound amplification and OHC death have been well investigated, the effects on the cochlea after OHC death are poorly understood. To study the consequences of OHC death, we established an OHC knockout system using a novel mouse model, Prestin-hDTR, which uses the prestin promoter to express the human diphtheria toxin (DT) receptor gene (hDTR). Administration of DT to adult Prestin-hDTR mice results in the depletion of almost all OHCs without significant damage to other cochlear and vestibular cells, suggesting that this system is an effective tool for the analysis of how other cells in the cochlea and vestibula are affected after OHC death. To evaluate the changes in the cochlea after OHC death, we performed differential gene expression analysis between the untreated and DT-treated groups of wild-type and Prestin-hDTR mice. This analysis revealed that genes associated with inflammatory/immune responses were significantly upregulated. Moreover, we found that several genes linked to hearing loss were strongly downregulated by OHC death. Together, these results suggest that this OHC knockout system is a useful tool to identify biomarkers associated with OHC death.
Collapse
|
9
|
Schosserer M, Banks G, Dogan S, Dungel P, Fernandes A, Marolt Presen D, Matheu A, Osuchowski M, Potter P, Sanfeliu C, Tuna BG, Varela-Nieto I, Bellantuono I. Modelling physical resilience in ageing mice. Mech Ageing Dev 2018; 177:91-102. [PMID: 30290161 PMCID: PMC6445352 DOI: 10.1016/j.mad.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.
Collapse
Affiliation(s)
- Markus Schosserer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Vienna, Austria
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, iMed.ULisboa, Research Institute for Medicines, Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Ander Matheu
- Oncology Department, Biodonostia Research Institute, San Sebastián, Spain
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB) CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Bilge Guvenc Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Ilaria Bellantuono
- MRC/Arthritis Research-UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
10
|
Fuentes-Santamaría V, Alvarado JC, Melgar-Rojas P, Gabaldón-Ull MC, Miller JM, Juiz JM. The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss. Front Neuroanat 2017; 11:9. [PMID: 28280462 PMCID: PMC5322242 DOI: 10.3389/fnana.2017.00009] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Repeated noise exposure induces inflammation and cellular adaptations in the peripheral and central auditory system resulting in pathophysiology of hearing loss. In this study, we analyzed the mechanisms by which noise-induced inflammatory-related events in the cochlea activate glial-mediated cellular responses in the cochlear nucleus (CN), the first relay station of the auditory pathway. The auditory function, glial activation, modifications in gene expression and protein levels of inflammatory mediators and ultrastructural changes in glial-neuronal interactions were assessed in rats exposed to broadband noise (0.5-32 kHz, 118 dB SPL) for 4 h/day during 4 consecutive days to induce long-lasting hearing damage. Noise-exposed rats developed a permanent threshold shift which was associated with hair cell loss and reactive glia. Noise-induced microglial activation peaked in the cochlea between 1 and 10D post-lesion; their activation in the CN was more prolonged reaching maximum levels at 30D post-exposure. RT-PCR analyses of inflammatory-related genes expression in the cochlea demonstrated significant increases in the mRNA expression levels of pro- and anti-inflammatory cytokines, inducible nitric oxide synthase, intercellular adhesion molecule and tissue inhibitor of metalloproteinase-1 at 1 and 10D post-exposure. In noise-exposed cochleae, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) were upregulated by reactive microglia, fibrocytes, and neurons at all time points examined. In the CN, however, neurons were the sole source of these cytokines. These observations suggest that noise exposure causes peripheral and central inflammatory reactions in which TNF-α and IL-1β are implicated in regulating the initiation and progression of noise-induced hearing loss.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - María C Gabaldón-Ull
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| | - Josef M Miller
- Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska InstitutetStockholm, Sweden; Kresge Hearing Research Institute, University of MichiganAnn Arbor, MI, USA
| | - José M Juiz
- Instituto de Investigación en Discapacidades NeurológicasAlbacete, Spain; Facultad de Medicina, Universidad de Castilla-La ManchaAlbacete, Spain
| |
Collapse
|
11
|
Magariños M, Milo M, Varela-Nieto I. Editorial: Aging, neurogenesis and neuroinflammation in hearing loss and protection. Front Aging Neurosci 2015; 7:138. [PMID: 26236234 PMCID: PMC4505145 DOI: 10.3389/fnagi.2015.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Affiliation(s)
- Marta Magariños
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas "Alberto Sols," CISC-UAM Madrid, Spain ; CIBERER, Unit 761, Instituto de Salud Carlos III Madrid, Spain ; Departamento de Biología, Universidad Autónoma de Madrid Madrid, Spain
| | - Marta Milo
- Department of Biomedical Science, University of Sheffield Sheffield, UK
| | - Isabel Varela-Nieto
- Departamento de Fisiopatología Endocrina y del Sistema Nervioso, Instituto de Investigaciones Biomédicas "Alberto Sols," CISC-UAM Madrid, Spain ; CIBERER, Unit 761, Instituto de Salud Carlos III Madrid, Spain ; Área de Cáncer y Genética Molecular Humana, IdiPAZ, Instituto de Investigación Sanitaria Madrid, Spain
| |
Collapse
|
12
|
de Iriarte Rodríguez R, Magariños M, Pfeiffer V, Rapp UR, Varela-Nieto I. C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cell Mol Life Sci 2015; 72:3983-98. [PMID: 25975225 PMCID: PMC4575698 DOI: 10.1007/s00018-015-1919-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
The family of RAF kinases transduces extracellular information to the nucleus, and their activation is crucial for cellular regulation on many levels, ranging from embryonic development to carcinogenesis. B-RAF and C-RAF modulate neurogenesis and neuritogenesis during chicken inner ear development. C-RAF deficiency in humans is associated with deafness in the rare genetic insulin-like growth factor 1 (IGF-1), Noonan and Leopard syndromes. In this study, we show that RAF kinases are expressed in the developing inner ear and in adult mouse cochlea. A homozygous C-Raf deletion in mice caused profound deafness with no evident cellular aberrations except for a remarkable reduction of the K+ channel Kir4.1 expression, a trait that suffices as a cause of deafness. To explore the role of C-Raf in cellular protection and repair, heterozygous C-Raf+/− mice were exposed to noise. A reduced C-RAF level negatively affected hearing preservation in response to noise through mechanisms involving the activation of JNK and an exacerbated apoptotic response. Taken together, these results strongly support a role for C-RAF in hearing protection.
Collapse
Affiliation(s)
- Rocío de Iriarte Rodríguez
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain. .,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain. .,Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain.
| | - Verena Pfeiffer
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Ulf R Rapp
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Molecular Mechanisms of Lung Cancer, Max Planck Institute for Heart and Lung Research, Parkstr. 1, 61231, Bad Nauheim, Germany
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
13
|
Murillo-Cuesta S, Rodríguez-de la Rosa L, Contreras J, Celaya AM, Camarero G, Rivera T, Varela-Nieto I. Transforming growth factor β1 inhibition protects from noise-induced hearing loss. Front Aging Neurosci 2015; 7:32. [PMID: 25852546 PMCID: PMC4367183 DOI: 10.3389/fnagi.2015.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Julio Contreras
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Veterinary Faculty, Complutense University of Madrid Madrid, Spain
| | - Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain
| | - Guadalupe Camarero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| | - Teresa Rivera
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Príncipe de Asturias University Hospital, University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM) Madrid, Spain ; Centre for Biomedical Network Research (CIBER), Institute of Health Carlos III (ISCIII) Madrid, Spain ; Hospital La Paz Institute for Health Research (IdiPAZ) Madrid, Spain
| |
Collapse
|