1
|
Badal KK, Sadhu A, Raveendra BL, McCracken C, Lozano‐Villada S, Shetty AC, Gillette P, Zhao Y, Stommes D, Fieber LA, Schmale MC, Mahurkar A, Hawkins RD, Puthanveettil SV. Single-neuron analysis of aging-associated changes in learning reveals impairments in transcriptional plasticity. Aging Cell 2024; 23:e14228. [PMID: 38924663 PMCID: PMC11488329 DOI: 10.1111/acel.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
The molecular mechanisms underlying age-related declines in learning and long-term memory are still not fully understood. To address this gap, our study focused on investigating the transcriptional landscape of a singularly identified motor neuron L7 in Aplysia, which is pivotal in a specific type of nonassociative learning known as sensitization of the siphon-withdraw reflex. Employing total RNAseq analysis on a single isolated L7 motor neuron after short-term or long-term sensitization (LTS) training of Aplysia at 8, 10, and 12 months (representing mature, late mature, and senescent stages), we uncovered aberrant changes in transcriptional plasticity during the aging process. Our findings specifically highlight changes in the expression of messenger RNAs (mRNAs) that encode transcription factors, translation regulators, RNA methylation participants, and contributors to cytoskeletal rearrangements during learning and long noncoding RNAs (lncRNAs). Furthermore, our comparative gene expression analysis identified distinct transcriptional alterations in two other neurons, namely the motor neuron L11 and the giant cholinergic neuron R2, whose roles in LTS are not yet fully elucidated. Taken together, our analyses underscore cell type-specific impairments in the expression of key components related to learning and memory within the transcriptome as organisms age, shedding light on the complex molecular mechanisms driving cognitive decline during aging.
Collapse
Affiliation(s)
- Kerriann K. Badal
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Integrated Biology Graduate ProgramFlorida Atlantic UniversityJupiterFloridaUSA
| | - Abhishek Sadhu
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Present address:
Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Bindu L. Raveendra
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Carrie McCracken
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sebastian Lozano‐Villada
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Amol C. Shetty
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Phillip Gillette
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Yibo Zhao
- Department of NeuroscienceThe Herbert Wertheim UF Scripps Institute for Biomedical Innovation & TechnologyJupiterFloridaUSA
| | - Dustin Stommes
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Lynne A. Fieber
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Michael C. Schmale
- National Resource for AplysiaUniversity of Miami Rosenstiel School of Marine, Atmospheric, and Earth SciencesMiamiFloridaUSA
| | - Anup Mahurkar
- The Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Robert D. Hawkins
- Department of NeuroscienceColumbia UniversityNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | |
Collapse
|
2
|
Ramdeo KR, Fahnestock M, Gibala M, Selvaganapathy PR, Lee J, Nelson AJ. The Effects of Exercise on Synaptic Plasticity in Individuals With Mild Cognitive Impairment: Protocol for a Pilot Intervention Study. JMIR Res Protoc 2023; 12:e50030. [PMID: 37851488 PMCID: PMC10620638 DOI: 10.2196/50030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a syndrome preceding more severe impairment characterized by dementia. MCI affects an estimated 15% to 20% of people older than 65 years. Nonpharmacological interventions including exercise are recommended as part of overall MCI management based on the positive effects of exercise on cognitive performance. Interval training involves brief intermittent bouts of exercise interspersed with short recovery periods. This type of exercise promotes cognitive improvement and can be performed in individuals with MCI. Synaptic plasticity can be assessed in vivo by the neurophysiological response to repetitive transcranial magnetic stimulation (rTMS). A method to assess synaptic plasticity uses an intermittent theta burst stimulation (iTBS), which is a patterned form of rTMS. Individuals with MCI have decreased responses to iTBS, reflecting reduced synaptic plasticity. It is unknown whether interval training causes changes in synaptic plasticity in individuals living with MCI. OBJECTIVE This research will determine whether interval training performed using a cycle ergometer enhances synaptic plasticity in individuals with MCI. The three aims are to (1) quantify synaptic plasticity after interval training performed at a self-determined intensity in individuals with MCI; (2) determine whether changes in synaptic plasticity correlate with changes in serum brain-derived neurotrophic factor, osteocalcin, and cognition; and (3) assess participant compliance to the exercise schedule. METHODS 24 individuals diagnosed with MCI will be recruited for assignment to 1 of the 2 equally sized groups: exercise and no exercise. The exercise group will perform exercise 3 times per week for 4 weeks. Synaptic plasticity will be measured before and following the 4-week intervention. At these time points, synaptic plasticity will be measured as the response to single-pulse TMS, reflected as the percent change in the average amplitude of 20 motor-evoked potentials before and after an iTBS rTMS protocol, which is used to induce synaptic plasticity. In addition, individuals will complete a battery of cognitive assessments and provide a blood sample from the antecubital vein to determine serum brain-derived neurotrophic factor and osteocalcin. RESULTS The study began in September 2023. CONCLUSIONS The proposed research is the first to assess whether synaptic plasticity is enhanced after exercise training in individuals with MCI. If exercise does indeed modify synaptic plasticity, this will create a new avenue by which we can study and manipulate neural plasticity in these individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT05663918; https://clinicaltrials.gov/study/NCT05663918. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/50030.
Collapse
Affiliation(s)
- Karishma R Ramdeo
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Martin Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Justin Lee
- Department of Geriatric Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
3
|
Kron NS, Fieber LA. Aplysia Neurons as a Model of Alzheimer's Disease: Shared Genes and Differential Expression. J Mol Neurosci 2021; 72:287-302. [PMID: 34664226 PMCID: PMC8840921 DOI: 10.1007/s12031-021-01918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022]
Abstract
Although Alzheimer’s disease (AD) is the most common form of dementia in the United States, development of therapeutics has proven difficult. Invertebrate alternatives to current mammalian AD models have been successfully employed to study the etiology of the molecular hallmarks of AD. The marine snail Aplysia californica offers a unique and underutilized system in which to study the physiological, behavioral, and molecular impacts of AD. Mapping of the Aplysia proteome to humans and cross-referencing with two databases of genes of interest in AD research identified 898 potential orthologs of interest in Aplysia. Included among these orthologs were alpha, beta and gamma secretases, amyloid-beta, and tau. Comparison of age-associated differential expression in Aplysia sensory neurons with that of late-onset AD in the frontal lobe identified 59 ortholog with concordant differential expression across data sets. The 21 concordantly upregulated genes suggested increased cellular stress and protein dyshomeostasis. The 47 concordantly downregulated genes included important components of diverse neuronal processes, including energy metabolism, mitochondrial homeostasis, synaptic signaling, Ca++ regulation, and cellular cargo transport. Compromised functions in these processes are known hallmarks of both human aging and AD, the ramifications of which are suggested to underpin cognitive declines in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
4
|
Kron NS, Fieber LA. Co-expression analysis identifies neuro-inflammation as a driver of sensory neuron aging in Aplysia californica. PLoS One 2021; 16:e0252647. [PMID: 34116561 PMCID: PMC8195618 DOI: 10.1371/journal.pone.0252647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023] Open
Abstract
Aging of the nervous system is typified by depressed metabolism, compromised proteostasis, and increased inflammation that results in cognitive impairment. Differential expression analysis is a popular technique for exploring the molecular underpinnings of neural aging, but technical drawbacks of the methodology often obscure larger expression patterns. Co-expression analysis offers a robust alternative that allows for identification of networks of genes and their putative central regulators. In an effort to expand upon previous work exploring neural aging in the marine model Aplysia californica, we used weighted gene correlation network analysis to identify co-expression networks in a targeted set of aging sensory neurons in these animals. We identified twelve modules, six of which were strongly positively or negatively associated with aging. Kyoto Encyclopedia of Genes analysis and investigation of central module transcripts identified signatures of metabolic impairment, increased reactive oxygen species, compromised proteostasis, disrupted signaling, and increased inflammation. Although modules with immune character were identified, there was no correlation between genes in Aplysia that increased in expression with aging and the orthologous genes in oyster displaying long-term increases in expression after a virus-like challenge. This suggests anti-viral response is not a driver of Aplysia sensory neuron aging.
Collapse
Affiliation(s)
- N. S. Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - L. A. Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
5
|
Kron NS, Schmale MC, Fieber LA. Changes in Metabolism and Proteostasis Drive Aging Phenotype in Aplysia californica Sensory Neurons. Front Aging Neurosci 2020; 12:573764. [PMID: 33101008 PMCID: PMC7522570 DOI: 10.3389/fnagi.2020.573764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is associated with cognitive declines that originate in impairments of function in the neurons that make up the nervous system. The marine mollusk Aplysia californica (Aplysia) is a premier model for the nervous system uniquely suited to investigation of neuronal aging due to uniquely identifiable neurons and molecular techniques available in this model. This study describes the molecular processes associated with aging in two populations of sensory neurons in Aplysia by applying RNA sequencing technology across the aging process (age 6-12 months). Differentially expressed genes clustered into four to five coherent expression patterns across the aging time series in the two neuron populations. Enrichment analysis of functional annotations in these neuron clusters revealed decreased expression of pathways involved in energy metabolism and neuronal signaling, suggesting that metabolic and signaling pathways are intertwined. Furthermore, increased expression of pathways involved in protein processing and translation suggests that proteostatic stress also occurs in aging. Temporal overlap of enrichment for energy metabolism, proteostasis, and neuronal function suggests that cognitive impairments observed in advanced age result from the ramifications of broad declines in energy metabolism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Badal KK, Akhmedov K, Lamoureux P, Liu XA, Reich A, Fallahi-Sichani M, Swarnkar S, Miller KE, Puthanveettil SV. Synapse Formation Activates a Transcriptional Program for Persistent Enhancement in the Bi-directional Transport of Mitochondria. Cell Rep 2020; 26:507-517.e3. [PMID: 30650345 DOI: 10.1016/j.celrep.2018.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
Mechanisms that regulate the bi-directional transport of mitochondria in neurons for maintaining functional synaptic connections are poorly understood. Here, we show that in the pre-synaptic sensory neurons of the Aplysia gill withdrawal reflex, the formation of functional synapses leads to persistent enhancement in the flux of bi-directional mitochondrial transport. In the absence of a functional synapse, activation of cAMP signaling is sufficient to enhance bi-directional transport in sensory neurons. Furthermore, persistent enhancement in transport does not depend on NMDA and AMPA receptor signaling nor signaling from the post-synaptic neuronal cell body, but it is dependent on transcription and protein synthesis in the pre-synaptic neuron. We identified ∼4,000 differentially enriched transcripts in pre-synaptic neurons, suggesting a long-term change in the transcriptional program produced by synapse formation. These results provide insights into the regulation of bi-directional mitochondrial transport for synapse maintenance.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Komol Akhmedov
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Phillip Lamoureux
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xin-An Liu
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Adrian Reich
- Bioinformatics Core, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Mohammad Fallahi-Sichani
- Bioinformatics Core, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute-Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kyle E Miller
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
7
|
Altered expression of ionotropic L-Glutamate receptors in aged sensory neurons of Aplysia californica. PLoS One 2019; 14:e0217300. [PMID: 31120976 PMCID: PMC6532900 DOI: 10.1371/journal.pone.0217300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022] Open
Abstract
The simplified nervous system of Aplysia californica (Aplysia) allows for detailed studies of physiological and molecular changes in small sets of neurons. Sensory neurons of the biting and tail withdrawal reflexes are glutamatergic and show reduced L-Glutamate current density in aged animals, making them a good candidate to study age-related changes in glutamatergic responses. To examine if changes in ionotropic L-Glu receptor (iGluR) transcription underlie reduced physiology, mRNA expression of iGluR was quantified in two sensory neuron clusters of two cohorts of Aplysia at both sexual maturity (~8 months) and advanced age (~12 months). Sensory neuron aging resulted in a significant overall decrease in expression of iGluR subunits in both sensory neuron clusters and cohorts. Although the individual subunits differentially expressed varied between sensory neuron clusters and different cohorts of animals, all differentially expressed subunits were downregulated, with no subunits showing significantly increased expression with age. Overall declines in transcript expression suggest that age-related declines in L-Glu responsiveness in Aplysia sensory neurons could be linked to overall declines in iGluR expression, rather than dysregulation of specific subunits. In both sensory neuron clusters tested the N-methyl-D-aspartate receptor subtype was expressed at significantly greater levels than other iGluR subtypes, suggesting an in vivo role for NMDAR-like receptors in Aplysia sensory neurons.
Collapse
|
8
|
Burke SN, Foster TC. Animal models of cognitive aging and circuit-specific vulnerability. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:19-36. [PMID: 31753133 DOI: 10.1016/b978-0-12-804766-8.00002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Medial temporal lobe and prefrontal cortical structures are particularly vulnerable to dysfunction in advanced age and neurodegenerative diseases. This review focuses on cognitive aging studies in animals to illustrate the important aspects of the animal model paradigm for investigation of age-related memory and executive function loss. Particular attention is paid to the discussion of the face, construct, and predictive validity of animal models for determining the possible mechanisms of regional vulnerability in aging and for identifying novel therapeutic strategies. Aging is associated with a host of regionally specific neurobiologic alterations. Thus, targeted interventions that restore normal activity in one brain region may exacerbate aberrant activity in another, hindering the restoration of function at the behavioral level. As such, interventions that target the optimization of "cognitive networks" rather than discrete brain regions may be more effective for improving functional outcomes in the elderly.
Collapse
Affiliation(s)
- Sara N Burke
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
9
|
Greer JB, Schmale MC, Fieber LA. Whole-transcriptome changes in gene expression accompany aging of sensory neurons in Aplysia californica. BMC Genomics 2018; 19:529. [PMID: 29996779 PMCID: PMC6042401 DOI: 10.1186/s12864-018-4909-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Large-scale molecular changes occur during aging and have many downstream consequences on whole-organism function, such as motor function, learning, and memory. The marine mollusk Aplysia californica can be used to study transcriptional changes that occur with age in identified neurons of the brain, because its simplified nervous system allows for more direct correlations between molecular changes, physiological changes, and their phenotypic outcomes. Behavioral deficits in the tail-withdrawal reflex of aged animals have been correlated with reduced excitation in sensory neurons that control the reflex. RNASeq was used to investigate whole-transcriptome changes in tail-withdrawal sensory neurons of sexually mature and aged Aplysia to correlate transcriptional changes with reduced behavioral and physiological responses. Results Paired-end sequencing resulted in 210 million reads used for differential expression analysis. Aging significantly altered expression of 1202 transcripts in sensory neurons underlying the tail-withdrawal reflex, with an approximately equal number of these genes up- and down regulated with age. Despite overall bidirectionality of expression changes, > 80% of ion channel genes that were differentially expressed had decreased expression with age. In particular, several voltage-gated K+ and Ca2+ channels were down regulated. This marked decrease in ion channel expression may play an important role in previously observed declines in aged sensory neuron excitability. We also observed decreased expression of genes and pathways involved in learning and memory. Genes involved in the stress response showed increased expression in aged Aplysia neurons. Conclusions Significantly altered expression of many genes between sexually mature and aged Aplysia suggests large molecular changes that may impact neuronal function. Decreased ion channel mRNA observed could mean fewer receptors present in aged neurons, resulting in reduced excitability of PVC sensory neurons, ultimately leading to reduced tail-withdrawal reflex observed in aged Aplysia. Significant changes in other genes and pathways, such as stress response and learning and memory, have previously been shown to occur with age in many vertebrate organisms. This suggests that some effects of aging are common across many animal phyla. Electronic supplementary material The online version of this article (10.1186/s12864-018-4909-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
10
|
Fieber LA, Kron NS, Greer JB, Rooney H, Prostko RA, Stieglitz JD, Grosell M, Gillette PR. A comparison of hatchery-rearing in exercise to wild animal physiology and reflex behavior in Aplysia californica. Comp Biochem Physiol A Mol Integr Physiol 2018; 221:24-31. [PMID: 29559253 DOI: 10.1016/j.cbpa.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022]
Abstract
Aplysia californica was hatchery-reared in two turbulence protocols intended to imitate the intermittent turbulence of the native habitat and to promote development of the foot muscle from the exercise of adhering to the substrate. Hatchery-reared animals in turbulence regimes were compared to siblings reared in quiet water, and to wild animals, using noninvasive assessments of the development of the foot muscle. The objective was to learn if the turbulence-reared phenotype mimicked laboratory-targeted aspects of the wild phenotype, that is, reflex behavior, swim tunnel performance, and resting oxygen consumption (MO2). No group exhibited different MO2. MO2 values for all of the compared groups of animals followed the power law, with an exponent of 0.69, consistent with this relationship throughout the animal kingdom. Turbulence-induced exercise did not affect the righting reflex or the tail withdrawal reflex, standard behavioral tests that involve the foot muscle, compared to quiet water-reared siblings. Wild individuals had significantly shorter time-to-right than all hatchery reared animals, however, wild animals did not perform better in flume tests. That turbulence-reared hatchery- or wild animals lacked superior flume performance suggests that this species may shelter from intertidal wave energy to remain near its optimal feeding areas.
Collapse
Affiliation(s)
- Lynne A Fieber
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA.
| | - Nicholas S Kron
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Justin B Greer
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Hailey Rooney
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Rachel A Prostko
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - John D Stieglitz
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Martin Grosell
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| | - Phillip R Gillette
- University of Miami Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Ecology, 4600 Rickenbacker Cswy., Miami, FL 33149, USA
| |
Collapse
|
11
|
Fontolliet T, Gianella P, Pichot V, Barthélémy JC, Gasche-Soccal P, Ferretti G, Lador F. Heart rate variability and baroreflex sensitivity in bilateral lung transplant recipients. Clin Physiol Funct Imaging 2018; 38:872-880. [PMID: 29316181 DOI: 10.1111/cpf.12499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
The effects of lung afferents denervation on cardiovascular regulation can be assessed on bilateral lung transplantation patients. The high-frequency component of heart rate variability is known to be synchronous with breathing frequency. Then, if heart beat is neurally modulated by breathing frequency, we may expect disappearance of high frequency of heart rate variability in bilateral lung transplantation patients. On 11 patients and 11 matching healthy controls, we measured R-R interval (electrocardiography), blood pressure (Portapres® ) and breathing frequency (ultrasonic device) in supine rest, during 10-min free breathing, 10-min cadenced breathing (0·25 Hz) and 5-min handgrip. We analysed heart rate variability and spontaneous variability of arterial blood pressure, by power spectral analysis, and baroreflex sensitivity, by the sequence method. Concerning heart rate variability, with respect to controls, transplant recipients had lower total power and lower low- and high-frequency power. The low-frequency/high-frequency ratio was higher. Concerning systolic, diastolic and mean arterial pressure variability, transplant recipients had lower total power (only for cadenced breathing), low frequency and low-frequency/high-frequency ratio during free and cadenced breathing. Baroreflex sensitivity was decreased. Denervated lungs induced strong heart rate variability reduction. The higher low-frequency/high-frequency ratio suggested that the total power drop was mostly due to high frequency. These results support the hypothesis that neural modulation from lung afferents contributes to the high frequency of heart rate variability.
Collapse
Affiliation(s)
- Timothée Fontolliet
- Départements d'Anesthésiologie de Pharmacologie et des Soins Intensifs/des Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland.,EA SNA-Epis 4607, Université Jean-Monnet, Saint-Étienne, France
| | - Pietro Gianella
- Service de Pneumologie, Département de Médecine Interne des Spécialités, Université de Genève, Geneva, Switzerland
| | - Vincent Pichot
- EA SNA-Epis 4607, Université Jean-Monnet, Saint-Étienne, France
| | | | - Paola Gasche-Soccal
- Service de Pneumologie, Département de Médecine Interne des Spécialités, Université de Genève, Geneva, Switzerland
| | - Guido Ferretti
- Départements d'Anesthésiologie de Pharmacologie et des Soins Intensifs/des Neurosciences Fondamentales, Université de Genève, Geneva, Switzerland.,Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Frédéric Lador
- Service de Pneumologie, Département de Médecine Interne des Spécialités, Université de Genève, Geneva, Switzerland
| |
Collapse
|
12
|
Greer JB, Khuri S, Fieber LA. Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica. BMC Evol Biol 2017; 17:11. [PMID: 28077092 PMCID: PMC5225553 DOI: 10.1186/s12862-016-0871-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background The neurotransmitter L-Glutamate (L-Glu) acting at ionotropic L-Glu receptors (iGluR) conveys fast excitatory signal transmission in the nervous systems of all animals. iGluR-dependent neurotransmission is a key component of the synaptic plasticity that underlies learning and memory. During learning, two subtypes of iGluR, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and N-methyl-D-aspartate receptors (NMDAR), are dynamically regulated postsynaptically in vertebrates. Invertebrate organisms such as Aplysia californica (Aplysia) are well-studied models for iGluR-mediated function, yet no studies to date have analyzed the evolutionary relationships between iGluR genes in these species and those in vertebrates, to identify genes that may mediate plasticity. We conducted a thorough phylogenetic analysis spanning Bilateria to elucidate these relationships. The expression status of iGluR genes in the Aplysia nervous system was also examined. Results Our analysis shows that ancestral genes for both NMDAR and AMPAR subtypes were present in the common bilaterian ancestor. NMDAR genes show very high conservation in motifs responsible for forming the conductance pore of the ion channel. The number of NMDAR subunits is greater in vertebrates due to an increased number of splice variants and an increased number of genes, likely due to gene duplication events. AMPAR subunits form an orthologous group, and there is high variability in the number of AMPAR genes in each species due to extensive taxon specific gene gain and loss. qPCR results show that all 12 Aplysia iGluR subunits are expressed in all nervous system ganglia. Conclusions Orthologous NMDAR subunits in all species studied suggests conserved function across Bilateria, and potentially a conserved mechanism of neuroplasticity and learning. Vertebrates display an increased number of NMDAR genes and splice variants, which may play a role in their greater diversity of physiological responses. Extensive gene gain and loss of AMPAR genes may result in different physiological properties that are taxon specific. Our results suggest a significant role for L-Glu mediated responses throughout the Aplysia nervous system, consistent with L-Glu’s role as the primary excitatory neurotransmitter. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0871-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Sawsan Khuri
- Center for Computational Science, University of Miami, 1320 S. Dixie Highway, Coral Gables, FL, 33146, USA.,Department of Computer Science, University of Miami, P.O. Box 248154, Coral Gables, FL, 33124, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
13
|
Kempsell AT, Fieber LA. Habituation in the Tail Withdrawal Reflex Circuit is Impaired During Aging in Aplysia californica. Front Aging Neurosci 2016; 8:24. [PMID: 26903863 PMCID: PMC4751345 DOI: 10.3389/fnagi.2016.00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
The relevance of putative contributors to age-related memory loss are poorly understood. The tail withdrawal circuit of the sea hare, a straightforward neural model, was used to investigate the aging characteristics of rudimentary learning. The simplicity of this neuronal circuit permits attribution of declines in the function of specific neurons to aging declines. Memory was impaired in advanced age animals compared to their performance at the peak of sexual maturity, with habituation training failing to attenuate the tail withdrawal response or to reduce tail motoneuron excitability, as occurred in peak maturity siblings. Baseline motoneuron excitability of aged animals was significantly lower, perhaps contributing to a smaller scope for attenuation. Conduction velocity in afferent fibers to tail sensory neurons (SN) decreased during aging. The findings suggest that age-related changes in tail sensory and motor neurons result in deterioration of a simple form of learning in Aplysia.
Collapse
Affiliation(s)
- Andrew T Kempsell
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Lynne A Fieber
- Division of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|