1
|
Mathes TG, Monirizad M, Ermis M, de Barros NR, Rodriguez M, Kraatz HB, Jucaud V, Khademhosseini A, Falcone N. Effects of amyloid-β-mimicking peptide hydrogel matrix on neuronal progenitor cell phenotype. Acta Biomater 2024; 183:89-100. [PMID: 38801867 PMCID: PMC11239292 DOI: 10.1016/j.actbio.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Self-assembling peptide-based hydrogels have become a highly attractive scaffold for three-dimensional (3D) in vitro disease modeling as they provide a way to create tunable matrices that can resemble the extracellular matrix (ECM) of various microenvironments. Alzheimer's disease (AD) is an exceptionally complex neurodegenerative condition; however, our understanding has advanced due to the transition from two-dimensional (2D) to 3D in vitro modeling. Nonetheless, there is a current gap in knowledge regarding the role of amyloid structures, and previously developed models found long-term difficulty in creating an appropriate model involving the ECM and amyloid aggregates. In this report, we propose a multi-component self-assembling peptide-based hydrogel scaffold to mimic the amyloid-beta (β) containing microenvironment. Characterization of the amyloid-β-mimicking hydrogel (Col-HAMA-FF) reveals the formation of β-sheet structures as a result of the self-assembling properties of phenylalanine (Phe, F) through π-π stacking of the residues, thus mimicking the amyloid-β protein nanostructures. We investigated the effect of the amyloid-β-mimicking microenvironment on healthy neuronal progenitor cells (NPCs) compared to a natural-mimicking matrix (Col-HAMA). Our results demonstrated higher levels of neuroinflammation and apoptosis markers when NPCs were cultured in the amyloid-like matrix compared to a natural brain matrix. Here, we provided insights into the impact of amyloid-like structures on NPC phenotypes and behaviors. This foundational work, before progressing to more complex plaque models, provides a promising scaffold for future investigations on AD mechanisms and drug testing. STATEMENT OF SIGNIFICANCE: In this study, we engineered two multi-component hydrogels: one to mimic the natural extracellular matrix (ECM) of the brain and one to resemble an amyloid-like microenvironment using a self-assembling peptide hydrogel. The self-assembling peptide mimics β-amyloid fibrils seen in amyloid-β protein aggregates. We report on the culture of neuronal progenitor cells within the amyloid-mimicking ECM scaffold to study the impact through marker expressions related to inflammation and DNA damage. This foundational work, before progressing to more complex plaque models, offers a promising scaffold for future investigations on AD mechanisms and drug testing.
Collapse
Affiliation(s)
- Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA; BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Middle East Technical University, Ankara 06800, Turkey
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Marco Rodriguez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 2E4, Canada; Department of Physical and Environmental Science, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA.
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Puvogel S, Alsema A, North HF, Webster MJ, Weickert CS, Eggen BJL. Single-Nucleus RNA-Seq Characterizes the Cell Types Along the Neuronal Lineage in the Adult Human Subependymal Zone and Reveals Reduced Oligodendrocyte Progenitor Abundance with Age. eNeuro 2024; 11:ENEURO.0246-23.2024. [PMID: 38351133 PMCID: PMC10913050 DOI: 10.1523/eneuro.0246-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.
Collapse
Affiliation(s)
- Sofía Puvogel
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Astrid Alsema
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| | - Hayley F North
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Rockville 20850, Maryland
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York 13201
| | - Bart J L Eggen
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen 9700 AD, The Netherlands
| |
Collapse
|
3
|
Jastrzębski MK, Wójcik P, Stępnicki P, Kaczor AA. Effects of small molecules on neurogenesis: Neuronal proliferation and differentiation. Acta Pharm Sin B 2024; 14:20-37. [PMID: 38239239 PMCID: PMC10793103 DOI: 10.1016/j.apsb.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Neurons are believed to be non-proliferating cells. However, neuronal stem cells are still present in certain areas of the adult brain, although their proliferation diminishes with age. Just as with other cells, their proliferation and differentiation are modulated by various mechanisms. These mechanisms are foundational to the strategies developed to induce neuronal proliferation and differentiation, with potential therapeutic applications for neurodegenerative diseases. The most common among these diseases are Parkinson's disease and Alzheimer's disease, associated with the formation of β -amyloid (Aβ ) aggregates which cause a reduction in the number of neurons. Compounds such as LiCl, 4-aminothiazoles, Pregnenolone, ACEA, harmine, D2AAK1, methyl 3,4-dihydroxybenzoate, and shikonin may induce neuronal proliferation/differentiation through the activation of pathways: MAPK ERK, PI3K/AKT, NFκ B, Wnt, BDNF, and NPAS3. Moreover, combinations of these compounds can potentially transform somatic cells into neurons. This transformation process involves the activation of neuron-specific transcription factors such as NEUROD1, NGN2, ASCL1, and SOX2, which subsequently leads to the transcription of downstream genes, culminating in the transformation of somatic cells into neurons. Neurodegenerative diseases are not the only conditions where inducing neuronal proliferation could be beneficial. Consequently, the impact of pro-proliferative compounds on neurons has also been researched in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Michał K. Jastrzębski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Wójcik
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Medical University of Lublin, Faculty of Pharmacy, Lublin PL-20093, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
4
|
Miao J, Chen L, Pan X, Li L, Zhao B, Lan J. Microglial Metabolic Reprogramming: Emerging Insights and Therapeutic Strategies in Neurodegenerative Diseases. Cell Mol Neurobiol 2023; 43:3191-3210. [PMID: 37341833 DOI: 10.1007/s10571-023-01376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, play a critical role in maintaining brain homeostasis. However, in neurodegenerative conditions, microglial cells undergo metabolic reprogramming in response to pathological stimuli, including Aβ plaques, Tau tangles, and α-synuclein aggregates. This metabolic shift is characterized by a transition from oxidative phosphorylation (OXPHOS) to glycolysis, increased glucose uptake, enhanced production of lactate, lipids, and succinate, and upregulation of glycolytic enzymes. These metabolic adaptations result in altered microglial functions, such as amplified inflammatory responses and diminished phagocytic capacity, which exacerbate neurodegeneration. This review highlights recent advances in understanding the molecular mechanisms underlying microglial metabolic reprogramming in neurodegenerative diseases and discusses potential therapeutic strategies targeting microglial metabolism to mitigate neuroinflammation and promote brain health. Microglial Metabolic Reprogramming in Neurodegenerative Diseases This graphical abstract illustrates the metabolic shift in microglial cells in response to pathological stimuli and highlights potential therapeutic strategies targeting microglial metabolism for improved brain health.
Collapse
Affiliation(s)
- Jifei Miao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lihua Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaojin Pan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liqing Li
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Beibei Zhao
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China.
| |
Collapse
|
5
|
Butruille L, Sébillot A, Ávila K, Vancamp P, Demeneix BA, Pifferi F, Remaud S. Increased oligodendrogenesis and myelination in the subventricular zone of aged mice and gray mouse lemurs. Stem Cell Reports 2023; 18:534-554. [PMID: 36669492 PMCID: PMC9969077 DOI: 10.1016/j.stemcr.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
The adult rodent subventricular zone (SVZ) generates neural stem cells (NSCs) throughout life that migrate to the olfactory bulbs (OBs) and differentiate into olfactory interneurons. Few SVZ NSCs generate oligodendrocyte precursor cells (OPCs). We investigated how neurogliogenesis is regulated during aging in mice and in a non-human primate (NHP) model, the gray mouse lemur. In both species, neuronal commitment decreased with age, while OPC generation and myelin content unexpectedly increased. In the OBs, more tyrosine hydroxylase interneurons in old mice, but fewer in lemurs, marked a surprising interspecies difference that could relate to our observation of a continuous ventricle in lemurs. In the corpus callosum, aging promoted maturation of OPCs into mature oligodendrocytes in mice but blocked it in lemurs. The present study highlights similarities and dissimilarities between rodents and NHPs, revealing that NHPs are a more relevant model than mice to study the evolution of biomarkers of aging.
Collapse
Affiliation(s)
- Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France.
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Katia Ávila
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Fabien Pifferi
- UMR 7179 Mecadev, CNRS/Muséum National d'Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
6
|
North HF, Weissleder C, Fullerton JM, Webster MJ, Weickert CS. Increased immune cell and altered microglia and neurogenesis transcripts in an Australian schizophrenia subgroup with elevated inflammation. Schizophr Res 2022; 248:208-218. [PMID: 36108465 DOI: 10.1016/j.schres.2022.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022]
Abstract
We previously identified a subgroup of schizophrenia cases (~40 %) with heightened inflammation in the neurogenic subependymal zone (SEZ) (North et al., 2021b). This schizophrenia subgroup had changes indicating reduced microglial activity, increased peripheral immune cells, increased stem cell dormancy/quiescence and reduced neuronal precursor cells. The present follow-up study aimed to replicate and extend those novel findings in an independent post-mortem cohort of schizophrenia cases and controls from Australia. RNA was extracted from SEZ tissue from 20 controls and 22 schizophrenia cases from the New South Wales Brain Tissue Resource Centre, and gene expression analysis was performed. Cluster analysis of inflammation markers (IL1B, IL1R1, SERPINA3 and CXCL8) revealed a high-inflammation schizophrenia subgroup comprising 52 % of cases, which was a significantly greater proportion than the 17 % of high-inflammation controls. Consistent with our previous report (North et al., 2021b), those with high-inflammation and schizophrenia had unchanged mRNA expression of markers for steady-state and activated microglia (IBA1, HEXB, CD68), decreased expression of phagocytic microglia markers (P2RY12, P2RY13), but increased expression of markers for macrophages (CD163), monocytes (CD14), natural killer cells (FCGR3A), and the adhesion molecule ICAM1. Similarly, the high-inflammation schizophrenia subgroup emulated increased quiescent stem cell marker (GFAPD) and decreased neuronal progenitor (DLX6-AS1) and immature neuron marker (DCX) mRNA expression; but also revealed a novel increase in a marker of immature astrocytes (VIM). Replicating primary results in an independent cohort demonstrates that inflammatory subgroups in the SEZ in schizophrenia are reliable, robust and enhance understanding of neuropathological heterogeneity when studying schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Neuroscience Research Australia, Sydney, NSW, Australia; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Psychiatry, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia; Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
7
|
Utagawa EC, Moreno DG, Schafernak KT, Arva NC, Malek-Ahmadi MH, Mufson EJ, Perez SE. Neurogenesis and neuronal differentiation in the postnatal frontal cortex in Down syndrome. Acta Neuropathol Commun 2022; 10:86. [PMID: 35676735 PMCID: PMC9175369 DOI: 10.1186/s40478-022-01385-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Although Down syndrome (DS), the most common developmental genetic cause of intellectual disability, displays proliferation and migration deficits in the prenatal frontal cortex (FC), a knowledge gap exists on the effects of trisomy 21 upon postnatal cortical development. Here, we examined cortical neurogenesis and differentiation in the FC supragranular (SG, II/III) and infragranular (IG, V/VI) layers applying antibodies to doublecortin (DCX), non-phosphorylated heavy-molecular neurofilament protein (NHF, SMI-32), calbindin D-28K (Calb), calretinin (Calr), and parvalbumin (Parv), as well as β-amyloid (APP/Aβ and Aβ1-42) and phospho-tau (CP13 and PHF-1) in autopsy tissue from age-matched DS and neurotypical (NTD) subjects ranging from 28-weeks (wk)-gestation to 3 years of age. Thionin, which stains Nissl substance, revealed disorganized cortical cellular lamination including a delayed appearance of pyramidal cells until 44 wk of age in DS compared to 28 wk in NTD. SG and IG DCX-immunoreactive (-ir) cells were only visualized in the youngest cases until 83 wk in NTD and 57 wk DS. Strong SMI-32 immunoreactivity was observed in layers III and V pyramidal cells in the oldest NTD and DS cases with few appearing as early as 28 wk of age in layer V in NTD. Small Calb-ir interneurons were seen in younger NTD and DS cases compared to Calb-ir pyramidal cells in older subjects. Overall, a greater number of Calb-ir cells were detected in NTD, however, the number of Calr-ir cells were comparable between groups. Diffuse APP/Aβ immunoreactivity was found at all ages in both groups. Few young cases from both groups presented non-neuronal granular CP13 immunoreactivity in layer I. Stronger correlations between brain weight, age, thionin, DCX, and SMI-32 counts were found in NTD. These findings suggest that trisomy 21 affects postnatal FC lamination, neuronal migration/neurogenesis and differentiation of projection neurons and interneurons that likely contribute to cognitive impairment in DS.
Collapse
Affiliation(s)
- Emma C Utagawa
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - David G Moreno
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Kristian T Schafernak
- Department of Pathology and Laboratory Medicine, Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Nicoleta C Arva
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E Chicago Ave, Chicago, IL, 60611, USA
| | | | - Elliott J Mufson
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
8
|
Identifying gene expression profiles associated with neurogenesis and inflammation in the human subependymal zone from development through aging. Sci Rep 2022; 12:40. [PMID: 34997023 PMCID: PMC8742079 DOI: 10.1038/s41598-021-03976-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
The generation of new neurons within the mammalian forebrain continues throughout life within two main neurogenic niches, the subgranular zone (SGZ) of the hippocampal dentate gyrus, and the subependymal zone (SEZ) lining the lateral ventricles. Though the SEZ is the largest neurogenic niche in the adult human forebrain, our understanding of the mechanisms regulating neurogenesis from development through aging within this region remains limited. This is especially pertinent given that neurogenesis declines dramatically over the postnatal lifespan. Here, we performed transcriptomic profiling on the SEZ from human post-mortem tissue from eight different life-stages ranging from neonates (average age ~ 2 months old) to aged adults (average age ~ 86 years old). We identified transcripts with concomitant profiles across these decades of life and focused on three of the most distinct profiles, namely (1) genes whose expression declined sharply after birth, (2) genes whose expression increased steadily with age, and (3) genes whose expression increased sharply in old age in the SEZ. Critically, these profiles identified neuroinflammation as becoming more prevalent with advancing age within the SEZ and occurring with time courses, one gradual (starting in mid-life) and one sharper (starting in old age).
Collapse
|
9
|
North HF, Weissleder C, Fullerton JM, Sager R, Webster MJ, Weickert CS. A schizophrenia subgroup with elevated inflammation displays reduced microglia, increased peripheral immune cell and altered neurogenesis marker gene expression in the subependymal zone. Transl Psychiatry 2021; 11:635. [PMID: 34911938 PMCID: PMC8674325 DOI: 10.1038/s41398-021-01742-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation regulates neurogenesis, and the brains of patients with schizophrenia and bipolar disorder have reduced expression of neurogenesis markers in the subependymal zone (SEZ), the birthplace of inhibitory interneurons. Inflammation is associated with cortical interneuron deficits, but the relationship between inflammation and reduced neurogenesis in schizophrenia and bipolar disorder remains unexplored. Therefore, we investigated inflammation in the SEZ by defining those with low and high levels of inflammation using cluster analysis of IL6, IL6R, IL1R1 and SERPINA3 gene expression in 32 controls, 32 schizophrenia and 29 bipolar disorder cases. We then determined whether mRNAs for markers of glia, immune cells and neurogenesis varied with inflammation. A significantly greater proportion of schizophrenia (37%) and bipolar disorder cases (32%) were in high inflammation subgroups compared to controls (10%, p < 0.05). Across the high inflammation subgroups of psychiatric disorders, mRNAs of markers for phagocytic microglia were reduced (P2RY12, P2RY13), while mRNAs of markers for perivascular macrophages (CD163), pro-inflammatory macrophages (CD64), monocytes (CD14), natural killer cells (FCGR3A) and adhesion molecules (ICAM1) were increased. Specific to high inflammation schizophrenia, quiescent stem cell marker mRNA (GFAPD) was reduced, whereas neuronal progenitor (ASCL1) and immature neuron marker mRNAs (DCX) were decreased compared to low inflammation control and schizophrenia subgroups. Thus, a heightened state of inflammation may dampen microglial response and recruit peripheral immune cells in psychiatric disorders. The findings elucidate differential neurogenic responses to inflammation within psychiatric disorders and highlight that inflammation may impair neuronal differentiation in the SEZ in schizophrenia.
Collapse
Affiliation(s)
- Hayley F North
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel Sager
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Sydney, NSW, Australia.
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
10
|
Nuninga JO, Mandl RCW, Siero J, Nieuwdorp W, Heringa SM, Boks MP, Somers M, Sommer IEC. Shape and volume changes of the superior lateral ventricle after electroconvulsive therapy measured with ultra-high field MRI. Psychiatry Res Neuroimaging 2021; 317:111384. [PMID: 34537602 DOI: 10.1016/j.pscychresns.2021.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles harbors neuronal stem cells in adult mammals. Rodent studies report neurogenic effects in the SVZ of electroconvulsive stimulation. We hypothesize that if this finding translates to depressed patients undergoing electroconvulsive therapy (ECT), this would be reflected in shape changes at the SVZ. Using T1-weighted MR images acquired at ultra-high field strength (7T), the shape and volume of the ventricles were compared from pre to post ECT after 10 ECT sessions (in patients twice weekly) or 5 weeks apart (controls) using linear mixed models with age and gender as covariates. Ventricle shape significantly changed and volume significantly decreased over time in patients for the left ventricle, but not in controls. The decrease in volume of the ventricles was associated to a decrease in depression scores, and an increase in the left dentate gyrus, However, the shape changes of the ventricles were not restricted to the neurogenic niche in the lateral walls of the ventricles, providing no clear evidence for neurogenesis as sole explanation of volume changes in the ventricles after ECT.
Collapse
Affiliation(s)
- Jasper O Nuninga
- University Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Groningen, the Netherlands; Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands.
| | - René C W Mandl
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Jeroen Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands
| | - Wendy Nieuwdorp
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Sophie M Heringa
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Metten Somers
- Department of Psychiatry, UMC Utrecht Brain Center, University Utrecht, Utrecht, the Netherlands
| | - Iris E C Sommer
- University Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells and Systems, Groningen, the Netherlands
| |
Collapse
|
11
|
Reduced adult neurogenesis is associated with increased macrophages in the subependymal zone in schizophrenia. Mol Psychiatry 2021; 26:6880-6895. [PMID: 34059796 DOI: 10.1038/s41380-021-01149-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Neural stem cells in the human subependymal zone (SEZ) generate neuronal progenitor cells that can differentiate and integrate as inhibitory interneurons into cortical and subcortical brain regions; yet the extent of adult neurogenesis remains unexplored in schizophrenia and bipolar disorder. We verified the existence of neurogenesis across the lifespan by chartering transcriptional alterations (2 days-103 years, n = 70) and identifying cells indicative of different stages of neurogenesis in the human SEZ. Expression of most neural stem and neuronal progenitor cell markers decreased during the first postnatal years and remained stable from childhood into ageing. We next discovered reduced neural stem and neuronal progenitor cell marker expression in the adult SEZ in schizophrenia and bipolar disorder compared to controls (n = 29-32 per group). RNA sequencing identified increased expression of the macrophage marker CD163 as the most significant molecular change in schizophrenia. CD163+ macrophages, which were localised along blood vessels and in the parenchyma within 10 µm of neural stem and progenitor cells, had increased density in schizophrenia but not in bipolar disorder. Macrophage marker expression negatively correlated with neuronal progenitor marker expression in schizophrenia but not in controls or bipolar disorder. Reduced neurogenesis and increased macrophage marker expression were also associated with polygenic risk for schizophrenia. Our results support that the human SEZ retains the capacity to generate neuronal progenitor cells throughout life, although this capacity is limited in schizophrenia and bipolar disorder. The increase in macrophages in schizophrenia but not in bipolar disorder indicates that immune cells may impair neurogenesis in the adult SEZ in a disease-specific manner.
Collapse
|
12
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
13
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
14
|
Weissleder C, Webster MJ, Barry G, Shannon Weickert C. Reduced Insulin-Like Growth Factor Family Member Expression Predicts Neurogenesis Marker Expression in the Subependymal Zone in Schizophrenia and Bipolar Disorder. Schizophr Bull 2020; 47:1168-1178. [PMID: 33274367 PMCID: PMC8266571 DOI: 10.1093/schbul/sbaa159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The generation of inhibitory interneurons from neural stem cells in the subependymal zone is regulated by trophic factors. Reduced levels of trophic factors are associated with inhibitory interneuron dysfunction in the prefrontal cortex and hippocampus in psychiatric disorders, yet the extent to which altered trophic support may underpin deficits in inhibitory interneuron generation in the neurogenic niche remains unexplored in schizophrenia and bipolar disorder. We determined whether the expression of ligands, bioavailability-regulating binding proteins, and cognate receptors of 4 major trophic factor families (insulin-like growth factor [IGF], epidermal growth factor [EGF], fibroblast growth factor [FGF], and brain-derived neurotrophic factor [BDNF]) are changed in schizophrenia and bipolar disorder compared to controls. We used robust linear regression analyses to determine whether altered expression of trophic factor family members predicts neurogenesis marker expression across diagnostic groups. We found that IGF1 mRNA was decreased in schizophrenia and bipolar disorder compared with controls (P ≤ .006), whereas both IGF1 receptor (IGF1R) and IGF binding protein 2 (IGFBP2) mRNAs were reduced in schizophrenia compared with controls (P ≤ .02). EGF, FGF, and BDNF family member expression were all unchanged in both psychiatric disorders compared with controls. IGF1 expression positively predicted neuronal progenitor and immature neuron marker mRNAs (P ≤ .01). IGFBP2 expression positively predicted neural stem cell and neuronal progenitor marker mRNAs (P ≤ .001). These findings provide the first molecular evidence of decreased IGF1, IGF1R, and IGFBP2 mRNA expression in the subependymal zone in psychiatric disorders, which may potentially impact neurogenesis in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Kensington, MD
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY,To whom correspondence should be addressed; Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW 2031, Australia; tel: +61-2-9399-1717, e-mail:
| |
Collapse
|
15
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2020; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
16
|
Vancamp P, Butruille L, Demeneix BA, Remaud S. Thyroid Hormone and Neural Stem Cells: Repair Potential Following Brain and Spinal Cord Injury. Front Neurosci 2020; 14:875. [PMID: 32982671 PMCID: PMC7479247 DOI: 10.3389/fnins.2020.00875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuronal and/or glial cell loss, while traumatic injury is often accompanied by the acute loss of both. Multipotent neural stem cells (NSCs) in the adult mammalian brain spontaneously proliferate, forming neuronal and glial progenitors that migrate toward lesion sites upon injury. However, they fail to replace neurons and glial cells due to molecular inhibition and the lack of pro-regenerative cues. A major challenge in regenerative biology therefore is to unveil signaling pathways that could override molecular brakes and boost endogenous repair. In physiological conditions, thyroid hormone (TH) acts on NSC commitment in the subventricular zone, and the subgranular zone, the two largest NSC niches in mammals, including humans. Here, we discuss whether TH could have beneficial actions in various pathological contexts too, by evaluating recent data obtained in mammalian models of multiple sclerosis (MS; loss of oligodendroglial cells), Alzheimer’s disease (loss of neuronal cells), stroke and spinal cord injury (neuroglial cell loss). So far, TH has shown promising effects as a stimulator of remyelination in MS models, while its role in NSC-mediated repair in other diseases remains elusive. Disentangling the spatiotemporal aspects of the injury-driven repair response as well as the molecular and cellular mechanisms by which TH acts, could unveil new ways to further exploit its pro-regenerative potential, while TH (ant)agonists with cell type-specific action could provide safer and more target-directed approaches that translate easier to clinical settings.
Collapse
Affiliation(s)
- Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Department Adaptations of Life, Paris, France
| |
Collapse
|
17
|
Alikhani V, Beheshti F, Ghasemzadeh Rahbardar M, Marefati N, Mansouritorghabeh F, Hosseini M. Inducible nitric oxide synthase inhibitor, aminoguanidine improved Ki67 as a marker of neurogenesis and learning and memory in juvenile hypothyroid rats. Int J Dev Neurosci 2020; 80:429-442. [PMID: 32479691 DOI: 10.1002/jdn.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION In the present study, the effect of inducible nitric oxide (NO) synthase inhibitor, aminoguanidine (AG) on neurogenesis indicators, learning and memory, and oxidative stress status in juvenile hypothyroid (Hypo) rats was evaluated. METHOD The studied groups were including: (a) Control, (b) Hypo, (c-e) Hypo-AG 10, Hypo-AG 20, and Hypo-AG 30. Hypothyroidism was induced in the groups 2-5 by adding propylthiouracil in drinking water (0.05%). AG (10, 20, or 30 mg/kg) was daily injected intraperitoneally in the groups 3-5. The rats of the groups 1 and 2 were injected by saline instead of AG. After 6 weeks treatment, Morris water maze (MMW) and passive avoidance (PA) tests were done. Deep anesthesia was then induced and the brain tissue was excised for biochemical parameters measuring. RESULTS Ki67 as a maker of neurogenesis and thiol, superoxide dismutase (SOD), and catalase (CAT) as oxidative stress indicators were decreased in the brain of Hypo group, whereas malondialdehyde (MDA) and NO metabolites were enhanced. AG improved Ki67, thiol, CAT, and SOD while decreased MDA and NO metabolites. The escape latency in the MWM test increased in the Hypo group. The spending time in the target quadrant in the probe test of MWM and step-through latency in the PA test in the Hypo group was lower than Control group. AG reversed all the negative behavioral effects of hypothyroidism. CONCLUSION These results revealed that AG improved neurogenesis, learning and memory impairments, and oxidative imbalance in the brain juvenile Hypo rats.
Collapse
Affiliation(s)
- Vajiheh Alikhani
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Narges Marefati
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Zhou L, Zhang S, Zhang L, Li F, Sun H, Feng J. MiR-199a-3p inhibits the proliferation, migration, and invasion of endothelial cells and retinal pericytes of diabetic retinopathy rats through regulating FGF7 via EGFR/PI3K/AKT pathway. J Recept Signal Transduct Res 2020; 41:19-31. [PMID: 32586178 DOI: 10.1080/10799893.2020.1783556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE MiR-199a-3p is low expressed in diabetic retinopathy (DR). In the current study, we investigated the effects of miR-199a-3p on DR and the potential mechanisms. METHODS A DR rat model was established, and endothelial cells (ECs) and retinal pericytes (RPs) were extracted from the DR model rats to detect miR-199a-3p expression. Bioinformatics analysis predicted that fibroblast growth factor 7 (FGF7) was a target gene for miR-199a-3p, which was confirmed by dual-luciferase assay. Cell proliferation, migration, and invasion were detected by cell counting kit-8 (CCK-8), colony formation assay, wound-healing, and Transwell assay. Quantitative real-time polymerase chain reaction (q-PCR) and Western blot were performed to detect the expressions of mRNAs and proteins. RESULTS MiR-199a-3p was low expressed and FGF7 was high-expressed in ECs and RPs. Overexpressed miR-199a-3p suppressed the proliferation, migration, and invasion, and FGF7 expression of ECs and RPs. However, overexpression of FGF7 effectively eliminated the suppressive effects of miR-199a-3p overexpression malignant behaviors of the cells. Meanwhile, up-regulation of FGF7 noticeably reversed the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) and the expression of epidermal growth factor receptor (EGFR) reduced by miR-199a-3p. CONCLUSION Our findings revealed that in the DR rat model, miR-199a-3p inhibited cell proliferation, migration, and invasion of EC and RP through targeting FGF7 and inhibiting the activation of the EGFR/PI3K/AKT pathway. This study may provide a new direction for the search for the treatment of DR.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Suozhi Zhang
- Department of Ophthalmology, Huai'an Maternity and Child Health Hospital, Huai'an, China
| | - Lijuan Zhang
- Operating Room, Huai'an First People's Hospital, Huai'an, China
| | - Fangfang Li
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Hao Sun
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| | - Jun Feng
- Department of Ophthalmology, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
19
|
He H, Lin D, Sun J, He X, Wang T, Fang Y, Liu Y, Fan K, Chen X, He H, Li X, Ji B, Zhao S, Zheng X, Zhang K, Wang H. An in vitro and in vivo study of the brain-targeting effects of an epidermal growth factor-functionalized cholera toxin-like chimeric protein. J Control Release 2020; 322:509-518. [DOI: 10.1016/j.jconrel.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
|
20
|
Kaufmann LK, Hänggi J, Jäncke L, Baur V, Piccirelli M, Kollias S, Schnyder U, Martin-Soelch C, Milos G. Age influences structural brain restoration during weight gain therapy in anorexia nervosa. Transl Psychiatry 2020; 10:126. [PMID: 32366823 PMCID: PMC7198513 DOI: 10.1038/s41398-020-0809-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/22/2023] Open
Abstract
Neuroimaging studies on anorexia nervosa (AN) have consistently reported globally reduced gray matter in patients with acute AN. While first studies on adolescent AN patients provide evidence for the reversibility of these impairments after weight gain, longitudinal studies with detailed regional analysis for adult AN patients are lacking and factors associated with brain restitution are poorly understood. We investigated structural changes in anorexia nervosa using T1-weighted magnetic resonance images with surface-based morphometry. The sample consisted of 26 adult women with severe AN and 30 healthy controls. The longitudinal design comprised three time points, capturing the course of weight-restoration therapy in AN patients at distinct stages of weight gain (BMI ≤ 15.5 kg/m2; 15.5 < BMI < 17.5 kg/m2; BMI ≥ 17.5 kg/m2). Compared to controls, AN patients showed globally decreased cortical thickness and subcortical volumes at baseline. Linear mixed effect models revealed the reversibility of these alterations, with brain restoration being most pronounced during the first half of treatment. The restoration of cortical thickness of AN patients negatively correlated with age, but not duration of illness. After weight restoration, residual group differences of cortical thickness remained in the superior frontal cortex. These findings indicate that structural brain alterations of adult patients with severe AN recuperate independently of the duration of illness during weight-restoration therapy. The temporal pattern of brain restoration suggests a decrease in restoration rate over the course of treatment, with patients' age as a strong predictor of brain restitution, possibly reflecting decreases of brain plasticity as patients grow older.
Collapse
Affiliation(s)
- Lisa-Katrin Kaufmann
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland. .,Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| | - Jürgen Hänggi
- grid.7400.30000 0004 1937 0650Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Lutz Jäncke
- grid.7400.30000 0004 1937 0650Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650University Research Priority Program (URPP) “Dynamic of Healthy Aging”, University of Zurich, Zurich, Switzerland
| | - Volker Baur
- grid.7400.30000 0004 1937 0650Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- grid.412004.30000 0004 0478 9977Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- grid.412004.30000 0004 0478 9977Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Ulrich Schnyder
- grid.7400.30000 0004 1937 0650University of Zurich, Zurich, Switzerland
| | - Chantal Martin-Soelch
- grid.8534.a0000 0004 0478 1713Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Milos
- grid.7400.30000 0004 1937 0650Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Zhang Y, Zhao Y, Song X, Luo H, Sun J, Han C, Gu X, Li J, Cai G, Zhu Y, Liu Z, Wei L, Wei ZZ. Modulation of Stem Cells as Therapeutics for Severe Mental Disorders and Cognitive Impairments. Front Psychiatry 2020; 11:80. [PMID: 32425815 PMCID: PMC7205035 DOI: 10.3389/fpsyt.2020.00080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Severe mental illnesses (SMI) such as schizophrenia and bipolar disorder affect 2-4% of the world population. Current medications and diagnostic methods for mental illnesses are not satisfying. In animal studies, stem cell therapy is promising for some neuropsychiatric disorders and cognitive/social deficits, not only treating during development (targeting modulation and balancing) but also following neurodegeneration (cell replacement and regenerating support). We believe that novel interventions such as modulation of particular cell populations to develop cell-based treatment can improve cognitive and social functions in SMI. With pathological synaptic/myelin damage, oligodendrocytes seem to play a role. In this review, we have summarized oligodendrogenesis mechanisms and some related calcium signals in neural cells and stem/progenitor cells. The related benefits from endogenous stem/progenitor cells within the brain and exogenous stem cells, including multipotent mesenchymal-derived stromal cells (MSC), fetal neural stem cells (NSC), pluripotent stem cells (PSC), and differentiated progenitors, are discussed. These also include stimulating mechanisms of oligodendrocyte proliferation, maturation, and myelination, responsive to the regenerative effects by both endogenous stem cells and transplanted cells. Among the mechanisms, calcium signaling regulates the neuronal/glial progenitor cell (NPC/GPC)/oligodendrocyte precursor cell (OPC) proliferation, migration, and differentiation, dendrite development, and synaptic plasticity, which are involved in many neuropsychiatric diseases in human. On the basis of numerous protein annotation and protein-protein interaction databases, a total of 119 calcium-dependent/activated proteins that are related to neuropsychiatry in human are summarized in this investigation. One of the advanced methods, the calcium/cation-channel-optogenetics-based stimulation of stem cells and transplanted cells, can take advantage of calcium signaling regulations. Intranasal-to-brain delivery of drugs and stem cells or local delivery with the guidance of brain imaging techniques may provide a unique new approach for treating psychiatric disorders. It is also expected that preconditioning stem cell therapy following precise brain imaging as pathological confirmation has high potential if translated to cell clinic use. Generally, modulable cell transplantation followed by stimulations should provide paracrine protection, synaptic modulation, and myelin repair for the brain in SMI.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingying Zhao
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaopeng Song
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA, United States
| | - Hua Luo
- Emory Critical Care Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chunyu Han
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jun Li
- Department of Biological Psychiatry, Peking University Sixth Hospital, Beijing, China
- Department of Biological Psychiatry, Peking University Institute of Mental Health, Beijing, China
- Department of Biological Psychiatry, NHC Key Laboratory of Mental Health (Peking University), Beijing, China
- Department of Biological Psychiatry, National Clinical Research Center for Mental Disorders, Beijing, China
| | - Guilan Cai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhandong Liu
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
22
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
23
|
Gruchot J, Weyers V, Göttle P, Förster M, Hartung HP, Küry P, Kremer D. The Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 2019; 8:cells8080825. [PMID: 31382620 PMCID: PMC6721708 DOI: 10.3390/cells8080825] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Myelin sheaths in the central nervous system (CNS) insulate axons and thereby allow saltatory nerve conduction, which is a prerequisite for complex brain function. Multiple sclerosis (MS), the most common inflammatory autoimmune disease of the CNS, leads to the destruction of myelin sheaths and the myelin-producing oligodendrocytes, thus leaving behind demyelinated axons prone to injury and degeneration. Clinically, this process manifests itself in significant neurological symptoms and disability. Resident oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) are present in the adult brain, and can differentiate into mature oligodendrocytes which then remyelinate the demyelinated axons. However, for multiple reasons, in MS the regenerative capacity of these cell populations diminishes significantly over time, ultimately leading to neurodegeneration, which currently remains untreatable. In addition, microglial cells, the resident innate immune cells of the CNS, can contribute further to inflammatory and degenerative axonal damage. Here, we review the molecular factors contributing to remyelination failure in MS by inhibiting OPC and NSC differentiation or modulating microglial behavior.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Moritz Förster
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
24
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
25
|
Remaud S, Demeneix B. [Thyroid hormones regulate neural stem cell fate]. Biol Aujourdhui 2019; 213:7-16. [PMID: 31274098 DOI: 10.1051/jbio/2019007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Thyroid hormones (THs) are vital for vertebrate brain function throughout life, from early development to ageing. Epidemiological studies show an adequate supply of maternal TH during pregnancy to be necessary for normal brain development, and this from the first trimester of onwards. Maternal TH deficiency irreversibly affects fetal brain development, increasing the risk of offspring cognitive disorders and IQ loss. Mammalian and non-mammalian (zebrafish, xenopus, chicken) models are useful to dissect TH-dependent cellular and molecular mechanisms governing embryonic and fetal brain development: a complex process including cell proliferation, survival, determination, migration, differentiation and maturation of neural stem cells (NSCs). Notably, rodent models have strongly contributed to understand the key neurogenic roles of TH still at work in adult life. Neurogenesis continues in two main areas, the sub-ventricular zone lining the lateral ventricles (essential for olfaction) and the sub-granular zone in the dentate gyrus of the hippocampus (involved in memory, learning and mood control). In both niches, THs tightly regulate the balance between neurogenesis and oligodendrogenesis under physiological and pathological contexts. Understanding how THs modulate NSCs determination toward a neuronal or a glial fate throughout life is a crucial question in neural stem cell biology. Providing answers to this question can offer therapeutic strategies for brain repair, notably in neurodegenerative diseases, demyelinating diseases or stroke where new neurons and/or oligodendrocytes are required. The review focuses on TH regulation of NSC fate in mammals and humans both during development and in the adult.
Collapse
Affiliation(s)
- Sylvie Remaud
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| | - Barbara Demeneix
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Laboratoire Physiologie moléculaire de l'adaptation, 7 rue Cuvier 75005 Paris, France
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Aberrant neurogenesis may contribute to the pathogenesis, pathophysiology and symptoms of schizophrenia. This review summarizes the state of knowledge of adult neurogenesis in schizophrenia and raises important unanswered questions. We highlight how alterations in signalling molecules in the local and peripheral environments in schizophrenia may regulate adult neurogenesis in the human subgranular zone of the hippocampus and the subependymal zone (SEZ). RECENT FINDINGS Cell proliferation and density of mature neurons are reduced in the hippocampus, yet the extent of adult neurogenesis remains unexplored in the SEZ in schizophrenia. The human SEZ is a major source of postnatally migrating cortical and striatal inhibitory interneurons, indicating that aberrant neurogenesis may extend to the SEZ and contribute to inhibitory interneuron deficits in schizophrenia. Trophic factors and inflammatory cytokines regulate the generation of new neurons in rodents, suggesting that altered expression of these signalling molecules in the brain, peripheral vasculature and cerebrospinal fluid in schizophrenia may impact adult neurogenesis in both the hippocampus and the SEZ. SUMMARY Knowledge about adult neurogenesis remains scant in schizophrenia. We propose that a more rigorous examination of adult neurogenesis in relation to regulatory signalling molecules will allow us to identify how abnormalities may contribute to the pathophysiology of schizophrenia.
Collapse
|
27
|
Weissleder C, Barry G, Fung SJ, Wong MW, Double KL, Webster MJ, Weickert CS. Reduction in IGF1 mRNA in the Human Subependymal Zone During Aging. Aging Dis 2019; 10:197-204. [PMID: 30705779 PMCID: PMC6345338 DOI: 10.14336/ad.2018.0317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/17/2018] [Indexed: 01/09/2023] Open
Abstract
The cell proliferation marker, Ki67 and the immature neuron marker, doublecortin are both expressed in the major human neurogenic niche, the subependymal zone (SEZ), but expression progressively decreases across the adult lifespan (PMID: 27932973). In contrast, transcript levels of several mitogens (transforming growth factor α, epidermal growth factor and fibroblast growth factor 2) do not decline with age in the human SEZ, suggesting that other growth factors may contribute to the reduced neurogenic potential. While insulin like growth factor 1 (IGF1) regulates neurogenesis throughout aging in the mouse brain, the extent to which IGF1 and IGF family members change with age and relate to adult neurogenesis markers in the human SEZ has not yet been determined. We used quantitative polymerase chain reaction to examine gene expression of seven IGF family members [IGF1, IGF1 receptor, insulin receptor and high-affinity IGF binding proteins (IGFBPs) 2, 3, 4 and 5] in the human SEZ across the adult lifespan (n=50, 21-103 years). We found that only IGF1 expression significantly decreased with increasing age. IGFBP2 and IGFBP4 expression positively correlated with Ki67 mRNA. IGF1 expression positively correlated with doublecortin mRNA, whereas IGFBP2 expression negatively correlated with doublecortin mRNA. Our results suggest IGF family members are local regulators of neurogenesis and indicate that the age-related reduction in IGF1 mRNA may limit new neuron production by restricting neuronal differentiation in the human SEZ.
Collapse
Affiliation(s)
- Christin Weissleder
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Guy Barry
- 3QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J Fung
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew W Wong
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,4School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kay L Double
- 5Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, University of Sydney, Australia
| | - Maree J Webster
- 6Laboratory of Brain Research, Stanley Medical Research Institute, Maryland, USA
| | - Cynthia Shannon Weickert
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Response to: Comment on 'Human adult neurogenesis across the ages: An immunohistochemical study'. Neuropathol Appl Neurobiol 2019; 43:452-454. [PMID: 28218954 DOI: 10.1111/nan.12394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C V Dennis
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - L S Suh
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia.,Dementia Research Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW, 2052, Australia
| | - M L Rodriguez
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - J J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - G T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
29
|
Feng X, Zhang W, Yin W, Kang YJ. The involvement of mitochondrial fission in maintenance of the stemness of bone marrow mesenchymal stem cells. Exp Biol Med (Maywood) 2019; 244:64-72. [PMID: 30614257 DOI: 10.1177/1535370218821063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT How to maintain the stemness of bone marrow mesenchymal stem cells (BMSCs) in cultures is a long-standing question. The present study found that mitochondrial dynamics affects the stemness of BMSCs in cultures and the retaining of mitochondrial fission enhances the stemness of BMSCs. This work thus provides a novel insight into strategic approaches to maintain the stemness of BMSCs in cultures in relation to the clinical application of bone-marrow stem cells.
Collapse
Affiliation(s)
- Xiaorong Feng
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Wenjing Zhang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wen Yin
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China
| | - Y James Kang
- 1 Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu 610041, China.,2 Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
30
|
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19:E318. [PMID: 29361745 PMCID: PMC5796261 DOI: 10.3390/ijms19010318] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Depending on the species, microglial cells represent 5-20% of glial cells in the adult brain. As the innate immune effector of the brain, microglia are involved in several functions: regulation of inflammation, synaptic connectivity, programmed cell death, wiring and circuitry formation, phagocytosis of cell debris, and synaptic pruning and sculpting of postnatal neural circuits. Moreover, microglia contribute to some neurodevelopmental disorders such as Nasu-Hakola disease (NHD), and to aged-associated neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and others. There is evidence that human and rodent microglia may become senescent. This event determines alterations in the microglia activation status, associated with a chronic inflammation phenotype and with the loss of neuroprotective functions that lead to a greater susceptibility to the neurodegenerative diseases of aging. In the central nervous system (CNS), Triggering Receptor Expressed on Myeloid Cells 2-DNAX activation protein 12 (TREM2-DAP12) is a signaling complex expressed exclusively in microglia. As a microglial surface receptor, TREM2 interacts with DAP12 to initiate signal transduction pathways that promote microglial cell activation, phagocytosis, and microglial cell survival. Defective TREM2-DAP12 functions play a central role in the pathogenesis of several diseases. The CX3CL1 (fractalkine)-CX3CR1 signaling represents the most important communication channel between neurons and microglia. The expression of CX3CL1 in neurons and of its receptor CX3CR1 in microglia determines a specific interaction, playing fundamental roles in the regulation of the maturation and function of these cells. Here, we review the role of the TREM2-DAP12 and CX3CL1-CX3CR1 axes in aged microglia and the involvement of these pathways in physiological CNS aging and in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Ileana Giambanco
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
- Centro Universitario per la Ricerca sulla Genomica Funzionale, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| |
Collapse
|
31
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
32
|
Hoeijmakers L, Meerhoff GF, de Vries JW, Ruigrok SR, van Dam AM, van Leuven F, Korosi A, Lucassen PJ. The age-related slow increase in amyloid pathology in APP.V717I mice activates microglia, but does not alter hippocampal neurogenesis. Neurobiol Aging 2018; 61:112-123. [DOI: 10.1016/j.neurobiolaging.2017.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
|
33
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 2017; 16:1195-1199. [PMID: 28766905 PMCID: PMC5595679 DOI: 10.1111/acel.12641] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 12/02/2022] Open
Abstract
Reduced neurogenesis in the aging mammalian hippocampus has been linked to cognitive deficits and increased risk of dementia. We utilized postmortem human hippocampal tissue from 26 subjects aged 18–88 years to investigate changes in expression of six genes representing different stages of neurogenesis across the healthy adult lifespan. Progressive and significant decreases in mRNA levels of the proliferation marker Ki67 (MKI67) and the immature neuronal marker doublecortin (DCX) were found in the healthy human hippocampus over the lifespan. In contrast, expression of genes for the stem cell marker glial fibrillary acidic protein delta and the neuronal progenitor marker eomesodermin was unchanged with age. These data are consistent with a persistence of the hippocampal stem cell population with age. Age‐associated expression of the proliferation and immature neuron markers MKI67 and DCX, respectively, was unrelated, suggesting that neurogenesis‐associated processes are independently altered at these points in the development from stem cell to neuron. These data are the first to demonstrate normal age‐related decreases at specific stages of adult human hippocampal neurogenesis.
Collapse
Affiliation(s)
- Kathryn J. Mathews
- Discipline of Biomedical Science and Brain and Mind Centre; Sydney Medical School; The University of Sydney; Sydney NSW 2006 Australia
| | - Katherine M. Allen
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
| | - Danny Boerrigter
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
| | - Helen Ball
- Biostatistics and Bioinformatics Facility; Bosch Institute; The University of Sydney; Sydney NSW 2006 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia; Randwick NSW 2031 Australia
- Schizophrenia Research Institute; Randwick NSW 2031 Australia
- School of Psychiatry; The University of New South Wales; Sydney NSW 2052 Australia
| | - Kay L. Double
- Discipline of Biomedical Science and Brain and Mind Centre; Sydney Medical School; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
35
|
Lipp HP. Evolutionary Shaping of Adult Hippocampal Neurogenesis in Mammals-Cognitive Gain or Developmental Priming of Personality Traits? Front Neurosci 2017; 11:420. [PMID: 28785199 PMCID: PMC5519572 DOI: 10.3389/fnins.2017.00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hans-Peter Lipp
- Institute of Evolutionary Medicine, University of ZurichZurich, Switzerland.,Institute of Anatomy, University of ZurichZurich, Switzerland.,Department of Physiology, School of Laboratory Medicine, University of Kwazulu-NatalDurban, South Africa
| |
Collapse
|
36
|
Weissleder C, Kondo MA, Yang C, Fung SJ, Rothmond DA, Wong MW, Halliday GM, Herman MM, Kleinman JE, Webster MJ, Shannon Weickert C. Early-life decline in neurogenesis markers and age-related changes of TrkB splice variant expression in the human subependymal zone. Eur J Neurosci 2017; 46:1768-1778. [PMID: 28612959 DOI: 10.1111/ejn.13623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 11/28/2022]
Abstract
Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years). We further measured TrkB-TK+ and TrkB-TK- mRNAs in the SEZ from young adulthood into ageing (n = 50, 21-103 years), and related their transcript levels to neurogenic and glial cell markers. Ki67, DCX and both TrkB splice variant mRNAs significantly decreased in the SEZ from infancy to middle age. In contrast, TrkB-TK- mRNA increased in the SEZ from young adulthood into ageing, whereas TrkB-TK+ mRNA remained stable. TrkB-TK- mRNA positively correlated with expression of neural precursor (glial fibrillary acidic protein delta and achaete-scute homolog 1) and glial cell markers (vimentin and pan glial fibrillary acidic protein). TrkB-TK+ mRNA positively correlated with expression of neuronal cell markers (DCX and tubulin beta 3 class III). Our results indicate that cells residing in the human SEZ maintain their responsiveness to neurotrophins; however, this capability may change across postnatal life. We suggest that TrkB splice variants may differentially influence neuronal and glial differentiation in the human SEZ.
Collapse
Affiliation(s)
- Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Mari A Kondo
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Chunhui Yang
- Section on Neuropathology, Clinical Brain Disorders Branch, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA.,Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Samantha J Fung
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia
| | - Matthew W Wong
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Randwick, NSW, Australia
| | - Mary M Herman
- Section on Neuropathology, Clinical Brain Disorders Branch, Intramural Research Program, NIMH, NIH, Bethesda, MD, USA
| | - Joel E Kleinman
- Department of Psychiatry and Behavioral Sciences, Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Margarete Ainsworth Building, 139 Barker Street, Randwick, NSW, 2031, Australia.,Schizophrenia Research Institute, Randwick, NSW, Australia.,Faculty of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Akkermann R, Beyer F, Küry P. Heterogeneous populations of neural stem cells contribute to myelin repair. Neural Regen Res 2017; 12:509-517. [PMID: 28553319 PMCID: PMC5436337 DOI: 10.4103/1673-5374.204999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As ingenious as nature's invention of myelin sheaths within the mammalian nervous system is, as fatal can be damage to this specialized lipid structure. Long-term loss of electrical insulation and of further supportive functions myelin provides to axons, as seen in demyelinating diseases such as multiple sclerosis (MS), leads to neurodegeneration and results in progressive disabilities. Multiple lines of evidence have demonstrated the increasing inability of oligodendrocyte precursor cells (OPCs) to replace lost oligodendrocytes (OLs) in order to restore lost myelin. Much research has been dedicated to reveal potential reasons for this regeneration deficit but despite promising approaches no remyelination-promoting drugs have successfully been developed yet. In addition to OPCs neural stem cells of the adult central nervous system also hold a high potential to generate myelinating OLs. There are at least two neural stem cell niches in the brain, the subventricular zone lining the lateral ventricles and the subgranular zone of the dentate gyrus, and an additional source of neural stem cells has been located in the central canal of the spinal cord. While a substantial body of literature has described their neurogenic capacity, still little is known about the oligodendrogenic potential of these cells, even if some animal studies have provided proof of their contribution to remyelination. In this review, we summarize and discuss these studies, taking into account the different niches, the heterogeneity within and between stem cell niches and present current strategies of how to promote stem cell-mediated myelin repair.
Collapse
Affiliation(s)
- Rainer Akkermann
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Felix Beyer
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Küry
- Neuroregeneration Laboratory, Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
38
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|