1
|
Li M, Wang H, Bai Y, Xiong F, Wu S, Bi Q, Qiao Y, Zhang Y, Li X, Feng L, Guo DA. Pharmacodynamical research of extracts and compounds in traditional Chinese medicines for Parkinson's disease. Fitoterapia 2024; 177:106086. [PMID: 38897243 DOI: 10.1016/j.fitote.2024.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease (AD). Currently, there is no cure for PD, and medications can only control the progression of the disease. Various experimental studies have shown the significant efficacy of TCM in treating PD, and combination with western medicine can enhance the effects and reduce toxicity. Thus, exploring effective anti-PD compounds from TCM has become a popular research fields. This review summarizes commonly used TCM extracts and natural products for the treatment of PD, both domestically and internationally. Furthermore, it delves into various mechanisms of TCM in treating PD, such as anti-oxidative stress, anti-inflammatory, anti-apoptotic, improve mitochondrial dysfunction, inhibits α-synuclein (α-Syn) misfolding and aggregation, regulating neurotransmitters, regulates intestinal flora, enhances immunity, and so on. The results reveal that most TCMs exert their neuroprotective effects through anti-inflammatory and anti-oxidative stress actions, thereby slowing down the progression of the disease. These TCM may hold the key to improving PD therapy and have tremendous potential to be developed as novel anti-PD drugs.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanze Wang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuxin Bai
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fuyu Xiong
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shifei Wu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yajun Qiao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaolan Li
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lin Feng
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Li YR, Fan HJ, Sun RR, Jia L, Yang LY, Zhang HF, Jin XM, Xiao BG, Ma CG, Chai Z. Wuzi Yanzong Pill Plays A Neuroprotective Role in Parkinson's Disease Mice via Regulating Unfolded Protein Response Mediated by Endoplasmic Reticulum Stress. Chin J Integr Med 2023; 29:19-27. [PMID: 36369612 DOI: 10.1007/s11655-022-3727-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the protective effects and its possible mechanism of Wuzi Yanzong Pill (WYP) on Parkinson's disease (PD) model mice. METHODS Thirty-six C57BL/6 male mice were randomly assigned to 3 groups including normal, PD, and PD+WYP groups, 12 mice in each group. One week of intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to establish the classical PD model in mice. Meanwhile, mice in the PD+WYP group were administrated with 16 g/kg WYP, twice daily by gavage. After 14 days of administration, gait test, open field test and pole test were measured to evaluate the movement function. Tyrosine hydroxylase (TH) neurons in substantia nigra of midbrain and binding immunoglobulin heavy chain protein (GRP78) in striatum and cortex were observed by immunohistochemistry. The levels of TH, GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1α, XBP1, ATF6, CHOP, ASK1, p-JNK, Caspase-12, -9 and -3 in brain were detected by Western blot. RESULTS Compared with the PD group, WYP treatment ameliorated gait balance ability in PD mice (P<0.05). Similarly, WYP increased the total distance and average speed (P<0.05 or P<0.01), reduced rest time and pole time (P<0.05). Moreover, WYP significantly increased TH positive cells (P<0.01). Immunofluorescence showed WYP attenuated the levels of GRP78 in striatum and cortex. Meanwhile, WYP treatment significantly decreased the protein expressions of GRP78, p-PERK, p-eIF2α, ATF4, p-IRE1 α, XBP1, CHOP, Caspase-12 and Caspase-9 (P<0.05 or P<0.01). CONCLUSIONS WYP ameliorated motor symptoms and pathological lesion of PD mice, which may be related to the regulation of unfolded protein response-mediated signaling pathway and inhibiting the endoplasmic reticulum stress-mediated neuronal apoptosis pathway.
Collapse
Affiliation(s)
- Yan-Rong Li
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hui-Jie Fan
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Rui-Rui Sun
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Lu Jia
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Li-Yang Yang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Fei Zhang
- Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Department of Neurological Surgery, Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200025, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science Department, Neurology of First Affiliated Hospital, Shanxi Datong University, Datong, Shanxi Province, 037009, China
| | - Zhi Chai
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.
| |
Collapse
|
3
|
Mao J, Liu P, Han W, Mo R, Guo S, Sun J. The Influence of GFRαl Inhibition on Proliferation and Apoptosis of Spermatogenic Cells. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Xiong WL, Sun Y, Ma TC, Zhang XY, Wang JY, Du YY, Wu B, Yan TX, Jia Y. A pair of novel phenylethanol glycosides from Cistanche tubulosa (Schenk) Wight. Fitoterapia 2022; 160:105227. [PMID: 35662650 DOI: 10.1016/j.fitote.2022.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
A pair of differential epimers with opposite C-7 configurations, crenatosides A and B (1 and 2), and 10 known phenylethanoid glycosides (PhGs) (3-12) were obtained from the succulent stem of Cistanche tubulosa. The structures were elucidated based on extensive spectral data (UV, IR, 1D and 2D NMR, HR-ESIMS), which are first reported natural products with unique glycoside structures. After acid hydrolysis, the configuration of the sugar was determined by comparing it with the normative sugar by HPLC. The absolute configurations of both compounds were determined by ECD spectrum analysis. All the obtained compounds were examined for their inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse microglial cells (BV-2 cells), and compounds 1 and 2 showed potent inhibition on NO production with IC50 values of 5.62 μM and 6.30 μM, respectively.
Collapse
Affiliation(s)
- Wei-Lin Xiong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Yu Sun
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui North Street 333, Qiqihar 161006, People's Republic of China
| | - Tian-Cheng Ma
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China; Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Bukui North Street 333, Qiqihar 161006, People's Republic of China
| | - Xiao-Ying Zhang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Jin-Yu Wang
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Yi-Yang Du
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Bo Wu
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Ting-Xu Yan
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China
| | - Ying Jia
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, People's Republic of China.
| |
Collapse
|
5
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
6
|
Li J, Yu H, Yang C, Ma T, Dai Y. Therapeutic Potential and Molecular Mechanisms of Echinacoside in Neurodegenerative Diseases. Front Pharmacol 2022; 13:841110. [PMID: 35185590 PMCID: PMC8855092 DOI: 10.3389/fphar.2022.841110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Echinacoside (ECH) is a natural phenylethanoid glycoside (PhG) in Cistanche tubulosa. A large number of studies have shown that ECH has very promising potential in the inhibition of neurodegenerative disease progression. Experimental studies strongly suggest that ECH exhibits a variety of beneficial effects associated with in neuronal function, including protecting mitochondrial function, anti-oxidative stress, anti-inflammatory, anti-endoplasmic reticulum stress (ERS), regulating autophagy and so on. The aim of this paper is to provide an extensive and actual summarization of ECH and its neuroprotective efficacy in prevention and treatment of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and so on, based on published data from both in vivo and in vitro studies. There is a growing evidence that ECH may serve as an efficacious and safe substance in the future to counteract neurodegenerative disease.
Collapse
Affiliation(s)
- Jin Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongni Yu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Dai
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
The Positive Role and Mechanism of Herbal Medicine in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9923331. [PMID: 34567415 PMCID: PMC8457986 DOI: 10.1155/2021/9923331] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease, manifested by the progressive functional impairment of the midbrain nigral dopaminergic neurons. Due to the unclear underlying pathogenesis, disease-modifying drugs for PD remain elusive. In Asia, such as in China and India, herbal medicines have been used in the treatment of neurodegenerative disease for thousands of years, which recently attracted considerable attention because of the development of curative drugs for PD. In this review, we first summarized the pathogenic factors of PD including protein aggregation, mitochondrial dysfunction, ion accumulation, neuroinflammation, and oxidative stress, and the related recent advances. Secondly, we summarized 32 Chinese herbal medicines (belonging to 24 genera, such as Acanthopanax, Alpinia, and Astragalus), 22 Chinese traditional herbal formulations, and 3 Indian herbal medicines, of which the ethanol/water extraction or main bioactive compounds have been extensively investigated on PD models both in vitro and in vivo. We elaborately provided pictures of the representative herbs and the structural formula of the bioactive components (such as leutheroside B and astragaloside IV) of the herbal medicines. Also, we specified the potential targets of the bioactive compounds or extractions of herbs in view of the signaling pathways such as PI3K, NF-κB, and AMPK which are implicated in oxidative and inflammatory stress in neurons. We consider that this knowledge of herbal medicines or their bioactive components can be favorable for the development of disease-modifying drugs for PD.
Collapse
|
8
|
Wang CC, Shi HH, Xu J, Yanagita T, Xue CH, Zhang TT, Wang YM. Docosahexaenoic acid-acylated astaxanthin ester exhibits superior performance over non-esterified astaxanthin in preventing behavioral deficits coupled with apoptosis in MPTP-induced mice with Parkinson's disease. Food Funct 2021; 11:8038-8050. [PMID: 32845953 DOI: 10.1039/d0fo01176b] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-esterified astaxanthin (AST) has been reported to exhibit protective effects from Parkinson's disease (PD). Notably, DHA-acylated astaxanthin ester (DHA-AST) is widely distributed in the seafood. However, whether DHA-AST has an effect on PD, and the differences between DHA-AST, non-esterified AST and the combination of non-esterified AST (AST) with DHA (DHA + AST) is unclear. In the present study, mice with PD, induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), were employed to investigate the effects of DHA-AST, AST and DHA + AST on Parkinson's disease. The rotarod test results showed that DHA-AST significantly suppressed the PD development in MPTP-induced mice, and was better than the effects of AST and DHA + AST. Further mechanistic studies indicated that all three astaxanthin supplements could inhibit oxidative stress in the brain. It was noted that DHA-AST had the best ability to suppress the apoptosis of dopaminergic neurons via the mitochondria-mediated pathway and JNK and P38 MAPK pathway in the brain among the three treated groups. DHA-AST was superior to AST in preventing behavioral deficits coupled with apoptosis rather than oxidative stress, and might provide a valuable reference for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science, Saga University, Saga 840-8502, Japan
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, P. R. China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong Province, P. R. China.
| |
Collapse
|
9
|
Wang G, Wang H, Zhang L, Guo F, Wu X, Liu Y. MiR-195-5p inhibits proliferation and invasion of nerve cells in Hirschsprung disease by targeting GFRA4. Mol Cell Biochem 2021; 476:2061-2073. [PMID: 33515383 DOI: 10.1007/s11010-021-04055-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported that miR-195-5p plays a role in the Hirschsprung disease (HSCR). Our previous work found GDNF family receptor alpha 4 (GFRA4) is also associated with HSCR. In this study, we focused on whether miR-195-5p induces the absence of enteric neurons and enteric neural crest in HSCR by regulating GFRA4. The expression levels of GFRA4 and miR-195-5p in colon tissues were evaluated by real-time PCR (RT-PCR) assay. We overexpressed GFRA4 or miR-195-5p in SH-SY5Y cells, the cell proliferation, cell cycle, apoptosis and invasion were subsequently investigated by CCK-8 assay, EdU staining, Flow cytometry analysis and Transwell assay, respectively. We also established the xenograft model to detect the effect of miR-195-5p on tumor growth and GFRA4 and p-RET expressions. GFRA4 expression was significantly downregulated in the HSCR colon tissues when compared with that in the control tissues. Overexpression of GFRA4 significantly promoted proliferation, invasion and cell cycle arrest, and inhibited apoptosis of SH-SY5Y cells. We also proved that GFRA4 is a direct target of miR-195-5p, and miR-195-5p inhibited proliferation, invasion, cell cycle arrest and differentiation, and accelerated apoptosis in SH-SY5Y cells which can be reversed by GFRA4 overexpression. Furthermore, we demonstrated that miR-195-5p suppressed tumor growth, and observably decreased GFRA4 and p-RET expressions. Our findings suggest that miR-195-5p plays an important role in the pathogenesis of HSCR. MiR-195-5p inhibited proliferation, invasion and cell cycle arrest, and accelerated apoptosis of nerve cells by targeting GFRA4.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China.
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| |
Collapse
|
10
|
Congrong Shujing Granule-Induced GRP78 Expression Reduced Endoplasmic Reticulum Stress and Neuronal Apoptosis in the Midbrain in a Parkinson's Disease Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4796236. [PMID: 33062012 PMCID: PMC7547351 DOI: 10.1155/2020/4796236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The main pathological changes inherent in Parkinson's disease (PD) are degeneration and loss of dopamine neurons in the midbrain and formation of Lewy bodies. Many studies have shown that the pathogenesis of PD is closely related to endoplasmic reticulum (ER) oxidative stress. This study combined various traditional Chinese medicines to prepare Congrong Shujing granules (CSGs). The optimal dose combination of the ingredients was identified by experimental intervention in SH-SY5Y cells in vitro. A PD rat model was established by intraperitoneal injection of rotenone sunflower oil emulsion. The suspension tests were performed on the 14th day after modeling and also on the 14th day after CSG intervention (5.88 g/kg, 11.76 g/kg, and 23.52 g/kg). We evaluated the changes in motor function and the expression of neuronal cell functional marker proteins, ER stress (ERS) marker proteins, and apoptosis-related pathway proteins of neuronal cells. Changes in cellular ultrastructure were observed by electron microscopy. Our results showed that CSG treatment lengthened the duration of PD rats' gripping to the wire. 78 kDa glucose-regulated protein (GRP78) expression in the substantia nigra was significantly upregulated in the middle- and high-dose CSG groups after 14 days of treatment compared with the model group. The expression of the key dopaminergic neuron functional enzyme tyrosine hydroxylase (TH) and cerebral dopamine neurotrophic factor (CDNF) was elevated. The expression of c-Jun N-terminal kinase (JNK) and phosphorylated c-Jun decreased, and cell apoptosis was significantly reduced. Compared with the model group, the treatment groups had fewer ER fragmentation and degranulation (ribosome shedding) and abundant ER and mitochondria suggesting that CSG reduced ER stress and neuronal apoptosis in the midbrain of a PD rat model by inducing the expression of molecular chaperone GRP78.
Collapse
|
11
|
Mechanisms of Cong Rong Shu Jing Compound Effects on Endoplasmic Reticulum Stress in a Rat Model of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1818307. [PMID: 32508943 PMCID: PMC7244963 DOI: 10.1155/2020/1818307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022]
Abstract
This study investigated the effects of the Cong Rong Shu Jing (CRSJ) compound on endoplasmic reticulum stress in a rat model of Parkinson's disease (PD). A total of 40 rats were subcutaneously injected with rotenone-sunflower oil emulsion into the back of the neck to establish a rat model of PD. These PD rats were randomly divided into low-, medium-, and high-dose groups (intragastric administration of 0.5, 1, and 2 g/kg CRSJ, respectively) and a model group (intragastric administration of the solvent; 10 rats per group). Furthermore, 10 rats each were attributed to the control and vehicle groups (both received intragastric administration of the CRSJ solvent, and the vehicle group were injected additionally with sunflower oil alone). A traction test was conducted two times, after the PD model establishment and after 14 days of CRSJ gavage. The numbers of tyrosine hydroxylase- (TH-) positive cells and the dopamine levels in the substantia nigra were assessed using immunohistochemistry and high-performance liquid chromatography, respectively. Western blotting detected the expression levels of α-synuclein, endoplasmic reticulum stress pathways-related proteins, cerebral dopamine neurotrophic factor (CDNF), mesencephalic astrocyte-derived neurotrophic factor (MANF), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins. Compared with the model group, the number of TH-positive cells in the substantia nigra was increased in the CRSJ groups. The expression levels of α-synuclein and the endoplasmic reticulum stress pathways-associated proteins glucose regulatory protein 78, inositol-requiring enzyme 1, apoptosis signal-regulating kinase 1, phosphorylated c-Jun N-terminal kinase, and caspase-12 were reduced. However, CRSJ administration elevated the expression levels of the neurotrophic factors CDNF and MANF, as well as those of p-PI3K and p-AKT. The CRSJ compound can relieve endoplasmic reticulum stress in PD rats and exerts protective effects in this animal model. These effects may be related to increased expression of neurotrophic factors and activation of the PI3K/AKT pathway.
Collapse
|
12
|
Chen SY, Xiao SJ, Lin YN, Li XY, Xu Q, Yang SS, Huang LH, Cai J. Clinical Efficacy and Transcriptomic Analysis of Congrong Shujing Granules () in Patients with Parkinson's Disease and Syndrome of Shen (Kidney) Essence Deficiency. Chin J Integr Med 2020; 26:412-419. [PMID: 32291608 DOI: 10.1007/s11655-020-3080-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of Congrong Shujing Granules ( , CSGs) in treating patients with Parkinson's disease (PD) and Chinese medicine (CM) syndrome of Shen (Kidney) essence deficiency, and to investigate the potential mechanism involving efficacy through a transcriptome sequencing approach. METHODS Eligible PD patients with syndrome of Shen essence defificiency were randomly assigned to a treatment group or a control group by a random number table, and were treated with CSGs combined with Western medicine (WM), or placebo combined with WM, respectively. Both courses of treatment lasted for 12 weeks. The Unifified Parkinson's Disease Rating Scale (UPDRS) score, the PD Question-39 (PDQ-39) score, CM Syndrome Scale score, and drug usage of all patients were evaluated before and after treatment. Safety was evaluated by clinical laboratory tests and electrocardiographs. Blood samples from 6 patients in each group were collected before and after the trial and used for transcriptomic analysis by gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Differentially expressed genes were validated using reverse transcription-polymerase chain reaction. RESULTS A total of 86 PD patients were selected from the Third Affifiliated People's Hospital of Fujian University of Traditional Chinese Medicine between January 2017 and December 2017. Finally, 72 patients completed the trial, including 35 in the treatment group and 37 in the control group. When compared with the control group after treatment, patients in the treatment group showed signifificant decreases in UPDRS sub-II score, PDQ-39 score, CM syndrome score, and Levodopa equivalent dose (P<0.05). During the treatment course, no signifificant changes were observed in safety indicators between the two groups (P>0.05). A possible mechanism of clinical effificacy was proposed that involved regulating cell metabolism-related processes and ribosome-related pathways. Treatment with CSGs had shown to affect relevant gene loci for PD, including AIDA, ANKRD36BP2, BCL2A1, BCL2L11, FTH1P2, GCH1, HPRT1, NFE2L2, RMRP, RPS7, TGFBR1, WIPF2, and COX7B. CONCLUSIONS CSGs combined with WM can be used to treat PD patients with CM syndrome of Shen essence defificiency with a good safety. The possible mechanism of action and relevant gene loci were proposed. (Registration No. ChiCTR-IOR-16008394).
Collapse
Affiliation(s)
- Shi-Ya Chen
- Geriatrics Department, the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shao-Jian Xiao
- Geriatrics Department, the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - You-Ning Lin
- Geriatrics Department, the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xi-Yu Li
- Geriatrics Department, the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Qian Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Sha-Sha Yang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lian-Hong Huang
- College of Medical Technology and Engineering, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Rehabilitation Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Jing Cai
- Geriatrics Department, the Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China. .,College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
13
|
Guo Y, Wang L, Li Q, Zhao C, He P, Ma X. Enhancement of Kidney Invigorating Function in Mouse Model by Cistanches Herba Dried Rapidly at a Medium High Temperature. J Med Food 2019; 22:1246-1253. [PMID: 31834844 DOI: 10.1089/jmf.2018.4354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cistanches Herba is a popular Traditional Chinese Medicine and functional food that is used to treat kidney yang deficiency (KYD) in China. In this study, we investigated the effects of different drying methods for Cistanches Herba on kidney invigoration and yang strengthening. We established a mouse model of KYD by intraperitoneal injection of hydrocortisone for 8 days. We dried slices of Cistanches Herba in the sun, in the shade, in a microwave, or in an oven at 40°C, 60°C, 80°C or 100°C, then prepared and administered extracts to the mice by gastric gavage. We measured and evaluated the echinacoside (ECH) and acteoside (ACT) contents of the extracts, as well as the mice's body weight; testicular, epididymal, hepatic, and renal coefficients; and semen quality. All the Cistanches Herba extracts, obtained using different drying techniques, improved symptoms of KYD diagnosis in mice. Among them, treatments with Cistanches Herba dried in a microwave and dried in an oven at 100°C had the best therapeutic effects. Our results suggested that the higher the total content of ECH and ACT in Cistanches Herba extracts, the better the effects of kidney invigoration and yang strengthening. In addition, shorter drying times at higher temperatures lead to the highest recoveries of active components, and Cistanche dried in the sun at a medium-high temperature can improve sperm quality in mice.
Collapse
Affiliation(s)
- Yehong Guo
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Limin Wang
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Qian Li
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Cheng Zhao
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ping He
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xudong Ma
- Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Institute of Traditional Chinese Medicine, College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Protective effect of alpha mangostin on rotenone induced toxicity in rat model of Parkinson's disease. Neurosci Lett 2019; 716:134652. [PMID: 31778768 DOI: 10.1016/j.neulet.2019.134652] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive, late-onset, and degenerative disorder that affects the central nervous system with an unknown etiology. Due to its incredible complexity in disease nature, many of the existing treatment approaches show a vain recovery in Parkinson's patients. Therefore, an in search of disease-modifying therapeutics for an effective recovery is essential. Alpha mangostin is an important polyphenolic xanthone reported for its neuroprotective effect against rotenone-induced α-synuclein aggregation and loss of tyrosine hydroxylase positive (TH+)-neurons in SH-SY5Y cells. Hence, the current study aims to test its protective effect in managing the in-vivo rat model of PD. To justify this aim, adult male Sprague Dawley rats (250 ± 20 g) were subjected to chronic treatment of rotenone (2 mg/kg/day, s.c.) for 21 days. In parallel alpha mangostin treatment (10 mg/kg, i.p) was administered along with rotenone for 21 days. Chronic rotenone treatment for 21 days increased lipid peroxidation, nitrite concentration, and decreased glutathione levels. Further, depletion of TH+-dopaminergic neuron expression in substantia nigra pars compacta (SNc), and the development of motor and behavioral deficits in rotenone treated animals like cognitive impairment, muscle incoordination, and neuromuscular weakness were observed. Moreover, western blot studies ascertained the reduced normal alpha-synuclein levels and increased phosphorylated α-synuclein levels in comparison to the vehicle-treated group. Treatment with alpha mangostin significantly restored the locomotor activity, memory deficits, and improved the levels of antioxidant enzymes. It also significantly reduced the levels of phosphorylated α-synuclein which in turn gave protection against TH+-dopaminergic neuronal loss in SNc, suggesting it's anti-oxidant and anti-aggregatory potential against α-synuclein. In conclusion through our current results, we could suggest that alpha mangostin has a potential neuroprotective effect against rotenone-induced PD and might be used as a neuroprotective agent. Further mechanistic studies on preclinical and clinical levels are required to be conducted with alpha mangostin to avail and foresee it as a potential agent in the treatment and management of PD.
Collapse
|
15
|
Zhou XL, Xu MB, Jin TY, Rong PQ, Zheng GQ, Lin Y. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer's Disease. Aging Dis 2019; 10:1075-1093. [PMID: 31595204 PMCID: PMC6764737 DOI: 10.14336/ad.2018.0815-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, disease-modified strategies to prevent, halt or reverse the progress of Alzheimer's disease (AD) are still lacking. Previous studies indicated extracts or compounds from Cistanches (ECC) exert a potential neuroprotective effect against AD. Thus, we conducted a preclinical systematic review to assess preclinical evidence and possible mechanisms of ECC in experimental AD. A systematical searching strategy was carried out across seven databases from their inceptions to July 2018. Twenty studies with 1696 rats or mice were involved. Neurobehavioral function indices as primary outcome measures were established by the Morris water maze test (n = 11), step-down test (n = 10), electrical Y-maze test (n = 4), step-through test (n = 3), open field test (n = 2) and passage water maze test (n = 1). Compared with controls, the results of the meta-analysis showed ECC exerted a significant effect in decreasing the escape latency, error times and wrong reaction latency in both the training test and the retention test, and in increasing the exact time and the percentage of time in the platform-quadrant and the number of platform crossings (all P<0.01). In conclusion, ECC exert potential neuroprotective effects in experimental AD, mainly through mechanisms involving antioxidant stress and antiapoptosic effects, inhibiting Aβ deposition and tau protein hyperphosphorylation and promoting synapse protection. Thus, ECC could be a candidate for AD treatment and further clinical trials.
Collapse
Affiliation(s)
- Xiao-Li Zhou
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meng-Bei Xu
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting-Yu Jin
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pei-Qing Rong
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Lin
- Department of Neurology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Xiao-Li Z, Meng-Bei X, Ting-Yu J, Pei-Qing R, Guo-Qing Z, Yan L. Preclinical Evidence and Possible Mechanisms of Extracts or Compounds from Cistanches for Alzheimer’s Disease. Aging Dis 2018. [DOI: 10.14336/ad.2018.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Yuan J, Zhang YM, Wu W, Ma W, Wang F. Effect of glycosides of Cistanche on the expression of mitochondrial precursor protein and keratin type II cytoskeletal 6A in a rat model of vascular dementia. Neural Regen Res 2017; 12:1152-1158. [PMID: 28852399 PMCID: PMC5558496 DOI: 10.4103/1673-5374.211196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Glycosides of Cistanche (GC) is a preparation used extensively for its neuroprotective effect against neurological diseases, but its mechanisms of action remains incompletely understood. Here, we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC (10 mg/kg/day, intraperitoneally) for 14 consecutive days. Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta (Aβ) immunoreactivity in the hippocampus of the model rats. Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal 6A after GC treatment compared with model rats that had received saline. Western blot assay confirmed these findings. Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
Collapse
|