1
|
Campbell KJ, Jiang P, Olker C, Lin X, Kim SY, Lee CJ, Song EJ, Turek FW, Vitaterna MH. The impacts of sex and the 5xFAD model of Alzheimer's disease on the sleep and spatial learning responses to feeding time. Front Neurol 2024; 15:1430989. [PMID: 39144714 PMCID: PMC11322461 DOI: 10.3389/fneur.2024.1430989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The relationships between the feeding rhythm, sleep and cognition in Alzheimer's disease (AD) are incompletely understood, but meal time could provide an easy-to-implement method of curtailing disease-associated disruptions in sleep and cognition. Furthermore, known sex differences in AD incidence could relate to sex differences in circadian rhythm/sleep/cognition interactions. Methods The 5xFAD transgenic mouse model of AD and non-transgenic wild-type controls were studied. Both female and male mice were used. Food access was restricted each day to either the 12-h light phase (light-fed groups) or the 12-h dark phase (dark-fed groups). Sleep (electroencephalographic/electromyographic) recording and cognitive behavior measures were collected. Results The 5xFAD genotype reduces NREM and REM as well as the number of sleep spindles. In wild-type mice, light-fed groups had disrupted vigilance state amounts, characteristics, and rhythms relative to dark-fed groups. These feeding time differences were reduced in 5xFAD mice. Sex modulates these effects. 5xFAD mice display poorer spatial memory that, in female mice, is curtailed by dark phase feeding. Similarly, female 5xFAD mice have decreased anxiety-associated behavior. These emotional and cognitive measures are correlated with REM amount. Discussion Our study demonstrates that the timing of feeding can alter many aspects of wake, NREM and REM. Unexpectedly, 5xFAD mice are less sensitive to these feeding time effects. 5xFAD mice demonstrate deficits in cognition which are correlated with REM, suggesting that this circadian-timed aspect of sleep may link feeding time and cognition. Sex plays an important role in regulating the impact of feeding time on sleep and cognition in both wild-type and 5xFAD mice, with females showing a greater cognitive response to feeding time than males.
Collapse
Affiliation(s)
- Katrina J. Campbell
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher Olker
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Xuanyi Lin
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Sarah Y. Kim
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Christopher J. Lee
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Eun Joo Song
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Fred W. Turek
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Northwestern University, Evanston, IL, United States
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
2
|
Braga A, Chiacchiaretta M, Pellerin L, Kong D, Haydon PG. Astrocytic metabolic control of orexinergic activity in the lateral hypothalamus regulates sleep and wake architecture. Nat Commun 2024; 15:5979. [PMID: 39013907 PMCID: PMC11252394 DOI: 10.1038/s41467-024-50166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Neuronal activity undergoes significant changes during vigilance states, accompanied by an accommodation of energy demands. While the astrocyte-neuron lactate shuttle has shown that lactate is the primary energy substrate for sustaining neuronal activity in multiple brain regions, its role in regulating sleep/wake architecture is not fully understood. Here we investigated the involvement of astrocytic lactate supply in maintaining consolidated wakefulness by downregulating, in a cell-specific manner, the expression of monocarboxylate transporters (MCTs) in the lateral hypothalamus of transgenic mice. Our results demonstrate that reduced expression of MCT4 in astrocytes disrupts lactate supply to wake-promoting orexin neurons, impairing wakefulness stability. Additionally, we show that MCT2-mediated lactate uptake is necessary for maintaining tonic firing of orexin neurons and stabilizing wakefulness. Our findings provide both in vivo and in vitro evidence supporting the role of astrocyte-to-orexinergic neuron lactate shuttle in regulating proper sleep/wake stability.
Collapse
Affiliation(s)
- Alice Braga
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Martina Chiacchiaretta
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Luc Pellerin
- Inserm U1313, University and CHU of Poitiers, 86021, Poitiers, France
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
3
|
Constantino NJ, Carroll CM, Williams HC, Yuede CM, Sheehan PW, Andy Snipes J, Musiek ES, Johnson LA, Macauley SL. Kir6.2-K ATP channels alter glycolytic flux to modulate cortical activity, arousal, and sleep-wake homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581817. [PMID: 38464274 PMCID: PMC10925108 DOI: 10.1101/2024.02.23.581817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Metabolism plays an important role in the maintenance of vigilance states (e.g. wake, NREM, and REM). Brain lactate fluctuations are a biomarker of sleep. Increased interstitial fluid (ISF) lactate levels are necessary for arousal and wake-associated behaviors, while decreased ISF lactate is required for sleep. ATP-sensitive potassium (K ATP ) channels couple glucose-lactate metabolism with neuronal excitability. Therefore, we explored how deletion of neuronal K ATP channel activity (Kir6.2-/- mice) affected the relationship between glycolytic flux, neuronal activity, and sleep/wake homeostasis. Kir6.2-/- mice shunt glucose towards glycolysis, reduce neurotransmitter synthesis, dampen cortical EEG activity, and decrease arousal. Kir6.2-/- mice spent more time awake at the onset of the light period due to altered ISF lactate dynamics. Together, we show that Kir6.2-K ATP channels act as metabolic sensors to gate arousal by maintaining the metabolic stability of each vigilance state and providing the metabolic flexibility to transition between states. Highlights Glycolytic flux is necessary for neurotransmitter synthesis. In its absence, neuronal activity is compromised causing changes in arousal and vigilance states despite sufficient energy availability. With Kir6.2-K ATP channel deficiency, the ability to both maintain and shift between different vigilance states is compromised due to changes in glucose utilization. Kir6.2-K ATP channels are metabolic sensors under circadian control that gate arousal and sleep/wake transitions.
Collapse
|
4
|
Lee H, Cho S, Kim MJ, Park YJ, Cho E, Jo YS, Kim YS, Lee JY, Thoudam T, Woo SH, Lee SI, Jeon J, Lee YS, Suh BC, Yoon JH, Go Y, Lee IK, Seo J. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep 2023; 42:113183. [PMID: 37777962 DOI: 10.1016/j.celrep.2023.113183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Sukhee Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Mi-Jin Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Yeo Jin Park
- Korean Medicine Life Science, University of Science and Technology, Daejeon 34054, South Korea; Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Eunji Cho
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yeon Suk Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea; Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yong-Seok Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Se-In Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Younghoon Go
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea.
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea.
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea.
| |
Collapse
|
5
|
Kianersi S, Redline S, Mongraw-Chaffin M, Huang T. Associations of Slow-Wave Sleep With Prevalent and Incident Type 2 Diabetes in the Multi-Ethnic Study of Atherosclerosis. J Clin Endocrinol Metab 2023; 108:e1044-e1055. [PMID: 37084404 PMCID: PMC10686689 DOI: 10.1210/clinem/dgad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
CONTEXT N3 sleep (i.e., slow-wave sleep), a marker of deep restorative sleep, is implicated in hormonal and blood pressure regulation and may impact cardiometabolic health. OBJECTIVE We conducted cross-sectional and prospective analyses to test whether a higher proportion and longer duration of N3 sleep are associated with reduced type 2 diabetes risk. METHODS A subsample of participants from the Multi-Ethnic Study of Atherosclerosis completed 1-night polysomnography at Exam 5 (2010-2013) and were prospectively followed until Exam 6 (2016-2018). We used modified Poisson regression to examine the cross-sectional associations of N3 proportion and duration with prevalent diabetes and Cox proportional hazards models to estimate risk of diabetes according to N3 measures. RESULTS In cross-sectional analyses (n = 2026, mean age: 69 years), diabetes prevalence was 28% (n = 572). Compared with the first quartile (Q1) of the N3 proportion (<2.0%), participants in Q4 (≥15.4%) were 29% (95% CI 0.58, 0.87) less likely to have prevalent diabetes (P trend = .0016). The association attenuated after adjustment for demographics, lifestyles, and sleep-related factors (P trend = .3322). In prospective analyses of 1251 participants and 129 incident cases over 6346 person-years of follow-up, a curvilinear relationship was observed between N3 proportion and incident diabetes risk. In the fully adjusted model, the hazard ratio (95% CI) of developing diabetes vs Q1 was 0.47 (0.26, 0.87) for Q2, 0.34 (0.15, 0.77) for Q3, and 0.32 (0.10, 0.97) for Q4 (P nonlinearity = .0213). The results were similar for N3 duration. CONCLUSION Higher N3 proportion and longer N3 duration were prospectively associated with lower type 2 diabetes risk in a nonlinear fashion among older American adults.
Collapse
Affiliation(s)
- Sina Kianersi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Morgana Mongraw-Chaffin
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
O’Regan D, Garcia-Borreguero D, Gloggner F, Wild I, Leontiou C, Ferini-Strambi L. Mapping the insomnia patient journey in Europe and Canada. Front Public Health 2023; 11:1233201. [PMID: 37711247 PMCID: PMC10497771 DOI: 10.3389/fpubh.2023.1233201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Insomnia affects daily functioning and overall health, and is thus associated with significant individual, societal, and economic burden. The experience of patients living with insomnia, their perception of the condition, and its impact on their quality of life is not well documented. The objective of this study was to map the patient journey in insomnia and identify unmet needs. Methods Participants were individuals with insomnia, and healthcare professionals (HCPs) who treat insomnia, in the United Kingdom, France, Germany, Italy, and Canada. Qualitative interviews (50 patients, 70 HCPs) and a quantitative survey (700 patients, 723 HCPs) were conducted to inform the patient-journey mapping and obtain information on the emotions, perceptions, and experiences of patients and HCPs. Results The patient journey comprises seven phases. The first defines the onset of insomnia symptoms. Phase 2 represents self-initiated behavior change to improve sleep (e.g., sleep hygiene, reducing caffeine, exercise). The next phase is characterized by use of over-the-counter (OTC) treatments, which generally fail to provide lasting relief. Phase 4 describes the first HCP consultation (occurring several months to several years after onset) and typically occurs at a crisis point for the patient; patients may be looking for an immediate solution (e.g., medication), which may not align with their HCP's recommendation. The following stage comprises sleep hygiene/behavioral changes (±OTC treatment) under HCP guidance for many patients, although offering prescription treatments without a sleep hygiene stage under supervision is more common in some countries. Phase 6 describes prescription medication initiation, where patients fluctuate between relief/hopefulness and a sense of failure, while HCPs try to balance the need to provide relief for the patient while maintaining best medical practice and minimizing adverse effects. The final phase (living with long-term insomnia) represents an indefinite period during which sleep issues remain unresolved for many patients, with most of them continuing to use prescription treatments for longer than indicated and creating their own variable, self-managed regimens combining multiple modalities. Conclusion This patient journey analysis for insomnia revealed seven distinct phases, highlighting different touchpoints where insomnia management could be optimized.
Collapse
Affiliation(s)
- David O’Regan
- Sleep Disorders Centre, Guy’s Hospital, London, United Kingdom
- Faculty of Life Sciences and Medicine, King’s College, London, United Kingdom
| | | | | | - Imane Wild
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | |
Collapse
|
7
|
Smith PJ, Sherwood A, Avorgbedor F, Ingle KK, Kraus WE, Hinderliter AE, Blumenthal JA. Sleep Quality, Metabolic Function, Physical Activity, and Neurocognition Among Individuals with Resistant Hypertension. J Alzheimers Dis 2023:JAD230029. [PMID: 37212110 DOI: 10.3233/jad-230029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Resistant hypertension (RH) is a major risk factor for stroke, cognitive decline, and dementia. Sleep quality is increasingly suggested to play an important role linking RH to cognitive outcomes, although the mechanisms linking sleep quality to poor cognitive function have yet to be fully delineated. OBJECTIVE To delineate biobehavioral mechanisms linking sleep quality, metabolic function, and cognitive function among 140 overweight/obese adults with RH in the TRIUMPH clinical trial. METHODS Sleep quality was indexed using actigraphy measures of sleep quality and sleep fragmentation, as well as self-reported sleep quality from the Pittsburgh Sleep Quality Index (PSQI). Cognitive function was assessed using a 45-minute battery assessing executive function, processing speed, and memory. Participants were randomized to a cardiac rehabilitation-based lifestyle program (C-LIFE) or a standardized education and physician advice condition (SEPA) for 4 months. RESULTS Better sleep quality at baseline was associated with better executive function (B = 0.18 p = 0.027), as well as greater fitness (B = 0.27, p = 0.007) and lower HBA1c (B = -0.25, p = 0.010). Cross-sectional analyses revealed that the sleep quality executive function association was mediated by HBA1c (B = 0.71 [0.05, 2.05]). C-LIFE improved sleep quality (-1.1 [-1.5, -0.6] versus+-0.1 [-0.8, 0.7]) and actigraphy steps (+922 [529, 1316] versus+56 [-548, 661]), with actigraphy mediating improvements in executive function (B = 0.40 [0.02, 1.07]). CONCLUSION Better metabolic function and improved physical activity patterns levels play important roles linking sleep quality and executive function in RH.
Collapse
Affiliation(s)
- Patrick J Smith
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Andrew Sherwood
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Forgive Avorgbedor
- Department of Nursing, University of North Carolina at Greensboro, NC, USA
| | - Krista K Ingle
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - William E Kraus
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alan E Hinderliter
- Department of Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - James A Blumenthal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Héroux P, Belyaev I, Chamberlin K, Dasdag S, De Salles AAA, Rodriguez CEF, Hardell L, Kelley E, Kesari KK, Mallery-Blythe E, Melnick RL, Miller AB, Moskowitz JM. Cell Phone Radiation Exposure Limits and Engineering Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5398. [PMID: 37048013 PMCID: PMC10094704 DOI: 10.3390/ijerph20075398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
In the 1990s, the Institute of Electrical and Electronics Engineers (IEEE) restricted its risk assessment for human exposure to radiofrequency radiation (RFR) in seven ways: (1) Inappropriate focus on heat, ignoring sub-thermal effects. (2) Reliance on exposure experiments performed over very short times. (3) Overlooking time/amplitude characteristics of RFR signals. (4) Ignoring carcinogenicity, hypersensitivity, and other health conditions connected with RFR. (5) Measuring cellphone Specific Absorption Rates (SAR) at arbitrary distances from the head. (6) Averaging SAR doses at volumetric/mass scales irrelevant to health. (7) Using unrealistic simulations for cell phone SAR estimations. Low-cost software and hardware modifications are proposed here for cellular phone RFR exposure mitigation: (1) inhibiting RFR emissions in contact with the body, (2) use of antenna patterns reducing the Percent of Power absorbed in the Head (PPHead) and body and increasing the Percent of Power Radiated for communications (PPR), and (3) automated protocol-based reductions of the number of RFR emissions, their duration, or integrated dose. These inexpensive measures do not fundamentally alter cell phone functions or communications quality. A health threat is scientifically documented at many levels and acknowledged by industries. Yet mitigation of RFR exposures to users does not appear as a priority with most cell phone manufacturers.
Collapse
Affiliation(s)
- Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC H3A 1G1, Canada
| | - Igor Belyaev
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 814 38 Bratislava, Slovakia
| | - Kent Chamberlin
- Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Suleyman Dasdag
- Biophysics Department, Medical School, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Alvaro Augusto Almeida De Salles
- Graduate Program on Electrical Engineering (PPGEE), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil
| | | | - Lennart Hardell
- Department of Oncology, Orebro University Hospital, 701 85 Orebro, Sweden (Retired)
- The Environment and Cancer Research Foundation, 702 17 Orebro, Sweden
| | - Elizabeth Kelley
- ICBE-EMF and International EMF Scientist Appeal, and Electromagnetic Safety Alliance, Tempe, AZ 85282, USA
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Erica Mallery-Blythe
- Physicians’ Health Initiative for Radiation and Environment, East Sussex TN6, UK
- British Society of Ecological Medicine, London W1W 6DB, UK
- Oceania Radiofrequency Scientific Advisory Association, Scarborough, QLD 4020, Australia
| | - Ronald L. Melnick
- National Toxicology Program (Retired), National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
- Ron Melnick Consulting LLC, North Logan, UT 84341, USA
| | - Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | | |
Collapse
|
9
|
Ma S, Chen Y, Quan P, Zhang J, Han S, Wang G, Qi R, Zhang X, Wang F, Yuan J, Yang X, Jia W, Qin W. NPAS2 promotes aerobic glycolysis and tumor growth in prostate cancer through HIF-1A signaling. BMC Cancer 2023; 23:280. [PMID: 36978001 PMCID: PMC10045944 DOI: 10.1186/s12885-023-10685-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa), one of the common malignant tumors, is the second leading cause of cancer-related deaths in men. The circadian rhythm plays a critical role in disease. Circadian disturbances are often found in patients with tumors and enable to promote tumor development and accelerate its progression. Accumulating evidence suggests that the core clock gene NPAS2 (neuronal PAS domain-containing protein 2) has been implicated in tumors initiation and progression. However, there are few studies on the association between NPAS2 and prostate cancer. The purpose of this paper is to investigate the impact of NPAS2 on cell growth and glucose metabolism in prostate cancer. METHODS Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) staining, western blot, GEO (Gene Expression Omnibus) and CCLE (Cancer Cell Line Encyclopedia) databases were used to analyze the expression of NPAS2 in human PCa tissues and various PCa cell lines. Cell proliferation was assessed using MTS, clonogenic assays, apoptotic analyses, and subcutaneous tumor formation experiments in nude mice. Glucose uptake, lactate production, cellular oxygen consumption rate and medium pH were measured to examine the effect of NPAS2 on glucose metabolism. The relation of NPAS2 and glycolytic genes was analyzed based on TCGA (The Cancer Genome Atlas) database. RESULTS Our data showed that NPAS2 expression in prostate cancer patient tissue was elevated compared with that in normal prostate tissue. NPAS2 knockdown inhibited cell proliferation and promoted cell apoptosis in vitro and suppressed tumor growth in a nude mouse model in vivo. NPAS2 knockdown led to glucose uptake and lactate production diminished, oxygen consumption rate and pH elevated. NPAS2 increased HIF-1A (hypoxia-inducible factor-1A) expression, leading to enhanced glycolytic metabolism. There was a positive correlation with the expression of NPAS2 and glycolytic genes, these genes were upregulated with overexpression of NPAS2 while knockdown of NPAS2 led to a lower level. CONCLUSION NPAS2 is upregulated in prostate cancer and promotes cell survival by promoting glycolysis and inhibiting oxidative phosphorylation in PCa cells.
Collapse
Affiliation(s)
- Shuaijun Ma
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Yafan Chen
- Department of Human Movement Science, Xi'an Physical Education University, Xi'an, China
| | - Penghe Quan
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Jingliang Zhang
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Shichao Han
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Guohui Wang
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Ruochen Qi
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Xiaoyan Zhang
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Fuli Wang
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China
| | - Jianlin Yuan
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China.
| | - Xiaojian Yang
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China.
| | - Weijing Jia
- Department of Hematology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China.
| | - Weijun Qin
- Department of Urology, The First Affiliated Hospital of Air Force Medical University, 127 Changle West Road, 710032, Xi 'an, Shaanxi, China.
| |
Collapse
|
10
|
Ma T, Chang RCC, Macauley SL. Editorial: Metabolic signaling dysregulation and cognitive impairments in aging and Alzheimer's disease, volume II. Front Aging Neurosci 2023; 15:1150101. [PMID: 36819722 PMCID: PMC9936185 DOI: 10.3389/fnagi.2023.1150101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, LKS Faculty of Medicine, School of Biomedical Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Shannon L. Macauley
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
11
|
Gan J, Liu S, Wang F, Shi Z, Lü Y, Niu J, Meng X, Cai P, Wang XD, Chen Z, Gang B, Ji Y. Association between prevalence rate of dementia with Lewy bodies and sleep characteristics in Chinese old adults. Front Hum Neurosci 2022; 16:976753. [PMID: 36188174 PMCID: PMC9518672 DOI: 10.3389/fnhum.2022.976753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction: Few studies are available on the prevalence and sleep-related factors of dementia with Lewy bodies (DLB) in Chinese older adults, aiming to explore the associations between sleep characteristics and DLB. Methods: A cross-sectional study with 7,528 individuals aged ≥65 years in 106 communities in Northern China was conducted from April 2019 to January 2020. Questionaries (including demographic characteristics, comorbidities, lifestyles, and sleep characteristics) were administered, and neuropsychological assessments and physical examination were conducted in phase I; screening for probable DLB was done in phase II. Logistic regressions were used to assess associations. Results: A total of 919 (12.2%, 919/7,528) participants had dementia, and 101 (1.3%, 101/7,528) participants were diagnosed with DLB. The prevalence of dementia and DLB were slightly higher or equal in women, increased with age, and roughly decreased with nighttime sleep duration. Of the 101 participants, all of them (100.0%) had cognitive impairment, 46 (44.54%) displayed fluctuating cognition, 72 (71.29%) of them showed visual hallucination, 22 (21.78%) individuals reported RBD, and 27.71% showed Parkinsonism. Sleeping for <5 h (adjusted OR = 1.795, 95%CI: 1.055–3.054, p < 0.05) or having hypersomnolence (adjusted OR = 31.213, 95% CI: 17.618–55.301, p < 0.001) were significantly associated with the occurrence of DLB. Sleep duration of <5 h or >8 h had combined diagnostic value for DLB (AUC = 0.783, 95%CI: 0.734–0.831, p < 0.001). Conclusions: The current prevalence of DLB is 1.3% in Northern China. Short or long nighttime sleep duration is independently associated with the occurrence of dementia and DLB.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Fei Wang
- Department of Neurology, Yuncheng Central Hospital of Shanxi Province, Shanxi, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xinling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhichao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baozhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Baozhi Gang Yong Ji
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Baozhi Gang Yong Ji
| |
Collapse
|
12
|
Mediterranean Diet on Sleep: A Health Alliance. Nutrients 2022; 14:nu14142998. [PMID: 35889954 PMCID: PMC9318336 DOI: 10.3390/nu14142998] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/19/2022] Open
Abstract
The Mediterranean diet is a plant-based, antioxidant-rich, unsaturated fat dietary pattern that has been consistently associated with lower rates of noncommunicable diseases and total mortality, so that it is considered one of the healthiest dietary patterns. Clinical trials and mechanistic studies have demonstrated that the Mediterranean diet and its peculiar foods and nutrients exert beneficial effects against inflammation, oxidative stress, dysmetabolism, vascular dysfunction, adiposity, senescence, cognitive decline, neurodegeneration, and tumorigenesis, thus preventing age-associated chronic diseases and improving wellbeing and health. Nocturnal sleep is an essential physiological function, whose alteration is associated with health outcomes and chronic diseases. Scientific evidence suggests that diet and sleep are related in a bidirectional relationship, and the understanding of this association is important given their role in disease prevention. In this review, we surveyed the literature concerning the current state of evidence from epidemiological studies on the impact of the Mediterranean diet on nighttime sleep quantity and quality. The available studies indicate that greater adherence to the Mediterranean diet is associated with adequate sleep duration and with several indicators of better sleep quality. Potential mechanisms mediating the effect of the Mediterranean diet and its foods and nutrients on sleep are described, and gap-in-knowledge and new research agenda to corroborate findings are discussed.
Collapse
|
13
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
14
|
Nwafor DC, Chakraborty S, Jun S, Brichacek AL, Dransfeld M, Gemoets DE, Dakhlallah D, Brown CM. Disruption of metabolic, sleep, and sensorimotor functional outcomes in a female transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 398:112983. [PMID: 33137399 DOI: 10.1016/j.bbr.2020.112983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of dementia globally, and the number of individuals with AD diagnosis is expected to double by 2050. Numerous preclinical AD studies have shown that AD neuropathology accompanies alteration in learning and memory. However, less attention has been given to alterations in metabolism, sleep, and sensorimotor functional outcomes during AD pathogenesis. The objective of this study was to elucidate the extent to which metabolic activity, sleep-wake cycle, and sensorimotor function is impaired in APPSwDI/Nos2-/- (CVN-AD) transgenic mice. Female mice were used in this study because AD is more prevalent in women compared to men. We hypothesized that the presence of AD neuropathology in CVN-AD mice would accompany alterations in metabolic activity, sleep, and sensorimotor function. Our results showed that CVN-AD mice had significantly decreased energy expenditure compared to wild-type (WT) mice. An examination of associated functional outcome parameters showed that sleep activity was elevated during the awake (dark) cycle and as well as an overall decrease in spontaneous locomotor activity. An additional functional parameter, the nociceptive response to thermal stimuli, was also impaired in CVN-AD mice. Collectively, our results demonstrate CVN-AD mice exhibit alterations in functional parameters that resemble human-AD clinical progression.
Collapse
Affiliation(s)
- Divine C Nwafor
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sreeparna Chakraborty
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Sujung Jun
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Allison L Brichacek
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Margaret Dransfeld
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Darren E Gemoets
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, WV 26506 USA
| | - Duaa Dakhlallah
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Cancer Institute, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
15
|
Mander BA. Local Sleep and Alzheimer's Disease Pathophysiology. Front Neurosci 2020; 14:525970. [PMID: 33071726 PMCID: PMC7538792 DOI: 10.3389/fnins.2020.525970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Even prior to the onset of the prodromal stages of Alzheimer's disease (AD), a constellation of sleep disturbances are apparent. A series of epidemiological studies indicate that multiple forms of these sleep disturbances are associated with increased risk for developing mild cognitive impairment (MCI) and AD, even triggering disease onset at an earlier age. Through the combination of causal manipulation studies in humans and rodents, as well as targeted examination of sleep disturbance with respect to AD biomarkers, mechanisms linking sleep disturbance to AD are beginning to emerge. In this review, we explore recent evidence linking local deficits in brain oscillatory function during sleep with local AD pathological burden and circuit-level dysfunction and degeneration. In short, three deficits in the local expression of sleep oscillations have been identified in relation to AD pathophysiology: (1) frequency-specific frontal deficits in slow wave expression during non-rapid eye movement (NREM) sleep, (2) deficits in parietal sleep spindle expression, and (3) deficits in the quality of electroencephalographic (EEG) desynchrony characteristic of REM sleep. These deficits are noteworthy since they differ from that seen in normal aging, indicating the potential presence of an abnormal aging process. How each of these are associated with β-amyloid (Aβ) and tau pathology, as well as neurodegeneration of circuits sensitive to AD pathophysiology, are examined in the present review, with a focus on the role of dysfunction within fronto-hippocampal and subcortical sleep-wake circuits. It is hypothesized that each of these local sleep deficits arise from distinct network-specific dysfunctions driven by regionally-specific accumulation of AD pathologies, as well as their associated neurodegeneration. Overall, the evolution of these local sleep deficits offer unique windows into the circuit-specific progression of distinct AD pathophysiological processes prior to AD onset, as well as their impact on brain function. This includes the potential erosion of sleep-dependent memory mechanisms, which may contribute to memory decline in AD. This review closes with a discussion of the remaining critical knowledge gaps and implications of this work for future mechanistic studies and studies implementing sleep-based treatment interventions.
Collapse
Affiliation(s)
- Bryce A. Mander
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
It's complicated: The relationship between sleep and Alzheimer's disease in humans. Neurobiol Dis 2020; 144:105031. [PMID: 32738506 DOI: 10.1016/j.nbd.2020.105031] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an asymptomatic period of amyloid-β (Aβ) deposition as insoluble extracellular plaque, intracellular tau aggregation, neuronal and synaptic loss, and subsequent cognitive dysfunction and dementia. A growing public health crisis, the worldwide prevalence of AD is expected to rise from 46.8 million individuals affected in 2015 to 131.5 million in 2050. Sleep disturbances have been associated with increased future risk of AD. A bi-directional relationship is hypothesized between sleep and AD with sleep disturbances as either markers for AD pathology and/or a mechanism mediating increased risk of AD. In this review, the evidence in humans supporting this complex relationship between sleep and AD will be discussed as well as the therapeutic potential and challenges of treating sleep disturbances to prevent or delay the onset of AD.
Collapse
|