1
|
Wang Q, Liu T, Zhou Y. Association between sleep problems and impulsivity mediated through regional homogeneity abnormalities in male methamphetamine abstainers. Brain Imaging Behav 2024:10.1007/s11682-024-00900-y. [PMID: 38914808 DOI: 10.1007/s11682-024-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/26/2024]
Abstract
Sleep problems and impulsivity frequently occur in methamphetamine (MA) abstainers and are linked to aberrant brain function. However, the interplay between these factors remains poorly understood. This study aimed to investigate the relationship between sleep, impulsivity, and regional homogeneity (ReHo) through mediation analysis in MA abstainers. 46 MA abstainers and 44 healthy controls were included. Impulsivity and sleep problems were evaluated using the Barratt Impulsivity Scale and the Pittsburgh Sleep Quality Scale, respectively. ReHo, indicative of local brain spontaneous neural activity, was assessed using resting-state functional magnetic resonance imaging. Results unveiled correlations between different dimensions of impulsivity and ReHo values in specific brain regions. Motor impulsivity correlated with ReHo values in the left postcentral gyrus and left precentral gyrus, while non-planning impulsivity was only associated with ReHo values in the left precentral gyrus. Additionally, the need for sleep medications correlated with ReHo values in the left precentral gyrus and bilateral postcentral gyrus. Also, the need for sleep medications was positively correlated with cognitive impulsivity and motor impulsivity. Mediation analysis indicated that reduced ReHo values in the left precentral gyrus mediated the association between impulsivity and the need for sleep medications. These findings imply that addressing sleep problems, especially the need for sleep medications, might augment spontaneous neural activity in specific brain regions linked to impulsivity among MA abstainers. This underscores the importance of integrating sleep interventions into comprehensive treatment strategies for MA abstainers.
Collapse
Affiliation(s)
- Qianjin Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Tieqiao Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yanan Zhou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People's Hospital), Changsha, China.
| |
Collapse
|
2
|
Wang Y, Zhao Q, Ji Q, Jin X, Zhou C, Lu Y. fMRI evidence of movement familiarization effects on recognition memory in professional dancers. Cereb Cortex 2024; 34:bhad490. [PMID: 38102949 DOI: 10.1093/cercor/bhad490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Dual-process theories propose that recognition memory involves recollection and familiarity; however, the impact of motor expertise on memory recognition, especially the interplay between familiarity and recollection, is relatively unexplored. This functional magnetic resonance imaging study used videos of a dancer performing International Latin Dance Styles as stimuli to investigate memory recognition in professional dancers and matched controls. Participants observed and then reported whether they recognized dance actions, recording the level of confidence in their recollections, whereas blood-oxygen-level-dependent signals measured encoding and recognition processes. Professional dancers showed higher accuracy and hit rates for high-confidence judgments, whereas matched controls exhibited the opposite trend for low-confidence judgments. The right putamen and precentral gyrus showed group-based moderation effects, especially for high-confidence (vs. low-confidence) action recognition in professional dancers. During action recognition, the right superior temporal gyrus and insula showed increased activation for accurate recognition and high-confidence retrieval, particularly in matched controls. These findings highlighting enhanced action memory of professional dancers-evident in their heightened recognition confidence-not only supports the dual-processing model but also underscores the crucial role of expertise-driven familiarity in bolstering successful recollection. Additionally, they emphasize the involvement of the action observation network and frontal brain regions in facilitating detailed encoding linked to intention processing.
Collapse
Affiliation(s)
- Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Qi Zhao
- Physical Education Institute, Jimei University, Shanghai 200438, China
| | - Qingchun Ji
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai 201620, China
- Sports Economic Management Research Center, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xinhong Jin
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| | - Yingzhi Lu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
3
|
Yin N, Wang H, Wang Z, Feng K, Xu G, Yin S. A study of brain networks associated with Freezing of gait in Parkinson's disease using transfer entropy analysis. Brain Res 2023; 1821:148610. [PMID: 37783260 DOI: 10.1016/j.brainres.2023.148610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disease in the elderly. Freezing of Gait (FOG) is one of the common motor symptoms of PD, but the potential mechanism remains unclear. This study aimed to investigate the changes of brain functional network topology in PD patients with FOG. METHODS The resting electroencephalogram (EEG) were acquired from15 PD patients with FOG (PD-FOG), 13 PD patients without FOG (PD-nFOG), and 16 healthy control (HC). Cognitive and motor functions were assessed using subjective scales. The whole-brain functional networks were constructed based on transfer entropy. Transfer entropy was used to analyse the information flow and causality in the network and the network connectivity was analyzed by graph theory. The characteristics of PD-FOG and PD-nFOG were compared by receiver operator characteristic (ROC) curve analysis. RESULTS The θ bands brain network of PD-FOG, PD-nFOG and HC group was significantly different (P < 0.05). The average characteristic path length of the θ bands brain network was positively correlated with FOG Questionnaire (FOGQ). PD-FOG and PD-nFOG get high classification accuracy according to this feature. The information inflow in the frontal and occipital lobes and information outflow in the temporal lobe of PD-FOG patients in the θ bands increased significantly. CONCLUSIONS The whole-brain functional network characteristics of PD-FOG in the θ bands can serve as potential biomarkers for early diagnosis of PD-FOG. Abnormal information flow of the frontal, occipital, and temporal lobes in the θ bands may be an important factor leading to FOG.
Collapse
Affiliation(s)
- Ning Yin
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Haili Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhaoya Wang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Keke Feng
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Shaoya Yin
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China.
| |
Collapse
|
4
|
Huang T, Tang L, Zhao J, Shang S, Chen Y, Tian Y, Zhang Y. Drooling disrupts the brain functional connectivity network in Parkinson's disease. CNS Neurosci Ther 2023; 29:3094-3107. [PMID: 37144606 PMCID: PMC10493659 DOI: 10.1111/cns.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS This study aimed to investigate the causal interaction between significant sensorimotor network (SMN) regions and other brain regions in Parkinson's disease patients with drooling (droolers). METHODS Twenty-one droolers, 22 PD patients without drooling (non-droolers), and 22 matched healthy controls underwent 3T-MRI resting-state scans. We performed independent component analysis and Granger causality analysis to determine whether significant SMN regions help predict other brain areas. Pearson's correlation was computed between imaging characteristics and clinical characteristics. ROC curves were plotted to assess the diagnostic performance of effective connectivity (EC). RESULTS Compared with non-droolers and healthy controls, droolers showed abnormal EC of the right caudate nucleus (CAU.R) and right postcentral gyrus to extensive brain regions. In droolers, increased EC from the CAU.R to the right middle temporal gyrus was positively correlated with MDS-UPDRS, MDS-UPDRS II, NMSS, and HAMD scores; increased EC from the right inferior parietal lobe to CAU.R was positively correlated with MDS-UPDRS score. ROC curve analysis showed that these abnormal ECs are of great significance in diagnosing drooling in PD. CONCLUSION This study identified that PD patients with drooling have abnormal EC in the cortico-limbic-striatal-cerebellar and cortio-cortical networks, which could be potential biomarkers for drooling in PD.
Collapse
Affiliation(s)
- Ting Huang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Li‐Li Tang
- Department of NeurologyNanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese MedicineNanjingChina
| | - Jin‐Ying Zhao
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Song‖an Shang
- Department of Medical Imaging Center, Clinical Medical CollegeYangzhou UniversityYangzhouChina
| | - Yu‐Chen Chen
- Department of Radiology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - You‐Yong Tian
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Ying‐Dong Zhang
- Department of Neurology, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Lan Y, Liu X, Yin C, Lyu J, Xiaoxaio M, Cui Z, Li X, Lou X. Resting-state functional magnetic resonance imaging study comparing tremor-dominant and postural instability/gait difficulty subtypes of Parkinson's disease. LA RADIOLOGIA MEDICA 2023; 128:1138-1147. [PMID: 37474664 DOI: 10.1007/s11547-023-01673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE The symptom-specific intrinsic neural mechanisms underlying Parkinson's disease (PD) subtypes (tremor dominant [TD] and postural instability gait difficulty [PIGD]) remain unclarified. We examined spontaneous brain activity patterns in TD and PIGD. MATERIAL AND METHODS We included 49 patients with PD (21 with TD/28 with PIGD) and 32 healthy controls (HCs) in this study. We conducted analysis of variance and post-hoc analyses of the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values of the three groups, with age, sex, and gray matter volume as covariates, and a relationship analysis of the ALFF and ReHo values with clinical variables. RESULTS In comparison with HCs, PIGD PD patients had increased ALFF values in the right middle occipital gyrus and left superior occipital gyrus and decreased values primarily in the bilateral inferior frontal gyrus (triangular part). TD PD patients had lower ALFF values in the right inferior frontal gyrus (triangular part) and left insula. In comparison to TD PD patients, PIGD PD patients had higher ALFF values in the left middle occipital gyrus and left superior occipital gyrus. In contrast to HCs, TD PD patients demonstrated a reduction of ReHo values in the left middle temporal gyrus, and PIGD patients showed a decrease of ReHo values in the left inferior temporal gyrus. CONCLUSION ALFF values increased in the occipital gyrus of the PIGD PD patients, thus providing evidence of a compensatory mechanism of altered motor function in comparison with the TD PD patients.
Collapse
Affiliation(s)
- Yina Lan
- Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Xinyun Liu
- Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - ChunYu Yin
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Jinhao Lyu
- Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Ma Xiaoxaio
- Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xuemei Li
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
6
|
Jiang X, Pan Y, Zhu S, Wang Y, Gu R, Jiang Y, Shen B, Zhu J, Xu S, Yan J, Dong J, Zhang W, Xiao C, Zhang L. Alterations of Regional Homogeneity in Parkinson's Disease with Rapid Eye Movement Sleep Behavior Disorder. Neuropsychiatr Dis Treat 2022; 18:2967-2978. [PMID: 36570022 PMCID: PMC9785149 DOI: 10.2147/ndt.s384752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Objective Patients with rapid eye movement (REM) sleep behavior disorder (RBD) in Parkinson's disease (PD-RBD) tend to have poor cognitive performance and faster cognitive deterioration, and the potential mechanism is still ambiguous. Therefore, this study aimed to detect the alterations in local brain function in PD-RBD. Methods Fifty patients, including 23 patients with PD-RBD and 27 patients with PD without RBD (PD-nRBD), and 26 healthy controls were enrolled. All subjects were subjected to one-night polysomnography and underwent resting-state functional magnetic resonance imaging (rs-fMRI). The fMRI images of the three groups were analyzed by regional homogeneity (ReHo) to observe the local neural activity. Correlations between altered ReHo values and chin electromyographic (EMG) density scores and cognitive scores in the PD subgroups were assessed. Results Compared with the patients with PD-nRBD, the patients with PD-RBD had higher ReHo values in the frontal cortex (the right superior frontal gyrus, the right middle frontal gyrus and the left medial superior frontal gyrus), the right caudate nucleus and the right anterior cingulate gyrus, and compared with the HCs, the patients with PD-RBD had lower ReHo values in the bilateral cuneus, the bilateral precuneus, the left inferior temporal gyrus and the left inferior occipital gyrus. For the patients with PD-RBD, the phasic chin EMG density scores were positively correlated with the ReHo values in the left medial superior frontal gyrus, and the tonic chin EMG density scores were positively correlated with the ReHo values in the right anterior cingulate gyrus. Conclusion This study indicates that increased ReHo in the frontal cortex, the caudate nucleus and the anterior cingulate gyrus may be linked with the abnormal motor behaviors during REM sleep and that decreased ReHo in the posterior regions may be related to the visuospatial-executive function in patients with PD-RBD.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yang Pan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Sha Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yaxi Wang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruxin Gu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yinyin Jiang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Bo Shen
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Zhu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shulan Xu
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jun Yan
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jingde Dong
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wenbin Zhang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaoyong Xiao
- Department of Radiology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Zhang
- Department of Geriatrics, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
7
|
Cheng Y, Yang H, Liu WV, Wen Z, Chen J. Alterations of brain activity in multiple system atrophy patients with freezing of gait: A resting-state fMRI study. Front Neurosci 2022; 16:954332. [PMID: 36051644 PMCID: PMC9425908 DOI: 10.3389/fnins.2022.954332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Freezing of gait (FOG) in multiple system atrophy (MSA) is characterized by a higher risk of falls and a reduced quality of life; however, the mechanisms underlying these effects have yet to be identified by neuroimaging. The aim of this study was to investigate the differences in functional network when compared between MSA patients with and without freezing. Methods Degree centrality (DC) based on the resting-state functional magnetic resonance imaging was computed in 65 patients with MSA and 36 healthy controls. Brain regions with statistically different DC values between groups were selected as seed points for a second seed-based functional connectivity (FC) analysis. The relationships between brain activity (DC and FC alterations) and the severity of freezing symptoms were then investigated in the two groups of patients with MSA. Results Compared to MSA patients without FOG symptoms (MSA-nFOG), patients with MSA-FOG showed an increased DC in the left middle temporal gyrus but a reduced DC in the right superior pole temporal gyrus, left anterior cingulum cortex, left thalamus, and right middle frontal gyrus. Furthermore, in patients with MSA-FOG, the DC in the left thalamus was negatively correlated with FOG scores. Using the left thalamus as a seed, secondary seed-based functional connectivity analysis revealed that patients with MSA-FOG commonly showed the left thalamus-based FC abnormalities in regions related to cognition and emotion. In contrast to the patients with MSA-nFOG, patients with MSA-FOG showed an increased FC between the left thalamus and the left middle temporal gyrus (MTG), right inferior parietal lobule (IPL), bilateral cerebellum_8, and left precuneus. Conclusion Freezing of gait is associated with centrality of the impaired thalamus network. Abnormal FC between the thalamus and left MTG, right IPL, bilateral cerebellum_8, and left precuneus was involved in FOG. These results provide new insight into the pathophysiological mechanism of FOG in MSA.
Collapse
Affiliation(s)
- Yilin Cheng
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huaguang Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jun Chen,
| |
Collapse
|
8
|
Wang Y, Ji Q, Zhou C, Wang Y. Brain mechanisms linking language processing and open motor skill training. Front Hum Neurosci 2022; 16:911894. [PMID: 35992938 PMCID: PMC9386041 DOI: 10.3389/fnhum.2022.911894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Given the discovery of a distributed language and motor functional network, surprisingly few studies have explored whether language processing is related to motor skill training. To address this issue, the present study used functional magnetic resonance imaging to compare whole-brain activation between nonexperts and experts in table tennis, an open skill sport in which players make rapid decisions in response to an ever-changing environment. Whole-brain activation was assessed in 30 expert table tennis players with more than 7 years’ experience and 35 age-matched nonexpert college students while they performed both a size and a semantic judgment task of words presented on a monitor. Compared with nonexperts, expert table tennis players showed greater activation in the left middle occipital gyrus and right precuneus while judging the size of the words versus during baseline fixation. They also showed greater activation in the left lingual gyrus during the semantic judgment task versus during baseline fixation. Our findings indicate that the visual regions engaged in language processing are associated with open motor skill training.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Qingchun Ji
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Yingying Wang,
| |
Collapse
|
9
|
Zhu H, Zhu H, Liu X, Zhou Y, Wu S, Wei F, Guo Z. Alterations of Regional Homogeneity in Parkinson’s Disease: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study. Cureus 2022; 14:e26797. [PMID: 35971370 PMCID: PMC9372387 DOI: 10.7759/cureus.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The objective of this study is to investigate the regional homogeneity (ReHo) of spontaneous brain activities in Parkinson’s disease (PD) patients. Methods In total, 20 PD patients and 20 matched normal controls (NCs) participants were recruited for this study. The regional homogeneity (ReHo) approach based on resting-state functional magnetic resonance imaging on a 3T MRI system was used to investigate local brain activity. We examined activity in two frequency bands, slow‐4 (0.027-0.073 Hz) and slow‐5 (0.010-0.027 Hz). Two-sample t-tests were used to determine the between-group differences in the ReHo data. Pearson correlation analysis was used to explore the relationships between the ReHo values and clinical indices in PD patients. Results Compared with NCs, PD patients showed decreased ReHo values in the right middle occipital gyrus, right cuneus, and left superior occipital gyrus, and increased ReHo values in the right middle frontal gyrus in slow‐4. PD patients showed decreased ReHo values in the right calcarine, left calcarine, and right precentral gyrus compared with NCs in slow‐5. Correlation analysis showed that disease duration was negatively correlated with ReHo values in the right precentral gyrus in PD patients. Conclusions These results indicate that several brain regions were altered in PD patients. The regions are associated with the visual network-related cortex, motor cortex, and default mode network. The findings provide new insights into the neuropathophysiology of PD.
Collapse
|
10
|
Wu J, Cao Y, Li M, Li B, Jia X, Cao L. Altered intrinsic brain activity in patients with CSF1R-related leukoencephalopathy. Brain Imaging Behav 2022; 16:1842-1853. [PMID: 35389179 DOI: 10.1007/s11682-022-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
CSF1R-related leukoencephalopathy is an adult-onset white matter disease with high disability and mortality, while little is known about its pathogenesis. This study introduced amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) based on resting-state functional magnetic resonance imaging(rsfMRI) to compare the spontaneous brain activities of patients and healthy controls, aiming to enhance our understanding of the disease. RsfMRI was performed on 16 patients and 23 healthy controls, and preprocessed for calculation of ALFF and ReHo. Permutation tests with threshold free cluster enhancement (TFCE) was applied for comparison (number of permutations = 5,000). The TFCE significance threshold was set at [Formula: see text] < 0.05. In addition, 10 was set as the minimum cluster size. Compared to healthy controls, the patient group showed decreased ALFF in right paracentral lobule, and increased ALFF in bilateral insula, hippocampus, thalamus, supramarginal and precentral gyrus, right inferior, middle and superior frontal gyrus, right superior and middle occipital gyrus, as well as left parahippocampal gyrus, fusiform, middle occipital gyrus and angular gyrus. ReHo was decreased in right supplementary motor area, paracentral lobule and precentral gyrus, while increased in right superior occipital gyrus and supramarginal gyrus, left parahippocampal gyrus, hippocampus, fusiform, middle occipital gyrus and angular gyrus, as well as bilateral middle occipital gyrus and midbrain. These results revealed altered spontaneous brain activities in CSF1R-related leukoencephalopathy, especially in limbic system and motor cortex, which may shed light on underlying mechanisms.
Collapse
Affiliation(s)
- Jingying Wu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xize Jia
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Zhou Y, Wang Q, Ren H, Wang X, Liao Y, Yang Z, Hao Y, Wang Y, Li M, Ma Y, Wu Q, Wang Y, Yang D, Xin J, Yang WFZ, Wang L, Liu T. Regional Homogeneity Abnormalities and Its Correlation With Impulsivity in Male Abstinent Methamphetamine Dependent Individuals. Front Mol Neurosci 2022; 14:810726. [PMID: 35126053 PMCID: PMC8811469 DOI: 10.3389/fnmol.2021.810726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022] Open
Abstract
Methamphetamine (MA) use affects the brain structure and function. However, no studies have investigated the relationship between changes in regional homogeneity (ReHo) and impulsivity in MA dependent individuals (MADs). The aim of this study was to investigate the changes of brain activity under resting state in MADs and their relationship to impulsivity using ReHo method. Functional magnetic resonance imaging (fMRI) was performed to collect data from 46 MADs and 44 healthy controls (HCs) under resting state. ReHo method was used to investigate the differences in average ReHo values between the two groups. The ReHo values abnormalities of the brain regions found in inter-group comparisons were extracted and correlated with impulsivity. Compared to the HCs, MADs showed significant increased ReHo values in the bilateral striatum, while the ReHo values of the bilateral precentral gyrus and the bilateral postcentral gyrus decreased significantly. The ReHo values of the left precentral gyrus were negatively correlated with the BIS-attention, BIS-motor, and BIS-nonplanning subscale scores, while the ReHo values of the postcentral gyrus were only negatively correlated with the BIS-motor subscale scores in MADs. The abnormal spontaneous brain activity in the resting state of MADs revealed in this study may further improve our understanding of the neuro-matrix of MADs impulse control dysfunction and may help us to explore the neuropathological mechanism of MADs related dysfunction and rehabilitation.
Collapse
Affiliation(s)
- Yanan Zhou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Qianjin Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Honghong Ren
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xuyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Yang
- Laboratory of Psychological Heath and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yuzhu Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yunfei Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Manyun Li
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yuejiao Ma
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Qiuxia Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yingying Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Dong Yang
- Department of Psychiatry, Hunan Brain Hospital (Hunan Second People’s Hospital), Changsha, China
| | - Jiang Xin
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, College of Arts & Sciences, Texas Tech University, Lubbock, TX, United States
- *Correspondence: Winson Fu Zun Yang,
| | - Long Wang
- Department of Psychiatry, Sanming City Taijiang Hospital, Sanming, China
- Long Wang,
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
- Tieqiao Liu,
| |
Collapse
|
12
|
Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Altered Degree Centrality of Brain Networks in Parkinson's Disease With Freezing of Gait: A Resting-State Functional MRI Study. Front Neurol 2021; 12:743135. [PMID: 34707559 PMCID: PMC8542685 DOI: 10.3389/fneur.2021.743135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Freezing of gait (FOG) in Parkinson's disease (PD) leads to devastating consequences; however, little is known about its functional brain network. We explored the differences in degree centrality (DC) of functional networks among PD with FOG (PD FOG+), PD without FOG (PD FOG–), and healthy control (HC) groups. In all, 24 PD FOG+, 37 PD FOG–, and 22 HCs were recruited and their resting-state functional magnetic imaging images were acquired. The whole brain network was analyzed using graph theory analysis. DC was compared among groups using the two-sample t-test. The DC values of disrupted brain regions were correlated with the FOG Questionnaire (FOGQ) scores. Receiver operating characteristic curve analysis was performed. We found significant differences in DC among groups. Compared with HCs, PD FOG+ patients showed decreased DC in the middle frontal gyrus (MFG), superior temporal gyrus (STG), parahippocampal gyrus (PhG), inferior temporal gyrus (ITG), and middle temporal gyrus (MTG). Compared with HC, PD FOG– presented with decreased DC in the MFG, STG, PhG, and ITG. Compared with PD FOG–, PD FOG+ showed decreased DC in the MFG and ITG. A negative correlation existed between the DC of ITG and FOGQ scores; the DC in ITG could distinguish PD FOG+ from PD FOG– and HC. The calculated AUCs were 81.3, 89.5, and 77.7% for PD FOG+ vs. HC, PD FOG– vs. HC, and PD FOG+ vs. PD FOG–, respectively. In conclusion, decreased DC of ITG in PD FOG+ patients compared to PD FOG– patients and HCs may be a unique feature for PD FOG+ and can likely distinguish PD FOG+ from PD FOG– and HC groups.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Altered Regional Homogeneity and Functional Connectivity during Microlesion Period after Deep Brain Stimulation in Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:2711365. [PMID: 34512944 PMCID: PMC8429001 DOI: 10.1155/2021/2711365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
Abstract
Background Patients with Parkinson's disease (PD) undergoing deep brain electrode implantation experience a temporary improvement in motor symptoms before the electrical stimulation begins. We usually call this the microlesion effect (MLE), but the mechanism behind it is not clear. Purpose This study aimed to assess the alterations in brain functions at the regional and whole-brain levels, using regional homogeneity (ReHo) and functional connectivity (FC), during the postoperative microlesion period after deep brain stimulation (DBS) in PD patients. Method Resting-state functional MRI data were collected from 27 PD patients before and after the first day of DBS and 12 healthy controls (HCs) in this study. The ReHo in combination with FC analysis was used to investigate the alterations of regional brain activity in all the subjects. Results There were increased ReHo in the basal ganglia-thalamocortical circuit (left supplementary motor area and bilateral paracentral lobule), whereas decreased ReHo in the default mode network (DMN) (left angular gyrus, bilateral precuneus), prefrontal cortex (bilateral middle frontal gyrus), and the cerebello-thalamocortical (CTC) circuit (Cerebellum_crus2/1_L) after DBS. In addition, we also found abnormal FC in the lingual gyrus, cerebellum, and DMN. Conclusion Microlesion of the thalamus caused by electrode implantation can alter the activity of the basal ganglia-thalamocortical circuit, prefrontal cortex, DMN, and CTC circuit and induce abnormal FC in the lingual gyrus, cerebellum, prefrontal cortex, and DMN among PD patients. The findings of this study contribute to the understanding of the mechanism of MLE.
Collapse
|
14
|
Zhuang XM, Kuo LW, Lin SY, Yang JJ, Tu MC, Hsu YH. Prospective Memory and Regional Functional Connectivity in Subcortical Ischemic Vascular Disease. Front Aging Neurosci 2021; 13:686040. [PMID: 34489671 PMCID: PMC8417716 DOI: 10.3389/fnagi.2021.686040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Patients with subcortical ischemic vascular disease (SIVD) often have prominent frontal dysfunction. However, it remains unclear how SIVD affects prospective memory (PM), which strongly relies on the frontoparietal network. The present study aimed to investigate PM performance in patients with early stage SIVD as compared to those with Alzheimer's disease (AD) and to older adults with normal cognition, and to explore the neural correlates of PM deficits. Method: Patients with very-mild to mild dementia due to SIVD or AD and normal controls (NC) aged above 60 years were recruited. Seventy-three participants (20 SIVD, 22 AD, and 31 NC) underwent structural magnetic resonance imaging (MRI), cognitive screening tests, and a computerized PM test. Sixty-five of these participants (19 SIVD, 20 AD, and 26 NC) also received resting-state functional MRI. Results: The group with SIVD had significantly fewer PM hits than the control group on both time-based and non-focal event-based PM tasks. Among patients in the very early stage, only those with SIVD but not AD performed significantly worse than the controls. Correlational analyses showed that non-focal event-based PM in SIVD was positively correlated with regional homogeneity in bilateral superior and middle frontal gyri, while time-based PM was not significantly associated with regional homogeneity in any of the regions of interest within the dorsal frontoparietal regions. Conclusions: The findings of this study highlight the vulnerability of non-focal event-based PM to the disruption of regional functional connectivity in bilateral superior and middle frontal gyri in patients with SIVD.
Collapse
Affiliation(s)
- Xuan-Miao Zhuang
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shih-Yen Lin
- Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
| | - Jir-Jei Yang
- Department of Medical Imaging, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Min-Chien Tu
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,Department of Neurology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Hsuan Hsu
- Department of Psychology, National Chung Cheng University, Chiayi, Taiwan.,Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
| |
Collapse
|
15
|
Qiu X, Xu W, Zhang R, Yan W, Ma W, Xie S, Zhou M. Regional Homogeneity Brain Alterations in Schizophrenia: An Activation Likelihood Estimation Meta-Analysis. Psychiatry Investig 2021; 18:709-717. [PMID: 34333896 PMCID: PMC8390947 DOI: 10.30773/pi.2021.0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Resting state functional magnetic resonance imaging (rsfMRI) provides a lot of evidence for local abnormal brain activity in schizophrenia, but the results are not consistent. Our aim is to find out the consistent abnormal brain regions of the patients with schizophrenia by using regional homogeneity (ReHo), and indirectly understand the degree of brain damage of the patients with drug-naive first episode schizophrenia (Dn-FES) and chronic schizophrenia. METHODS We performed the experiment by activation likelihood estimation (ALE) software to analysis the differences between people with schizophrenia group (all schizophrenia group and chronic schizophrenia group) and healthy controls. RESULTS Thirteen functional imaging studies were included in quantitative meta-analysis. All schizophrenia group showed decreased ReHo in bilateral precentral gyrus (PreCG) and left middle occipital gyrus (MOG), and increased ReHo in bilateral superior frontal gyrus (SFG) and right insula. Chronic schizophrenia group showed decreased ReHo in bilateral MOG, right fusiform gyrus, left PreCG, left cerebellum, right precuneus, left medial frontal gyrus and left anterior cingulate cortex (ACC). No significant increased brain areas were found in patients with chronic schizophrenia. CONCLUSION Our findings suggest that patients with chronic schizophrenia have more extensive brain damage than FES, which may contribute to our understanding of the progressive pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Xiaolei Qiu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Li J, Liao H, Wang T, Zi Y, Zhang L, Wang M, Mao Z, Song C, Zhou F, Shen Q, Cai S, Tan C. Alterations of Regional Homogeneity in the Mild and Moderate Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:676899. [PMID: 34366823 PMCID: PMC8336937 DOI: 10.3389/fnagi.2021.676899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson's disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores. Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0-1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0-2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored. Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition. Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0-2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Prevalence of freezing of gait in Parkinson's disease: a systematic review and meta-analysis. J Neurol 2021; 268:4138-4150. [PMID: 34236501 DOI: 10.1007/s00415-021-10685-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Freezing of gait (FOG) is considered one of the most disturbing and least understood symptoms in Parkinson's disease (PD). The reported prevalence rates of FOG in PD vary widely, ranging from 5 to 85.9%. OBJECTIVE We conducted a systematic review and meta-analysis to provide a reliable estimate of the average point prevalence of FOG in PD, and we further investigated the study characteristics that might have influenced the estimate. METHODS We searched different databases to identify studies that report the prevalence of FOG in PD or include relevant raw data for further calculation. The last inclusion date was February 20, 2020. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool was used for the quality assessment, and articles that met the predefined criteria were included in the quantitative analysis. RESULTS Sixty-six studies were selected from 3392 references. A weighted prevalence of 50.6% in 9072 PD patients experienced FOG based on the special questionnaires (the FOG-Q and NFOG-Q), which was about twice as high as that assessed by the specific items of the clinical rating scales (UPDRS item2.14 and MDS-UPDRS item3.11) (23.2%) or simple clinical questions (25.4%). The weighted prevalence was 37.9% for early stage (≤ 5 years) and 64.6% for advanced stage (≥ 9 years). Moreover, a higher prevalence was calculated from the population-based studies than that in multicenter and single-center studies (47.3% vs. 33.5% and 37.1%, respectively). CONCLUSION The result from this systematic review confirms that FOG is very common in PD and its prevalence is usually underestimated in hospital settings. Importantly, a more accurate assessment of FOG in future clinical researches would involve the use of special FOG scale rather than a single item on a scale or a general clinical inquiry.
Collapse
|
18
|
Li N, Suo X, Zhang J, Lei D, Wang L, Li J, Peng J, Duan L, Gong Q, Peng R. Disrupted functional brain network topology in Parkinson's disease patients with freezing of gait. Neurosci Lett 2021; 759:135970. [PMID: 34023405 DOI: 10.1016/j.neulet.2021.135970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Freezing of gait (FOG) is a common and debilitating gait disturbance in patients with Parkinson's disease (PD), but the potential mechanisms are still unclear. This study aimed to explore alterations in the topological organization of whole-brain functional networks in PD patients with FOG. METHODS We recruited 75 patients with PD, 37 patients with FOG and 38 patients without FOG, to undergo resting-state functional magnetic resonance imaging (fMRI). The whole-brain functional networks were constructed, and the topological properties at three (global, nodal, and connectional) levels were analyzed using graph theory approaches. RESULTS Compared with patients without FOG, patients with FOG exhibited altered global topological properties (a significant decrease in the normalized clustering coefficient and small-worldness), implying a shift toward randomization in their functional brain networks. At the node and connectional levels, patients with FOG showed increased nodal centralities and functional connectivity in the sensorimotor network, frontoparietal network, visual network, subcortical and limbic regions, and decreased nodal centralities in the frontoparietal network and the cerebellum. Furthermore, the altered nodal centralities in the right hippocampus (HIP) were positively correlated with FOG severity. CONCLUSIONS This study suggests that FOG in PD is associated with disrupted topological organization of whole-brain functional networks, involving dysfunction of the multiple networks.
Collapse
Affiliation(s)
- Nannan Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinhong Zhang
- Department of Internal Medicine, Wangjiang Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junying Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxin Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liren Duan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Peng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Shen J, Yang B, Xie Z, Wu H, Zheng Z, Wang J, Wang P, Zhang P, Li W, Ye Z, Yu C. Cell-Type-Specific Gene Modules Related to the Regional Homogeneity of Spontaneous Brain Activity and Their Associations With Common Brain Disorders. Front Neurosci 2021; 15:639527. [PMID: 33958982 PMCID: PMC8093778 DOI: 10.3389/fnins.2021.639527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mapping gene expression profiles to neuroimaging phenotypes in the same anatomical space provides opportunities to discover molecular substrates for human brain functional properties. Here, we aimed to identify cell-type-specific gene modules associated with the regional homogeneity (ReHo) of spontaneous brain activity and their associations with brain disorders. Fourteen gene modules were consistently associated with ReHo in the three datasets, five of which showed cell-type-specific expression (one neuron-endothelial module, one neuron module, one astrocyte module and two microglial modules) in two independent cell series of the human cerebral cortex. The neuron-endothelial module was mainly enriched for transporter complexes, the neuron module for the synaptic membrane, the astrocyte module for amino acid metabolism, and microglial modules for leukocyte activation and ribose phosphate biosynthesis. In enrichment analyses of cell-type-specific modules for 10 common brain disorders, only the microglial module was significantly enriched for genes obtained from genome-wide association studies of multiple sclerosis (MS) and Alzheimer's disease (AD). The ReHo of spontaneous brain activity is associated with the gene expression profiles of neurons, astrocytes, microglia and endothelial cells. The microglia-related genes associated with MS and AD may provide possible molecular substrates for ReHo abnormality in both brain disorders.
Collapse
Affiliation(s)
- Junlin Shen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingbing Yang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhonghua Xie
- Department of Mathematics, School of Science, Tianjin University of Science and Technology, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhanye Zheng
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Jianhua Wang
- Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Ping Wang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Peng Zhang
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
QIN DONGXUE, QIAN HAOTIAN, QI SHOULIANG, TENG YUEYANG, WU JIANLIN. ANALYSIS OF RS-FMRI IMAGES CLARIFIES BRAIN ALTERATIONS IN TYPE 2 DIABETES MELLITUS PATIENTS WITH COGNITIVE IMPAIRMENT. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) increases the risk of cognitive impairment (CI); however, the underlying pathophysiological mechanisms are still not well understood. We propose to clarify the altered spontaneous brain activity and functional connectivity implicated in CI of T2DM by analyzing resting state functional MRI (rs-fMRI) data. Totally 22 T2DM patients with cognitive impairment (T2DM-CI) and 31 T2DM patients with normal cognition (T2DM-NC) are included in this study. The whole brain amplitude of low frequency fluctuation (ALFF) value, regional homogeneity (ReHo) value and functional connectivity (FC) analysis using posterior cingulate cortex (PCC) as a seed region are investigated through comparison between groups of T2DM-CI and T2DM-NC. It is found that, compared with T2DM-NC, T2DM-CI demonstrates the decreased ALFF in the regions of precuneus, posterior cingulate gyrus, middle occipital gyrus and left superior/middle frontal gyrus, but the increased ALFF in the left middle frontal gyrus and left superior temporal gyrus. In T2DM-CI, ReHo decreases in bilateral posterior cingulate gyrus, right precuneus, right inferior frontal gyrus, but increases in the middle frontal gyrus and right superior occipital gyrus. Higher FC between PCC and bilateral inferior parietal lobule and right middle/inferior frontal gyrus, lower FC between PCC and bilateral precuneus and right superior frontal gyrus are observed in T2DM-CI group. Compared with T2DM-NC, patients with T2DM-CI have presented altered ALFF, ReHo and FC in and between important brain regions. The observed alterations are thought to be implicated with cognitive impairment of T2DM as the potential imaging pathophysiological basis.
Collapse
Affiliation(s)
- DONGXUE QIN
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P. R. China
| | - HAOTIAN QIAN
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - SHOULIANG QI
- College of Medicine and Biological Information Engineering, Northeastern University, Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, P. R. China
| | - YUEYANG TENG
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - JIANLIN WU
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116023, P. R. China
| |
Collapse
|
21
|
Song W, Raza HK, Lu L, Zhang Z, Zu J, Zhang W, Dong L, Xu C, Gong X, Lv B, Cui G. Functional MRI in Parkinson's disease with freezing of gait: a systematic review of the literature. Neurol Sci 2021; 42:1759-1771. [PMID: 33713258 DOI: 10.1007/s10072-021-05121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Freezing of gait (FOG), a common and disabling symptom of Parkinson's disease (PD), is characterized by an episodic inability to generate effective stepping. Functional MRI (fMRI) has been used to evaluate abnormal brain connectivity patterns at rest and brain activation patterns during specific tasks in patients with PD-FOG. This review has examined the existing functional neuroimaging literature in PD-FOG, including those with treatment. Summarizing these articles provides an opportunity for a better understanding of the underlying pathophysiology in PD-FOG. METHODS According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a literature review of studies using fMRI to investigate the underlying pathophysiological mechanisms of PD-FOG. RESULTS We initially identified 201 documents. After excluding the duplicates, reviews, and other irrelevant articles, 39 articles were finally identified, including 18 task-based fMRI studies and 21 resting-state fMRI studies. CONCLUSIONS Studies using fMRI techniques to evaluate PD-FOG have found dysfunctional connectivity in widespread cortical and subcortical regions. Standardized imaging protocols and detailed subtypes of PD-FOG are furthered required to elucidate current findings.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Hafiz Khuram Raza
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Li Lu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Zuohui Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Jie Zu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Wei Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Liguo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Chuanying Xu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Xiangyao Gong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Bingchen Lv
- Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People's Republic of China.
| |
Collapse
|
22
|
Ruan X, Li Y, Li E, Xie F, Zhang G, Luo Z, Du Y, Jiang X, Li M, Wei X. Impaired Topographical Organization of Functional Brain Networks in Parkinson's Disease Patients With Freezing of Gait. Front Aging Neurosci 2020; 12:580564. [PMID: 33192473 PMCID: PMC7609969 DOI: 10.3389/fnagi.2020.580564] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/18/2020] [Indexed: 12/04/2022] Open
Abstract
Objective: This study aimed to explore alterations in the topological properties of the functional brain network in primary Parkinson’s disease (PD) patients with freezing of gait (PD-FOG). Methods: Resting-state functional magnetic resonance imaging (Rs-fMRI) data were obtained in 23 PD-FOG patients, 33 PD patients without FOG (PD-nFOG), and 24 healthy control (HC) participants. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 90 brain regions, and topological properties were analyzed by using graph theory approaches. The network-based statistics (NBS) method was used to determine the suprathreshold connected edges (P < 0.05; threshold T = 2.725), and statistical significance was estimated by using the non-parametric permutation method (5,000 permutations). Statistically significant topological properties were further evaluated for their relationship with clinical neurological scales. Results: The topological properties of the functional brain network in PD-FOG and PD-nFOG showed no abnormalities at the global level. However, compared with HCs, PD-FOG patients showed decreased nodal local efficiency in several brain regions, including the bilateral striatum, frontoparietal areas, visual cortex, and bilateral superior temporal gyrus, increased nodal local efficiency in the left gyrus rectus. When compared with PD-nFOG patients and HCs, PD-FOG showed increased betweenness centrality in the left hippocampus. Moreover, compared to HCs, both PD-FOG and PD-nFOG patients displayed reduced network connections by using the NBS method, mainly involving the sensorimotor cortex (SM), visual network (VN), default mode network (DMN), auditory network (AN), dorsal attention network (DAN), subcortical regions, and limbic network (LIM). The local node efficiency of the right temporal pole: superior temporal gyrus in PD-FOG patients was positively correlated with the Freezing of Gait Questionnaire (FOGQ) scores. Conclusions: This study demonstrates the disrupted regional topological organization in PD-FOG patients, especially associated with damage to the subcortical regions and multiple cortical regions. Our results provide insights into the dysfunctional mechanisms of the relevant networks and indicate potential neuroimaging biomarkers of PD-FOG.
Collapse
Affiliation(s)
- Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuting Li
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - E Li
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fang Xie
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guoqin Zhang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | | | - Yuchen Du
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Cao X, Lee K. Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis. ENTROPY 2020; 22:e22080807. [PMID: 33286578 PMCID: PMC7517378 DOI: 10.3390/e22080807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022]
Abstract
High-dimensional variable selection is an important research topic in modern statistics. While methods using nonlocal priors have been thoroughly studied for variable selection in linear regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized linear models have not been investigated. In this paper, we consider a hierarchical generalized linear regression model with the product moment nonlocal prior over coefficients and examine its properties. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where the number of covariates is allowed to increase at a sub-exponential rate with the sample size. The Laplace approximation is implemented for computing the posterior probabilities and the shotgun stochastic search procedure is suggested for exploring the posterior space. The proposed method is validated through simulation studies and illustrated by a real data example on functional activity analysis in fMRI study for predicting Parkinson’s disease.
Collapse
Affiliation(s)
- Xuan Cao
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Kyoungjae Lee
- Department of Statistics, Inha University, Incheon 22212, Korea
- Correspondence:
| |
Collapse
|