1
|
Silva RH, Pedro LC, Manosso LM, Gonçalves CL, Réus GZ. Pre- and Post-Synaptic protein in the major depressive Disorder: From neurobiology to therapeutic targets. Neuroscience 2024; 556:14-24. [PMID: 39103041 DOI: 10.1016/j.neuroscience.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Major depressive disorder (MDD) has demonstrated its negative impact on various aspects of the lives of those affected. Although several therapies have been developed over the years, it remains a challenge for mental health professionals. Thus, understanding the pathophysiology of MDD is necessary to improve existing treatment options or seek new therapeutic alternatives. Clinical and preclinical studies in animal models of depression have shown the involvement of synaptic plasticity in both the development of MDD and the response to available drugs. However, synaptic plasticity involves a cascade of events, including the action of presynaptic proteins such as synaptophysin and synapsins and postsynaptic proteins such as postsynaptic density-95 (PSD-95). Additionally, several factors can negatively impact the process of spinogenesis/neurogenesis, which are related to many outcomes, including MDD. Thus, this narrative review aims to deepen the understanding of the involvement of synaptic formations and their components in the pathophysiology and treatment of MDD.
Collapse
Affiliation(s)
- Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
2
|
Pike MR, Lipner E, O'Brien KJ, Breen EC, Cohn BA, Cirillo PM, Krigbaum NY, Kring AM, Olino TM, Alloy LB, Ellman LM. Prenatal maternal Inflammation, childhood cognition and adolescent depressive symptoms. Brain Behav Immun 2024; 119:908-918. [PMID: 38761818 DOI: 10.1016/j.bbi.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Accumulating evidence indicates that higher prenatal maternal inflammation is associated with increased depression risk in adolescent and adult-aged offspring. Prenatal maternal inflammation (PNMI) may increase the likelihood for offspring to have lower cognitive performance, which, in turn, may heighten risk for depression onset. Therefore, this study explored the potential mediating role of childhood cognitive performance in the relationship between PNMI and adolescent depressive symptoms in offspring. METHODS Participants included 696 mother-offspring dyads from the Child Health and Development Studies (CHDS) cohort. Biomarkers of maternal inflammation [interleukin (IL)-6, IL-8, IL-1 receptor antagonist (IL-1RA) and soluble TNF receptor-II (sTNF-RII)] were assayed from first (T1) and second trimester (T2) sera. Childhood (ages 9-11) cognitive performance was assessed via standardized Peabody Picture Vocabulary Test (PPVT), a measure of receptive vocabulary correlated with general intelligence. Adolescent (ages 15-17) depressive symptoms were assessed via self-report. RESULTS There were no significant associations between T1 biomarkers and childhood PPVT or adolescent depressive symptoms. Higher T2 IL1-RA was directly associated with lower childhood PPVT (b = -0.21, SE = 0.08, t = -2.55, p = 0.01), but not with adolescent depressive symptoms. T2 IL-6 was not directly associated with childhood PPVT, but higher T2 IL-6 was directly associated at borderline significance with greater depressive symptoms in adolescence (b = 0.05, SE = 0.03, t = 1.96, p = 0.05). Lower childhood PPVT predicted significantly higher adolescent depressive symptoms (b = -0.07, SE = 0.02, t = -2.99, p < 0.01). There was a significant indirect effect of T2 IL-1RA on adolescent depressive symptoms via childhood PPVT (b = 0.03, 95 % CI = 0.002-0.03) indicating a partially mediated effect. No significant associations were found with T2 sTNF-RII nor IL-8. CONCLUSIONS Lower childhood cognitive performance, such as that indicated by a lower PPVT score, represents a potential mechanism through which prenatal maternal inflammation contributes to adolescent depression risk in offspring.
Collapse
Affiliation(s)
- Madeline R Pike
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA.
| | - Emily Lipner
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Kathleen J O'Brien
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, University of California-Los Angeles, 300 Medical Plaza, Suite 3306, Los Angeles, CA 90095-7076, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, 1683 Shattuck Ave., Suite B, Berkeley, CA 94709, USA
| | - Ann M Kring
- University of California, Berkeley, Department of Psychology, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Thomas M Olino
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Lauren B Alloy
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| | - Lauren M Ellman
- Temple University, Department of Psychology and Neuroscience, 1701 N 13th St, Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Landolfo E, Cutuli D, Decandia D, Balsamo F, Petrosini L, Gelfo F. Environmental Enrichment Protects against Neurotoxic Effects of Lipopolysaccharide: A Comprehensive Overview. Int J Mol Sci 2023; 24:ijms24065404. [PMID: 36982478 PMCID: PMC10049264 DOI: 10.3390/ijms24065404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE’s beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.
Collapse
Affiliation(s)
- Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- Correspondence:
| |
Collapse
|
4
|
Wei RM, Zhang YM, Li Y, Wu QT, Wang YT, Li XY, Li XW, Chen GH. Altered cognition and anxiety in adolescent offspring whose mothers underwent different-pattern maternal sleep deprivation, and cognition link to hippocampal expressions of Bdnf and Syt-1. Front Behav Neurosci 2022; 16:1066725. [PMID: 36570704 PMCID: PMC9772274 DOI: 10.3389/fnbeh.2022.1066725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Inadequate sleep during pregnancy negatively affects the neural development of offspring. Previous studies have focused on the continuous sleep deprivation (CSD) paradigm, but the sleep pattern during late pregnancy is usually fragmented. Objective To compare the effects of CSD and fragmented sleep deprivation (FSD) in late pregnancy on emotion, cognition, and expression of synaptic plasticity-related proteins in offspring mice. Methods Pregnant CD-1 mice were either subjected to 3/6 h of CSD/FSD during gestation days 15-21, while those in the control group were left untreated. After delivery, the offspring were divided into five groups, i.e., control (CON), short or long CSD (CSD3h, CSD6h), and short or long FSD (FSD3h, FSD6h). When the offspring were 2 months old, the anxiety-like behavior level was tested using the open field (OF) and elevated plus maze (EPM) test, and spatial learning and memory were evaluated using the Morris water maze (MWM) test. The expression of hippocampal of brain-derived neurotrophic factor (Bdnf) and synaptotagmin-1 (Syt-1) was determined using RT-PCR and western blotting. Results The CSD6h, FSD3h, and FSD6h had longer latency, fewer center times in the OF test, less open arms time and fewer numbers of entries in the open arms of the EPM, longer learning distance swam and lower memory percentage of distance swam in the target quadrant in the MWM test, and decreased BDNF and increased Syt-1 mRNA and protein levels in the hippocampus. Compared to the CSD6h, the FSD3h and FSD6h had longer distance swam, a lower percentage of distance swam in the target quadrant, decreased BDNF, and increased Syt-1 mRNA and protein levels in the hippocampus. Conclusion The results suggested that maternal sleep deprivation during late pregnancy impairs emotion and cognition in offspring, and FSD worsened the cognitive performance to a higher extent than CSD. The observed cognitive impairment could be associated with the expression of altered hippocampal of Bdnf and Syt-1 genes.
Collapse
Affiliation(s)
- Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ya-Tao Wang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China,Xue-Wei Li
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China,*Correspondence: Gui-Hai Chen
| |
Collapse
|
5
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Zhang ZZ, Chen J, Luo BL, Ni MZ, Liu X, Zeng LP, Yang QG, Wang F, Chen GH. Maternal inflammation induces spatial learning and memory impairment in the F1 and F2 generations of mice via sex-specific epigenetic mechanisms. Brain Res Bull 2022; 188:143-154. [PMID: 35931406 DOI: 10.1016/j.brainresbull.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Mounting evidence indicates that histone modifications are involved in aging-associated cognitive decline (AACD) and can be transmitted to offspring over multiple generations under conditions of stress. Here, we investigated the effects of maternal sub-chronic inflammation caused by lipopolysaccharide (LPS) on AACD and histone modifications in the F1 and F2 generations of experimental mice as well as the potential sex specificity of intergenerational effects. In brief, F0-generation CD-1 dams were exposed to LPS (50 µg/kg) or saline (CON) during late pregnancy. Subsequently, F1 males and females (at 2 months-of-age) from the LPS treatment group were mated with non-littermates from the LPS group or wild-type mice to produce F2 generations of parental- (F2-LPS2), paternal- (F2M-LPS1) and maternal-origin (F2F-LPS1) mice. Then, CON-F1 males and females were mated with wild-type mice to generate F2 generations of paternal- (F2M-CON1) and maternal-origin (F2F-CON1). Next, we evaluated the cognitive ability and levels of hippocampal H4K12ac and H3K9me3 in the F1 and F2 offspring at 3- and 13 months-of-age. Overall, F1 male and female LPS groups presented with elevated corticosterone (P < 0.001, P = 0.036, P = 0.025, 0.012, respectively) and cytokine responses, poorer cognitive performance (all P < 0.05) and H3K9 hypermethylation and H4K12 hypoacetylation in the dorsal hippocampus (all P < 0.05); these issues were carried over to the F2 generation via the parents, predominantly in the paternal lineage. Moreover, the levels of H3K9me3 and H4K12ac were significant correlated with cognitive performance (all P < 0.05), regardless of whether inflammatory insults had been incurred directly or indirectly. These findings indicated that gestational inflammatory insults in the F0 generation accelerated AACD in the F2 generation, along with H3K9 hypermethylation and H4K12 hypoacetylation in the hippocampus, and that these issues were derived from the F1 parents, especially from the F1 fathers.
Collapse
Affiliation(s)
- Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Xue Liu
- Department of Geriatrics, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, PR China
| | - Li-Ping Zeng
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Qi-Gang Yang
- Department of Neurology or Department of Critical Care, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Fang Wang
- Department of Neurology or Department of Critical Care, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China.
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China.
| |
Collapse
|
7
|
Long-Term Environmental Enrichment Relieves Dysfunctional Cognition and Synaptic Protein Levels Induced by Prenatal Inflammation in Older CD-1 Mice. Neural Plast 2022; 2022:1483101. [PMID: 35574247 PMCID: PMC9106518 DOI: 10.1155/2022/1483101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
A mounting body of evidence suggests that prenatal inflammation may enhance the rate of age-associated cognitive decline and may involve aberrant amounts of synaptic proteins in the hippocampus, including synaptotagmin-1 (Syt1) and activity-regulated cytoskeleton-associated protein (Arc). However, little is known about the specific impact of adolescent environmental enrichment (EE) on age-associated cognitive decline and the changes in synaptic proteins caused by prenatal inflammation. In this study, CD-1 mice in late pregnancy were given intraperitoneal doses of lipopolysaccharide (LPS, 50 μg/kg) or normal saline. Offspring arising from LPS dams were divided into a LPS group and a LPS plus EE (LPS-E) group. The LPS-E mice were exposed to EE from 2 months of age until the end of the experiment (3 or 15 months old). The Morris water maze (MWM) was used to assess the spatial learning and memory capacities of experimental mice, while western blotting and RNA-scope were used to determine the expression levels of Arc and Syt1 in the hippocampus at the protein and mRNA levels, respectively. Analysis revealed that at 15 months of age, the control mice experienced a reduction in cognitive ability and elevated expression levels of Arc and Syt1 genes when compared to control mice at 3 months of age. The LPS-E group exhibited better cognition and lower protein and mRNA levels of Arc and Syt1 than mice in the LPS group of the same age. However, the enriched environment mitigated but did not counteract, the effects of prenatal inflammation on cognitive and synaptic proteins when tested at either 3 or 15 months of age. Our findings revealed that long-term environmental enrichment improved the expression levels of synaptic proteins in CD-1 mice and that this effect was linked to the dysfunctional cognition caused by prenatal inflammation; this process may also be involved in the reduction of hippocampal Arc and Syt1 gene expression.
Collapse
|
8
|
Li P, Lu X, Hu J, Dai M, Yan J, Tan H, Yu P, Chen X, Zhang C. Human amniotic fluid derived-exosomes alleviate hypoxic encephalopathy by enhancing angiogenesis in neonatal mice after hypoxia. Neurosci Lett 2022; 768:136361. [PMID: 34826550 DOI: 10.1016/j.neulet.2021.136361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic encephalopathy is a type of central nervous system dysfunction manifested by high mortality and morbidity. Exosomes play a crucial role in neuroprotection by enhancing angiogenesis. The objective of this study was to investigate the effect of human amniotic fluid-derived exosomes (hAFEXOs) on functional recovery in neonatal hypoxic encephalopathy. The transwell assay, scratch wound healing assay, and tube formation assay were used to evaluate the effect of hAFEXOs on the angiogenesis of human umbilical vein endothelial cells (HUVECs) after oxygen and glucose deprivation (OGD). The angiogenesis of microvascular endothelial cells (MECs) in the cortex was tested in neonatal mice treated with hAFEXOs or phosphate-buffered saline (PBS) after hypoxia. Expressions of hypoxia-inducible factor 1 α (HIF-1α) and vascular endothelial growth factor (VEGF) in the cerebral cortex were also tested by western blot. The Morris Water Maze Test (MWM) was carried out to detect the performance of spatial memory after processing with hAFEXOs or PBS. The results indicated that hAFEXOs favored tubing formation and migration of HUVECs after in vitro OGD. The hAFEXOs also favored the expression of CD31 in neonatal mice following hypoxia. The expressions of both HIF-1α and VEGF were significantly augmented in the cerebral cortex of neonatal mice which were treated with hAFEXOs. Moreover, the MWM test results showed that the performance of the spatial memory was better in the hAFEXO-treated group than in the PBS-treated group. Our study indicates that hAFEXOs alleviated hypoxic encephalopathy and enhanced angiogenesis in neonatal mice after hypoxia. In addition, hAFEXOs promoted migration and tube formation of HUVECs after OGD in vitro. These findings confirm that hAFEXOs show great potential for further studies aimed at developing therapeutic agents for hypoxic encephalopathy.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha 410008, China
| | - Xiaoxu Lu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajia Hu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minhui Dai
- Department of Clinical Dietitian, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianqin Yan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Huiling Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Peilin Yu
- School of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
9
|
Wu YF, Zhang YM, Ge HH, Ren CY, Zhang ZZ, Cao L, Wang F, Chen GH. Effects of Embryonic Inflammation and Adolescent Psychosocial Environment on Cognition and Hippocampal Staufen in Middle-Aged Mice. Front Aging Neurosci 2020; 12:578719. [PMID: 33024434 PMCID: PMC7516039 DOI: 10.3389/fnagi.2020.578719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has indicated that embryonic inflammation could accelerate age-associated cognitive impairment, which can be attributed to dysregulation of synaptic plasticity-associated proteins, such as RNA-binding proteins (RBPs). Staufen is a double-stranded RBP that plays a critical role in the modulation of synaptic plasticity and memory. However, relatively few studies have investigated how embryonic inflammation affects cognition and neurobiology during aging, or how the adolescent psychosocial environment affects inflammation-induced remote cognitive impairment. Consequently, the aim of this study was to investigate whether these adverse factors can induce changes in Staufen expression, and whether these changes are correlated with cognitive impairment. In our study, CD-1 mice were administered lipopolysaccharides (LPS, 50 μg/kg) or an equal amount of saline (control) intraperitoneally during days 15–17 of gestation. At 2 months of age, male offspring were randomly exposed to stress (S), an enriched environment (E), or not treated (CON) and then assigned to five groups: LPS, LPS+S, LPS+E, CON, and CON+S. Mice were evaluated at 3-month-old (young) and 15-month-old (middle-aged). Cognitive function was assessed using the Morris water maze test, while Staufen expression was examined at both the protein and mRNA level using immunohistochemistry/western blotting and RNAscope technology, respectively. The results showed that the middle-aged mice had worse cognitive performance and higher Staufen expression than young mice. Embryonic inflammation induced cognitive impairment and increased Staufen expression in the middle-aged mice, whereas adolescent stress/an enriched environment would accelerated/mitigated these effects. Meanwhile, Staufen expression was closely correlated with cognitive performance. Our findings suggested embryonic inflammation can accelerate age-associated learning and memory impairments, and these effects may be related to the Staufen expression.
Collapse
Affiliation(s)
- Yong-Fang Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - He-Hua Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chong-Yang Ren
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|