1
|
Paniri A, Hosseini MM, Akhavan-Niaki H. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Mol Neurobiol 2024; 61:1282-1317. [PMID: 37700216 DOI: 10.1007/s12035-023-03626-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Aging is a significant risk factor for Alzheimer's disease (AD), although the precise mechanism and molecular basis of AD are not yet fully understood. Epigenetic mechanisms, such as DNA methylation and hydroxymethylation, mitochondrial DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), play a role in regulating gene expression related to neuron plasticity and integrity, which are closely associated with learning and memory development. This review describes the impact of dynamic and reversible epigenetic modifications and factors on memory and plasticity throughout life, emphasizing their potential as target for therapeutic intervention in AD. Additionally, we present insight from postmortem and animal studies on abnormal epigenetics regulation in AD, as well as current strategies aiming at targeting these factors in the context of AD therapy.
Collapse
Affiliation(s)
- Alireza Paniri
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Haleh Akhavan-Niaki
- Genetics Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
- Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.
| |
Collapse
|
2
|
Latchney SE, Cadney MD, Hopkins A, Garland T. Maternal upbringing and selective breeding for voluntary exercise behavior modify patterns of DNA methylation and expression of genes in the mouse brain. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12858. [PMID: 37519068 PMCID: PMC10733581 DOI: 10.1111/gbb.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of BiologySt. Mary's College of MarylandSt. Mary's CityMarylandUSA
| | - Marcell D. Cadney
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
- Neuroscience Research Institute, University of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Theodore Garland
- Department of Evolution, Ecology, and Organismal BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
3
|
Zhang S, Fu W, Jia X, Bade R, Liu X, Xie Y, Xie W, Jiang S, Shao G. Hypoxic Preconditioning Modulates BDNF and Its Signaling through DNA Methylation to Promote Learning and Memory in Mice. ACS Chem Neurosci 2023; 14:2320-2332. [PMID: 37289948 PMCID: PMC10289091 DOI: 10.1021/acschemneuro.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Hypoxic preconditioning (HPC) as an endogenous mechanism can resist hypoxia/ischemia injury and exhibit protective effects on neurological function including learning and memory. Although underlying molecular mechanisms remain unclear, HPC probably regulates the expression of protective molecules by modulating DNA methylation. Brain-derived neurotrophic factor (BDNF) activates its signaling upon binding to the tropomyosin-related kinase B (TrkB) receptor, which is involved in neuronal growth, differentiation, and synaptic plasticity. Therefore, this study focused on the mechanism by which HPC regulates BDNF and BDNF/TrkB signaling through DNA methylation to influence learning and memory. Initially, the HPC model was established by hypoxia stimulations on ICR mice. We found that HPC downregulated the expression of DNA methyltransferase (DNMT) 3A and DNMT3B. Then, the upregulation of BDNF expression in HPC mice was generated from a decrease in DNA methylation of the BDNF gene promoter detected by pyrophosphate sequencing. Subsequently, upregulation of BDNF activated BDNF/TrkB signaling and ultimately improved learning and spatial memory in HPC mice. Moreover, after mice were intracerebroventricularly injected with the DNMT inhibitor, the restraint of DNA methylation accompanied by an increase of BDNF and BDNF/TrkB signaling was also discovered. Finally, we observed that the inhibitor of BDNF/TrkB signaling prevented HPC from ameliorating learning and memory in mice. However, the DNMT inhibitor promoted spatial cognition in mice. Thus, we suggest that HPC may upregulate BDNF by inhibiting DNMTs and decreasing DNA methylation of the BDNF gene and then activate BDNF/TrkB signaling to improve learning and memory in mice. This may provide theoretical guidance for the clinical treatment of cognitive dysfunction caused by ischemia/hypoxia disease.
Collapse
Affiliation(s)
- Shiji Zhang
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Weng Fu
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Xiaoe Jia
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Basic Medicine and Forensic Sciences, Baotou Medical College, Baotou 014060, China
| | - Rengui Bade
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Xiaolei Liu
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Yabin Xie
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Wei Xie
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- School
of Medical Technology and Anesthesia, Baotou Medical College of Neuroscience
Institute, Baotou Medical College, Baotou 014060, China
| | - Shuyuan Jiang
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
| | - Guo Shao
- Inner
Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014060, China
- Center
for Translational Medicine and Department of Laboratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen 518112, China
| |
Collapse
|
4
|
Boovarahan SR, Kale SB, Prem PN, Ravindran S, Arthanarisami A, Rengaraju J, Ali N, Ramalingam S, Mohany M, AlAsmari AF, Al-Rejaie SS, Waseem M, Kurian GA. CABG Patients Develop Global DNA Hypermethylation, That Negatively Affect the Mitochondrial Function and Promote Post-Surgical Cognitive Decline: A Proof of Concept in Small Cohort. J Clin Med 2023; 12:4146. [PMID: 37373839 DOI: 10.3390/jcm12124146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Global DNA hypermethylation and mitochondrial dysfunction are reported to be associated with the development of mild cognitive decline (MCI). The present study aims to generate preliminary data that connect the above association with post-surgical coronary artery bypass grafting (CABG) cognitive decline in patients. Data were collected from 70 CABG patients and 25 age-matched controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MOCA) test on day 1 (before surgery) and on the day of discharge. Similarly, blood was collected before and one day after the CABG procedure for mitochondrial functional analysis and expression of DNA methylation genes. Test analysis score suggested 31 (44%) patients had MCI before discharge. These patients showed a significant decrease in complex I activity and an increase in malondialdehyde levels (p < 0.001) from the control blood samples. Post-surgical samples showed a significant reduction in blood MT-ND1 mRNA expression from control and from pre-surgical samples (p < 0.005), along with elevated DNMT1 gene expression (p < 0.047), with an insignificant increase in TET1 and TET3 gene expression. Correlation analysis showed a significant positive relation between cognitive decline and elevated blood DNMT1 and declined blood complex I activity, signifying that cognitive decline experienced by post-surgical CABG patients is associated with increased DNMT1 expression and declined complex I activity. Based on the data, we conclude that both DNA hypermethylation and mitochondrial dysfunction are associated with post-CABG MCI, where the former is negatively correlated, and the latter is positively correlated with post-surgical MCI in CABG cases. Additionally, a multimarker approach that comprises MOCA, DNA methylation, DNMT, and NQR activities can be utilized to stratify the population that is sensitive to developing post-CABG MCI.
Collapse
Affiliation(s)
| | - Suresh Babu Kale
- Department of Cardiovascular and Thoracic Surgery, Meenakshi Hospital Tanjore, Thanjavur 613005, India
| | - Priyanka N Prem
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur 613401, India
| | - Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur 613401, India
| | | | - Jeyashri Rengaraju
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur 613401, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Senthilkumar Ramalingam
- Department of Cardiovascular and Thoracic Surgery, Meenakshi Hospital Tanjore, Thanjavur 613005, India
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gino A Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
5
|
Borges JV, Pires VN, de Freitas BS, Rübensam G, Vieira VC, de Souza Dos Santos C, Schröder N, Bromberg E. Behavior, BDNF and epigenetic mechanisms in response to social isolation and social support in middle aged rats exposed to chronic stress. Behav Brain Res 2023; 441:114303. [PMID: 36657665 DOI: 10.1016/j.bbr.2023.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Social deprivation can be stressful for group-living mammals. On the other hand, an amazing response of these animals to stress is seeking social contact to give and receive joint protection in threatening situations. We explored the effects of social isolation and social support on epigenetic and behavioral responses to chronic stress. More specifically, we investigated the behavioral responses, corticosterone levels, BDNF gene expression, and markers of hippocampal epigenetic alterations (levels of H3K9 acetylation and methylation, H3K27 methylation, HDAC5, DNMT1, and DNMT3a gene expressions) in middle-aged adult rats maintained in different housing conditions (isolation or accompanied housing) and exposed to the chronic unpredictable stress protocol (CUS). Isolation was associated with decreased basal levels of corticosterone, impaired long-term memory, and decreased expression of the BDNF gene, besides altering the balance of H3K9 from acetylation to methylation and increasing the DNMT1 gene expression. The CUS protocol decreased H3K9 acetylation, besides increasing H3K27 methylation and DNMT1 gene expression, but had no significant effects on memory and BDNF gene expression. Interestingly, the effects of CUS on corticosterone and HDAC5 gene expression were seen only in isolated animals, whereas the effects of CUS on DNMT1 gene expression were more pronounced in isolated than accompanied animals. In conclusion, social isolation in middle age showed broader effects than chronic unpredictable stress on behavioral and epigenetic alterations potentially associated with decreased BDNF expression. Moreover, social support prevented the adverse effects of CUS on HPA axis functioning, HDAC5, and DNMT1 gene expressions.
Collapse
Affiliation(s)
- Juliano Viana Borges
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Gabriel Rübensam
- Center of Toxicology and Pharmacology Research, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Vitória Corrêa Vieira
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.
| |
Collapse
|
6
|
Cheng S, Wang W, Zhu Z, Zhao M, Li H, Liu D, Pan F. Involvement of brain-derived neurotrophic factor methylation in the prefrontal cortex and hippocampus induced by chronic unpredictable mild stress in male mice. J Neurochem 2023; 164:624-642. [PMID: 36453259 DOI: 10.1111/jnc.15735] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Early life stress alters brain-derived neurotrophic factor (BDNF) promoter IV methylation and BDNF expression, which is closely related to the pathophysiological process of depression. However, the role of abnormal methylation of BDNF induced by stress during adolescence due to depression has not yet been clarified. In this study, adolescent mice were exposed to chronic unpredictable mild stress (CUMS). Depression-like behaviors, BDNF promoter IV methylation, expression of DNA methyltransferases (DNMTs), demethylation machinery enzymes, BDNF protein levels, and neuronal development in the prefrontal cortex (PFC) and hippocampus (HIP) were assessed in adolescent and adult mice. The DNMT inhibitor, 5-Aza-2-deoxycytidine (5-AzaD), was used as an intervention. Stress in adolescence induces behavioral dysfunction, elevated methylation levels of BDNF promoter IV, changes in the expression of DNMT, and demethylation machinery enzymes in adolescent and adult mice. Additionally, the stress in adolescence induced lower levels of BDNF and abnormal hippocampal doublecortin (DCX) expression in adolescent and adult mice. However, DNMT inhibitor treatment in adolescent-stressed mice relieved the abnormal behaviors, normalized the methylation level of BDNF promoter IV, BDNF protein expression, expression of DNMTs, and demethylation machinery enzymes, and improved the neuronal development of adult mice. These results suggest that stress in adolescence induces short- and long-term hypermethylation of BDNF promoter IV, which is regulated by DNMTs, and leads to the development of depression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zemeng Zhu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Mingyue Zhao
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Hannao Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
7
|
Xu F, Cong P, Zhang B, Dong H, Zuo W, Wu T, Tian L, Xiong L. A decrease in NR2B expression mediated by DNA hypermethylation induces perioperative neurocognitive disorder in aged mice. CNS Neurosci Ther 2023; 29:1229-1242. [PMID: 36694341 PMCID: PMC10068472 DOI: 10.1111/cns.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
AIMS This study was designed to investigate the role of NR2B and the contribution of DNA methylation to NR2B expression in the pathogenesis of PND. METHODS Eighteen-month-old C57BL/6J mice were subjected to experimental laparotomy under 1.4% isoflurane anesthesia. Hippocampus-dependent learning and memory were evaluated by using the Barnes maze and contextual fear conditioning tests. The protein and mRNA expression levels of NR2B were evaluated by western blotting and qRT-PCR respectively, and the methylation of the NR2B gene was examined by using targeted bisulfite sequencing. Long-term synaptic plasticity (LTP) was measured by electrophysiology. RESULTS Mice that underwent laparotomy exhibited hippocampus-dependent cognitive deficits accompanied by decreased NR2B expressions and LTP deficiency. The overexpression of NR2B in the dorsal hippocampus could improve learning and memory in mice subjected to laparotomy. In particular, the decreased NR2B expressions induced by laparotomy was attributed to the NR2B gene hypermethylation. Preoperative administration of S-adenosylmethionine (SAM) could hypomethylate the NR2B gene, upregulate NR2B expression and improve LTP, exerting a dose-dependent therapeutic effect against PND. Moreover, inhibiting NR2B abrogated the benefits of SAM pretreatment. CONCLUSIONS Laparotomy cause hippocampus-dependent cognitive decline by hypermethylating the NR2B gene, allowing us to understand the pathogenesis of PND in an epigenetic landscape.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peilin Cong
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Bingqian Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tingmei Wu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Li Tian
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence Affiliated to Tongji University School of Medicine, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| |
Collapse
|
8
|
Mu B, Xu W, Li H, Suo Z, Wang X, Zheng Y, Tian Y, Zhang B, Yu J, Tian N, Lin N, Zhao D, Zheng Z, Zheng H, Ni C. Determination of the effective dose of dexmedetomidine to achieve loss of consciousness during anesthesia induction. Front Med (Lausanne) 2023; 10:1158085. [PMID: 37153107 PMCID: PMC10159180 DOI: 10.3389/fmed.2023.1158085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background Dexmedetomidine (DEX) is a sedative with greater preservation of cognitive function, reduced respiratory depression, and improved patient arousability. This study was designed to investigate the performance of DEX during anesthesia induction and to establish an effective DEX induction strategy, which could be valuable for multiple clinical conditions. Methods Patients undergoing abdominal surgery were involved in this dose-finding trial. Dixon's up-and-down sequential method was employed to determine the effective dose of DEX to achieve the state of "loss of consciousness", and an effective induction strategy was established with continuous infusion of DEX and remifentanil. The effects of DEX on hemodynamics, respiratory state, EEG, and anesthetic depth were monitored and analyzed. Results Through the strategy mentioned, the depth of surgical anesthesia was successfully achieved by DEX-led anesthesia induction. The ED50 and ED95 of the initial infusion rate of DEX were 0.115 and 0.200 μg/kg/min, respectively, and the mean induction time was 18.3 min. The ED50 and ED95 of DEX to achieve the state of "loss of consciousness" were 2.899 (95% CI: 2.703-3.115) and 5.001 (95% CI: 4.544-5.700) μg/kg, respectively. The mean PSI on the loss of consciousness was 42.8 among the patients. During anesthesia induction, the hemodynamics including BP and HR were stable, and the EEG monitor showed decreased α and β powers and increased θ and δ in the frontal and pre-frontal cortices of the brain. Conclusion This study indicated that continuous infusion of combined DEX and remifentanil could be an effective strategy for anesthesia induction. The EEG during the induction was similar to the physiological sleep process.
Collapse
Affiliation(s)
- Bing Mu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyi Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Wang
- Clinical Epidemiology Research Center, Peking University Third Hospital, Beijing, China
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naiyuan Tian
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Lin
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Zhao
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoxu Zheng
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Zheng
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cheng Ni
| |
Collapse
|
9
|
Yang YL, Wang LJ, Chang JC, Ho SC, Kuo HC. A National Population Cohort Study Showed That Exposure to General Anesthesia in Early Childhood Is Associated with an Increase in the Risk of Developmental Delay. CHILDREN-BASEL 2021; 8:children8100840. [PMID: 34682104 PMCID: PMC8534755 DOI: 10.3390/children8100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the relationship between exposure to general anesthesia (GA) and the risk of cognitive and mental disorders. This study has thus investigated the relationships between exposure to GA before the age of 3 and subsequent cognitive and mental disorders in a national-wide research sample. We obtained our subjects from the National Health Insurance Research Database (NHIRD) of Taiwan, which was based on the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Children in the hospital aged less than 3 years old were included if there was GA exposure or not during the period of year 1997 to 2008. Cox proportional hazard regression models adjusted for potential confounding factors were used to estimate the relative magnitude of the risk associated with GA exposure. The cohort contained 2261 subjects with GA and 4522 children without GA as a comparison group. GA exposure group had a higher rate of developmental delay than in the without GA group (hazard ratio 1.46, p < 0.0001). There was no significant difference in the overall incidence of ADHD, autism and intellectual disability between the GA-exposed group and the comparison cohort. In conclusion, this study reported that children exposed to GA early before the age of three had a small association with increased risk of development delay thereafter.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 883, Taiwan;
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Jung-Chan Chang
- Department of Data Science and Analytics, I-Shou University, Kaohsiung 840, Taiwan;
| | - Shu-Chen Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence:
| |
Collapse
|
10
|
Liu Y, Yang H, Fu Y, Pan Z, Qiu F, Xu Y, Yang X, Chen Q, Ma D, Liu Z. TRPV1 Antagonist Prevents Neonatal Sevoflurane-Induced Synaptic Abnormality and Cognitive Impairment in Mice Through Regulating the Src/Cofilin Signaling Pathway. Front Cell Dev Biol 2021; 9:684516. [PMID: 34307363 PMCID: PMC8293754 DOI: 10.3389/fcell.2021.684516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Long-term neurodevelopmental disorders following neonatal anesthesia have been reported both in young animals and in children. The activation of transient receptor potential vanilloid 1 (TRPV1) channels in hippocampus adversely affects neurodevelopment. The current study explored the underlying mechanism of TRPV1 channels on long-lasting cognitive dysfunction induced by anesthetic exposure to the developing brain. we demonstrated that TRPV1 expression was increased after sevoflurane exposure both in vitro and in vivo. Sevoflurane exposure to hippocampal neurons decreased the synaptic density and the surface GluA1 expression, as well as increased co-localization of internalized AMPAR in early and recycling endosomes. Sevoflurane exposure to newborn mice impaired learning and memory in adulthood, and reduced AMPAR subunit GluA1, 2 and 3 expressions in the crude synaptosomal fractions from mouse hippocampus. The inhibition of TRPV1 reversed the phenotypic changes induced by sevoflurane. Moreover, sevoflurane exposure increased Src phosphorylation at tyrosine 416 site thereby reducing cofilin phosphorylation. TRPV1 blockade reversed these suppressive effects of sevoflurane. Our data suggested that TRPV1 antagonist may protect against synaptic damage and cognitive dysfunction induced by sevoflurane exposure during the brain developing stage.
Collapse
Affiliation(s)
- Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Han Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yifei Fu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhenglong Pan
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fang Qiu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yanwen Xu
- Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xinping Yang
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qian Chen
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Yu M, Qin C, Li P, Zhang Y, Wang Y, Zhang J, Li D, Wang H, Lu Y, Xie K, Yu Y, Yu Y. Hydrogen gas alleviates sepsis-induced neuroinflammation and cognitive impairment through regulation of DNMT1 and DNMT3a-mediated BDNF promoter IV methylation in mice. Int Immunopharmacol 2021; 95:107583. [PMID: 33773206 DOI: 10.1016/j.intimp.2021.107583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Sepsis-associated encephalopathy (SAE) can cause acute and long-term cognitive impairment and increase the mortality rate in sepsis patients, and we previously reported that 2% hydrogen gas (H2) inhalation has a therapeutic effect on SAE, but the underlying mechanism remains unclear. Dynamic DNA methylation, which catalyzed by DNA methyltransferases (DNMTs), is involved in the formation of synaptic plasticity and cognitive memory in the central nervous system. And brain-derived neurotrophic factor (BDNF), to be a key signaling component in activity-dependent synaptic plasticity, can be induced by neuronal activity accompanied by hypomethylation of its promoter IV. This study was designed to illustrate whether H2 can mediate SAE by alter the BDNF promoter IV methylation mediated by DNMTs. We established an SAE model by cecal ligation and perforation (CLP) in C57BL/6 mice. The Morris water maze test from the 4th to the 10th day after sham or CLP operations were used to evaluate mouse cognitive function. Hippocampal tissues were isolated at the 24 after sham or CLP surgery. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and High Mobility Group Box 1 (HMGB1) were measured by enzyme-linked immunosorbent assay (ELISA). mRNA or protein levels of DNMTs (DNMT1, DNMT3a and DNMT3b), BDNF promoter IV and total BDNF were detected by RT-PCR and Western blot tests. Immunofluorescence staining were used to determine the expressions of DNMT1 and DNMT3a. The quantitative methylation analysis of the 11 CpG island of the promoter region of BDNF exon IV was determined using theAgena's MassARRAY EpiTYPER system. We found that 2% H2 inhalation can reduce pro-inflammatory factors, alleviate DNMT1, DNMT3a but not DNMT3b expression, make hypomethylation of BDNF promoter IV at 5 CpG sites, enhance the BDNF levels and then decrease escape latency but increase platform crossing times in septic mice. Our results suggest that 2% H2 inhalation may alleviate SAE through altering the regulation of BDNF promoter IV methylation which mediated by DNMT1 and DNMT3a in the hippocampus of septic mice.
Collapse
Affiliation(s)
- Mingdong Yu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Pei Li
- Department of Anesthesiology, Tianjin Hospital, Tianjin 300211, China
| | - Yingli Zhang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ying Wang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dedong Li
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Huixing Wang
- Pain Management Center, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yuechun Lu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|