1
|
Vitantonio AT, Dimovasili C, Mortazavi F, Vaughan KL, Mattison JA, Rosene DL. Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain. Neurobiol Aging 2024; 141:1-13. [PMID: 38788462 DOI: 10.1016/j.neurobiolaging.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
Collapse
Affiliation(s)
- Ana T Vitantonio
- Boston University Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology, and Biophysics, 700 Albany St., Room 308, Boston, MA 02118, USA; Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA.
| | - Christina Dimovasili
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Douglas L Rosene
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA; Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA 02215, USA
| |
Collapse
|
2
|
Robinson TD, Chad JA, Sun YL, Chang PTH, Chen JJ. Testing retrogenesis and physiological explanations for tract-wise white matter aging: links to developmental order, fibre calibre, and vascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576373. [PMID: 38328223 PMCID: PMC10849490 DOI: 10.1101/2024.01.20.576373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To understand the consistently observed spatial distribution of white-matter (WM) aging, developmentally driven theories termed "retrogenesis" have gained traction, positing that the order of WM tract development predicts the order of declines. Regions that develop first are expected to deteriorate the last, i.e. "last-in-first-out". Alternatively, regions which develop most rapidly may also decline most rapidly in aging, or "gains-predict-loss". The validity of such theories remains uncertain, in part due to lack of clarity on the definition of developmental order. Importantly, our recent findings suggest that WM aging is also associated with physiological parameters such as perfusion, which may be linked to fibre metabolic need, which in turn varies with fibre size. Here we address the extent to which the degree of WM aging is determined by development trajectory (i.e. retrogenesis) and/or by physiological state. We obtained microstructural and perfusion measures using data from the Human Connectome Project in Aging (HCP-A), complemented by a meta-analysis involving maps of fibre calibre and macrovascular volume. Our results suggest that (1) while tracts that appear last or finish myelinating first in development display the slowest aging, the pattern of aging is not fully explained by retrogenesis; in fact, time courses of tract emergence and myelination give rise to opposite associations with WM decline; (2) tracts that appear earlier also have higher mean axon calibre and are also associated with lower degrees of WM microstructural aging; (3) such tracts also tend to exhibit relatively sustained CBF with a higher rate of lengthening of the arterial transit times (ATT), suggestive of collateral blood supply. These findings were also sex dependent in a tract-specific manner. Future work will investigate whether these are ultimately influenced by each tract's metabolic demand and the role of macrovascular collateral flow.
Collapse
|
3
|
Sheriff AB, Scarapicchia V, Mazerolle EL, Christie B, Gawryluk JR. A comparison of white matter microstructure and correlates with neuropsychological measures in younger and older adults. PLoS One 2024; 19:e0305818. [PMID: 38913655 PMCID: PMC11195942 DOI: 10.1371/journal.pone.0305818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE With a globally aging population, there is a need to better understand how brain structure relates to function in healthy older and younger adults. METHODS 34 healthy participants divided into older (17; Mean = 70.9, SD = 5.4) and younger adults (17; Mean = 28.1, SD = 2.8) underwent diffusion-weighted imaging and neuropsychological assessment, including the California Verbal Learning Test 2nd Edition and the Trail Making Test (TMT-A and TMT-B). Differences in white matter microstructure for older and younger adults and the association between DTI metrics (fractional anisotropy, FA; mean diffusivity, MD) and cognitive performance were analyzed using tract-based spatial statistics (p < 0.05, corrected). RESULTS Older adults had significantly lower FA and higher MD than younger adults in widespread brain regions. There was a significant negative correlation between executive function (TMT-B) and MD for older adults in the right superior/anterior corona radiata and the corpus callosum. No significant relationship was detected between DTI metrics and executive function in younger adults or with memory performance in either group. CONCLUSIONS The findings underscore the need to examine brain-behaviour relationships as a function of age. Future studies should include comprehensive assessments in larger lifespan samples to better understand the aging brain.
Collapse
Affiliation(s)
- Abu-Bakar Sheriff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Erin L. Mazerolle
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Brian Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Jodie R. Gawryluk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Prince JB, Davis HL, Tan J, Muller-Townsend K, Markovic S, Lewis DMG, Hastie B, Thompson MB, Drummond PD, Fujiyama H, Sohrabi HR. Cognitive and neuroscientific perspectives of healthy ageing. Neurosci Biobehav Rev 2024; 161:105649. [PMID: 38579902 DOI: 10.1016/j.neubiorev.2024.105649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
With dementia incidence projected to escalate significantly within the next 25 years, the United Nations declared 2021-2030 the Decade of Healthy Ageing, emphasising cognition as a crucial element. As a leading discipline in cognition and ageing research, psychology is well-equipped to offer insights for translational research, clinical practice, and policy-making. In this comprehensive review, we discuss the current state of knowledge on age-related changes in cognition and psychological health. We discuss cognitive changes during ageing, including (a) heterogeneity in the rate, trajectory, and characteristics of decline experienced by older adults, (b) the role of cognitive reserve in age-related cognitive decline, and (c) the potential for cognitive training to slow this decline. We also examine ageing and cognition through multiple theoretical perspectives. We highlight critical unresolved issues, such as the disparate implications of subjective versus objective measures of cognitive decline and the insufficient evaluation of cognitive training programs. We suggest future research directions, and emphasise interdisciplinary collaboration to create a more comprehensive understanding of the factors that modulate cognitive ageing.
Collapse
Affiliation(s)
- Jon B Prince
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia.
| | - Helen L Davis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Jane Tan
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Katrina Muller-Townsend
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Shaun Markovic
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Discipline of Psychology, Counselling and Criminology, Edith Cowan University, WA, Australia
| | - David M G Lewis
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | | | - Matthew B Thompson
- School of Psychology, Murdoch University, WA, Australia; Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, WA, Australia
| | - Peter D Drummond
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia
| | - Hakuei Fujiyama
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, WA, Australia
| | - Hamid R Sohrabi
- School of Psychology, Murdoch University, WA, Australia; Centre for Healthy Ageing, Health Futures Institute, Murdoch University, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, WA, Australia; Department of Biomedical Sciences, Macquarie University, NSW, Australia.
| |
Collapse
|
5
|
Wang X, Chen Q, Liu Y, Sun J, Li J, Zhao P, Cai L, Liu W, Yang Z, Wang Z, Lv H. Causal relationship between multiparameter brain MRI phenotypes and age: evidence from Mendelian randomization. Brain Commun 2024; 6:fcae077. [PMID: 38529357 PMCID: PMC10963122 DOI: 10.1093/braincomms/fcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
To explore the causal relationship between age and brain health (cortical atrophy, white matter integrity, white matter hyperintensities and cerebral microbleeds in various brain regions) related multiparameter imaging features using two-sample Mendelian randomization. Age was determined as chronological age of the subject. Cortical volume, white matter micro-integrity, white matter hyperintensity volume and cerebral microbleeds of each brain region were included as phenotypes for brain health. Age and imaging of brain health related genetic data were analysed to determine the causal relationship using inverse-variance weighted model, validated by heterogeneity and horizontal pleiotropy variables. Age is causally related to increased volumes of white matter hyperintensities (β = 0.151). For white matter micro-integrity, fibres of the inferior cerebellar peduncle (axial diffusivity β = -0.128, orientation dispersion index β = 0.173), cerebral peduncle (axial diffusivity β = -0.136), superior fronto-occipital fasciculus (isotropic volume fraction β = 0.163) and fibres within the limbic system were causally deteriorated. We also detected decreased cortical thickness of multiple frontal and temporal regions (P < 0.05). Microbleeds were not related with aging (P > 0.05). Aging is a threat of brain health, leading to cortical atrophy mainly in the frontal lobes, as well as the white matter degeneration especially abnormal hyperintensity and deteriorated white matter integrity around the hippocampus.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yawen Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jia Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wenjuan Liu
- Department of Radiology, Aerospace Center Hospital, Beijing 100089, China
- Peking University Aerospace School of Clinical Medicine, Beijing 100089, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
6
|
Ning K, Tran M, Kowal TJ, Mesentier-Louro LA, Sendayen BE, Wang Q, Lo CH, Li T, Majumder R, Luo J, Hu Y, Liao YJ, Sun Y. Compartmentalized ciliation changes of oligodendrocytes in aged mouse optic nerve. J Neurosci Res 2024; 102:e25273. [PMID: 38284846 PMCID: PMC10827352 DOI: 10.1002/jnr.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rishab Majumder
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jian Luo
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
7
|
Alm KH, Soldan A, Pettigrew C, Faria AV, Hou X, Lu H, Moghekar A, Mori S, Albert M, Bakker A. Structural and Functional Brain Connectivity Uniquely Contribute to Episodic Memory Performance in Older Adults. Front Aging Neurosci 2022; 14:951076. [PMID: 35903538 PMCID: PMC9315224 DOI: 10.3389/fnagi.2022.951076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we examined the independent contributions of structural and functional connectivity markers to individual differences in episodic memory performance in 107 cognitively normal older adults from the BIOCARD study. Structural connectivity, defined by the diffusion tensor imaging (DTI) measure of radial diffusivity (RD), was obtained from two medial temporal lobe white matter tracts: the fornix and hippocampal cingulum, while functional connectivity markers were derived from network-based resting state functional magnetic resonance imaging (rsfMRI) of five large-scale brain networks: the control, default, limbic, dorsal attention, and salience/ventral attention networks. Hierarchical and stepwise linear regression methods were utilized to directly compare the relative contributions of the connectivity modalities to individual variability in a composite delayed episodic memory score, while also accounting for age, sex, cerebrospinal fluid (CSF) biomarkers of amyloid and tau pathology (i.e., Aβ42/Aβ40 and p-tau181), and gray matter volumes of the entorhinal cortex and hippocampus. Results revealed that fornix RD, hippocampal cingulum RD, and salience network functional connectivity were each significant independent predictors of memory performance, while CSF markers and gray matter volumes were not. Moreover, in the stepwise model, the addition of sex, fornix RD, hippocampal cingulum RD, and salience network functional connectivity each significantly improved the overall predictive value of the model. These findings demonstrate that both DTI and rsfMRI connectivity measures uniquely contributed to the model and that the combination of structural and functional connectivity markers best accounted for individual variability in episodic memory function in cognitively normal older adults.
Collapse
Affiliation(s)
- Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Arnold Bakker,
| |
Collapse
|