1
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Tsao SP, Yeh TH, Lin YT, Pan CH, Lee YK, Wu CH, Huang HY. Supplementation with Bifidobacterium animalis subsp. lactis MH-022 for remission of motor impairments in a 6-OHDA-induced Parkinson's disease rat model by reducing inflammation, reshaping the gut microbiome, and fostering specific microbial taxa. Food Funct 2024; 15:9368-9389. [PMID: 39189385 DOI: 10.1039/d4fo02039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Inflammation significantly influences the degeneration of dopaminergic neurons in Parkinson's disease (PD), which is potentially intensified by associated gut dysbiosis. The therapeutic potential of probiotics, due to their antioxidant, anti-inflammatory, and gut microbiota modulatory properties, is explored herein as a means to improve gut health and influence the gut-brain-microbiota axis in the context of PD. In this study, we investigated the role and possible mechanism of Bifidobacterium animalis subsp. lactis MH-022 (B. lactis MH-022) supplementation in a 6-hydroxydopamine (6-OHDA)-induced rat model of PD. Findings demonstrated that B. lactis MH-022 supplementation markedly ameliorated motor deficits, preserved dopaminergic neurons, enhanced the antioxidant capacity, and mitigated inflammation through restoring mitochondrial function. Furthermore, B. lactis MH-022 supplementation significantly altered the gut microbiota composition, augmenting the production of short-chain fatty acids and promoting the proliferation of beneficial bacterial taxa, thereby reinforcing their anti-inflammatory properties. Correlation analyses established strong associations between specific bacterial taxa and improvements in motor function, antioxidant levels, and reductions in inflammation markers. These insights emphasize the therapeutic potential of B. lactis MH-022 in modulating diverse aspects of PD, particularly highlighting its role in reducing inflammation, restoring mitochondrial function, enhancing antioxidant capacity, and reshaping the gut microbiota. This multifaceted approach underscores the probiotic's potential in reducing neuroinflammation and protecting dopaminergic neurons, thus offering a promising avenue for PD treatment.
Collapse
Affiliation(s)
- Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ya-Tin Lin
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, 22, Singapore 117597
| | - Chieh-Hsi Wu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Yu Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
You M, Chen N, Yang Y, Cheng L, He H, Cai Y, Liu Y, Liu H, Hong G. The gut microbiota-brain axis in neurological disorders. MedComm (Beijing) 2024; 5:e656. [PMID: 39036341 PMCID: PMC11260174 DOI: 10.1002/mco2.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Previous studies have shown a bidirectional communication between human gut microbiota and the brain, known as the microbiota-gut-brain axis (MGBA). The MGBA influences the host's nervous system development, emotional regulation, and cognitive function through neurotransmitters, immune modulation, and metabolic pathways. Factors like diet, lifestyle, genetics, and environment shape the gut microbiota composition together. Most research have explored how gut microbiota regulates host physiology and its potential in preventing and treating neurological disorders. However, the individual heterogeneity of gut microbiota, strains playing a dominant role in neurological diseases, and the interactions of these microbial metabolites with the central/peripheral nervous systems still need exploration. This review summarizes the potential role of gut microbiota in driving neurodevelopmental disorders (autism spectrum disorder and attention deficit/hyperactivity disorder), neurodegenerative diseases (Alzheimer's and Parkinson's disease), and mood disorders (anxiety and depression) in recent years and discusses the current clinical and preclinical gut microbe-based interventions, including dietary intervention, probiotics, prebiotics, and fecal microbiota transplantation. It also puts forward the current insufficient research on gut microbiota in neurological disorders and provides a framework for further research on neurological disorders.
Collapse
Affiliation(s)
- Mingming You
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Nan Chen
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yuanyuan Yang
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Lingjun Cheng
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hongzhang He
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yanhua Cai
- Master of Public HealthSchool of Public HealthXiamen UniversityXiamenChina
| | - Yating Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Guolin Hong
- Xiamen Key Laboratory of Genetic TestingThe Department of Laboratory MedicineThe First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
4
|
Lima M, Moreira B, Bertuzzi R, Lima-Silva A. Could nanotechnology improve exercise performance? Evidence from animal studies. Braz J Med Biol Res 2024; 57:e13360. [PMID: 38656076 PMCID: PMC11027182 DOI: 10.1590/1414-431x2024e13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
This review provides the current state of knowledge regarding the use of nutritional nanocompounds on exercise performance. The reviewed studies used the following nanocompounds: resveratrol-loaded lipid nanoparticles, folic acid into layered hydroxide nanoparticle, redox-active nanoparticles with nitroxide radicals, and iron into liposomes. Most of these nutritional nanocompounds seem to improve performance in endurance exercise compared to the active compound in the non-nanoencapsulated form and/or placebo. Nutritional nanocompounds also induced the following physiological and metabolic alterations: 1) improved antioxidant activity and reduced oxidative stress; 2) reduction in inflammation status; 3) maintenance of muscle integrity; 4) improvement in mitochondrial function and quality; 5) enhanced glucose levels during exercise; 6) higher muscle and hepatic glycogen levels; and 7) increased serum and liver iron content. However, all the reviewed studies were conducted in animals (mice and rats). In conclusion, nutritional nanocompounds are a promising approach to improving exercise performance. As the studies using nutritional nanocompounds were all conducted in animals, further studies in humans are necessary to better understand the application of nutritional nanocompounds in sport and exercise science.
Collapse
Affiliation(s)
- M.R. Lima
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| | - B.J. Moreira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - R. Bertuzzi
- Grupo de Estudos em Desempenho Aeróbio, Escola de Educação Física e Esporte, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A.E. Lima-Silva
- Grupo de Pesquisa em Desempenho Humano, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
5
|
Hor JW, Toh TS, Lim SY, Tan AH. Advice to People with Parkinson's in My Clinic: Probiotics and Prebiotics. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1507-1518. [PMID: 39213091 PMCID: PMC11492197 DOI: 10.3233/jpd-240172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
There is increasing evidence that microbial-based therapies can be useful in people with Parkinson's disease (PD). In this viewpoint, we provide a state-of-the-art review of the clinical and pre-clinical evidence for probiotics and prebiotics in PD. Currently, short-term clinical studies, including double-blind placebo-controlled randomized clinical trials, have demonstrated safety, and efficacy primarily in improving constipation-related symptoms. Pre-clinical studies consistently reported improvements in a range of biological markers and outcomes, including evidence for attenuation of gut dysfunction and neuroprotection. Bacteria from the genus Lactobacillus and Bifidobacterium have been the most frequently studied both in clinical and pre-clinical probiotics studies, while research into prebiotics is still limited and primarily involved resistant starch and fructooligosaccharides. We provide practical suggestions for clinicians on how to advise patients in the clinic regarding these popular treatments, and important caveats to be aware of. Finally, areas for further advancements are highlighted. It is envisaged that in the future, microbial-based therapies may benefit from personalization based on an enhanced understanding of a whole range of host factors and host-microbiome interactions.
Collapse
Affiliation(s)
- Jia Wei Hor
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shen-Yang Lim
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai Huey Tan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Morella I, Negro M, Dossena M, Brambilla R, D'Antona G. Gut-muscle-brain axis: Molecular mechanisms in neurodegenerative disorders and potential therapeutic efficacy of probiotic supplementation coupled with exercise. Neuropharmacology 2023; 240:109718. [PMID: 37774944 DOI: 10.1016/j.neuropharm.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/01/2023]
Abstract
Increased longevity is often associated with age-related conditions. The most common neurodegenerative disorders in the older population are Alzheimer's disease (AD) and Parkinson's disease (PD), associated with progressive neuronal loss leading to functional and cognitive impairments. Although symptomatic treatments are available, there is currently no cure for these conditions. Gut dysbiosis has been involved in the pathogenesis of AD and PD, thus interventions targeting the "gut-brain axis" could potentially prevent or delay these pathologies. Recent evidence suggests that the skeletal muscle and the gut microbiota can affect each other via the "gut-muscle axis". Importantly, cognitive functions in AD and PD patients significantly benefit from physical activity. In this review, we aim to provide a comprehensive picture of the crosstalk between the brain, the skeletal muscle and the gut microbiota, introducing the concept of "gut-muscle-brain axis". Moreover, we discuss human and animal studies exploring the modulatory role of exercise and probiotics on cognition in AD and PD. Collectively, the findings presented here support the potential benefits of physical activity and probiotic supplementation in AD and PD. Further studies will be needed to develop targeted and multimodal strategies, including lifestyle changes, to prevent or delay the course of these pathologies.
Collapse
Affiliation(s)
- Ilaria Morella
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Riccardo Brambilla
- Neuroscience and Mental Health Innovation Institute, School of Biosciences, Cardiff University, Cardiff, UK; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale Nelle Attività Motorie e Sportive (CRIAMS)-Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
7
|
Nápoles-Medina AY, Aguilar-Uscanga BR, Solís-Pacheco JR, Tejeda-Martínez AR, Ramírez-Jirano LJ, Urmeneta-Ortiz MF, Chaparro-Huerta V, Flores-Soto ME. Oral Administration of Lactobacillus Inhibits the Permeability of Blood-Brain and Gut Barriers in a Parkinsonism Model. Behav Neurol 2023; 2023:6686037. [PMID: 38025189 PMCID: PMC10653970 DOI: 10.1155/2023/6686037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
It has recently been shown that the administration of probiotics can modulate the microbiota-gut-brain axis and may have favorable effects in models of Parkinson's disease. In this study, we used a hemiparkinsonism model induced by the neurotoxin 6-OHDA to evaluate the efficacy of the administration of a four-week administration of a mixture containing the microorganisms Lactobacillus fermentum LH01, Lactobacillus reuteri LH03, and Lactobacillus plantarum LH05. The hemiparkinsonism model induced an increase in rotations in the apomorphine test, along with a decrease in the latency time to fall in the rotarod test on days 14 and 21 after surgery, respectively. The administration of probiotics was sufficient to improve this condition. The model also showed a decrease in tyrosine hydroxylase immunoreactivity in the striatum and the number of labeled cells in the substantia nigra, both of which were counteracted by the administration of probiotics. The permeability of the blood-brain barrier was increased in the model, but this effect was reversed by the probiotics for both brain regions. The gut barrier was permeated with the model, and this effect was reversed and dropped to lower levels than the control group after the administration of probiotics. Finally, lipid peroxidation showed a pattern of differences similar to that of permeabilities. The inhibition of the permeability of the blood-brain and gut barriers mediated by the administration of probiotics will likely provide protection by downregulating oxidative stress, thus affecting the rotarod test performance.
Collapse
Affiliation(s)
- Angélica Y. Nápoles-Medina
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Blanca R. Aguilar-Uscanga
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Josué R. Solís-Pacheco
- Departamento de Farmacobiología, Laboratorio de Microbiología Industrial, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, Olímpica, C.P. 44430 Guadalajara, Jalisco, Mexico
| | - Aldo R. Tejeda-Martínez
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Luis J. Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica Occidente (IMSS), Guadalajara, Mexico
| | - María F. Urmeneta-Ortiz
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Veronica Chaparro-Huerta
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| | - Mario E. Flores-Soto
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, Sierra Mojada #800, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico
| |
Collapse
|
8
|
Peña-Cearra A, Song D, Castelo J, Palacios A, Lavín JL, Azkargorta M, Elortza F, Fuertes M, Pascual-Itoiz MA, Barriales D, Martín-Ruiz I, Fullaondo A, Aransay AM, Rodríguez H, Palm NW, Anguita J, Abecia L. Mitochondrial dysfunction promotes microbial composition that negatively impacts on ulcerative colitis development and progression. NPJ Biofilms Microbiomes 2023; 9:74. [PMID: 37805634 PMCID: PMC10560208 DOI: 10.1038/s41522-023-00443-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023] Open
Abstract
Recent evidence demonstrates potential links between mitochondrial dysfunction and inflammatory bowel diseases (IBD). In addition, bidirectional interactions between the intestinal microbiota and host mitochondria may modulate intestinal inflammation. We observed previously that mice deficient in the mitochondrial protein MCJ (Methylation-controlled J protein) exhibit increased susceptibility to DSS colitis. However, it is unclear whether this phenotype is primarily driven by MCJ-/- associated gut microbiota dysbiosis or by direct effects of MCJ-deficiency. Here, we demonstrate that fecal microbiota transplantation (FMT) from MCJ-deficient into germ-free mice was sufficient to confer increased susceptibility to colitis. Therefore, an FMT experiment by cohousing was designed to alter MCJ-deficient microbiota. The phenotype resulting from complex I deficiency was reverted by FMT. In addition, we determined the protein expression pathways impacted by MCJ deficiency, providing insight into the pathophysiology of IBD. Further, we used magnetic activated cell sorting (MACS) and 16S rRNA gene sequencing to characterize taxa-specific coating of the intestinal microbiota with Immunoglobulin A (IgA-SEQ) in MCJ-deficient mice. We show that high IgA coating of fecal bacteria observed in MCJ-deficient mice play a potential role in disease progression. This study allowed us to identify potential microbial signatures in feces associated with complex I deficiency and disease progression. This research highlights the importance of finding microbial biomarkers, which might serve as predictors, permitting the stratification of ulcerative colitis (UC) patients into distinct clinical entities of the UC spectrum.
Collapse
Affiliation(s)
- Ainize Peña-Cearra
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Janire Castelo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Jose Luis Lavín
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Felix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
- ProteoRed-ISCIII, 28029, Madrid, Spain
| | - Miguel Fuertes
- Applied Mathematics Department - Bioinformatics Unit, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Miguel Angel Pascual-Itoiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Diego Barriales
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Itziar Martín-Ruiz
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
- CIBERehd, ISCIII, 28029, Madrid, Spain
| | - Hector Rodríguez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, 06519 CT, USA
| | - Juan Anguita
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| | - Leticia Abecia
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park Bld 801 A, 48160, Derio, Spain.
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48080, Bilbao, Spain.
| |
Collapse
|
9
|
Chen JF, Ou-Yang MC, Hsia KC, Li CM, Yeh YT, Ho HH. A Three-Arm, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety of Lactobacillus salivarius AP-32 and Bifidobacterium animalis CP-9 Used Individually in Healthy Infants. Nutrients 2023; 15:3426. [PMID: 37571365 PMCID: PMC10421338 DOI: 10.3390/nu15153426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Probiotics are considered safe and beneficial to human health. However, the safety of Lactobacillus salivarius AP-32 and Bifidobacterium animalis CP-9 in infants has not been confirmed. This study was to assess the safety of long-term oral administration of L. salivarius AP-32 and B. animalis CP-9 in healthy infants compared with placebo. A three-arm, randomized, double-blind, placebo-controlled trial was conducted in healthy, full-term infants. Eighty-eight infants between 7 days and 2 months (60 ± 7 days) of age were selected and randomized to treatment with L. salivarius AP-32, B. animalis CP-9 or placebo for 4 months. The unblinding indicated subjects were randomized to receive B. animalis CP-9 (N = 28), L. salivarius AP-32 (N = 29), or placebo (N = 31). A total of 76 infants completed the 4-month treatment with fully compliance. The primary outcome was weight gain, with no significant difference in infant weight at 4 months when comparing AP-32 or CP-9 group with the placebo group, either. The head circumference and recumbent length of the CP-9 group were not significantly different from those of the placebo group. The recumbent length of the AP-32 group was slightly lower than that in the placebo group at month 4, but there was no difference between the two groups in head circumference. Overall, the growth trend of all treatments was similar without significant difference. Furthermore, there were no apparent differences between each group in digestive tolerance, the occurrence of adverse events, crying/fussing time and episodes, alpha diversity, and beta diversity. The CP-9 group showed a significant increase in the abundance of the Bacteroides genus, while the AP-32 group demonstrated a significant increase in the abundance of the Lactobacillus genus when comparing the two probiotic groups. Our study findings indicate that the oral administration of both AP-32 and CP-9 strains has a positive impact on the maintenance of a healthy gut flora in infants. Long-term use of L. salivarius AP-32 or B. animalis CP-9 is safe for infants from 7 days to 6 months of age.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | - Mei-Chen Ou-Yang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Ko-Chiang Hsia
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | | | - Ching-Min Li
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| | - Yao-Tsung Yeh
- Aging and Disease Prevention Research Center, Fooyin University, Kaohsiung 831, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 831, Taiwan
| | - Hsieh-Hsun Ho
- Department of Research and Design, Glac Biotech Co., Ltd., Tainan 744, Taiwan; (J.-F.C.); (K.-C.H.); (C.-M.L.)
| |
Collapse
|
10
|
Hawrysh PJ, Gao J, Tan S, Oh A, Nodwell J, Tompkins TA, McQuibban GA. PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis. Autophagy 2023; 19:2094-2110. [PMID: 36708254 PMCID: PMC10283409 DOI: 10.1080/15548627.2023.2172873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.
Collapse
Affiliation(s)
| | - Jinghua Gao
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Stephanie Tan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Amy Oh
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Justin Nodwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
11
|
Parra I, Martínez I, Vásquez-Celaya L, Gongora-Alfaro JL, Tizabi Y, Mendieta L. Neuroprotective and Immunomodulatory Effects of Probiotics in a Rat Model of Parkinson's Disease. Neurotox Res 2023; 41:187-200. [PMID: 36662412 DOI: 10.1007/s12640-022-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/21/2023]
Abstract
It is now well recognized that a bidirectional relationship between gut microbiota and the brain, referred to as the gut-brain axis, plays a prominent role in maintaining homeostasis and that a disruption in this axis can result in neuroinflammatory response and neurological disorders such as Parkinson's disease (PD). The protective action of probiotics such as Bifidobacterium animalis ssp. lactis Bb12 and Lactobacillus rhamnosus GG in various animal models of PD has been reported. Therefore, in this study, we used an inflammatory model of PD to assess the effects of a combination of these two probiotics (Microbiot®) on motor behavior as well as on the response of microglia, including microglia morphology, to gain a better understanding of their mechanism of action. Microbiot® (300 µL) was administered orally once daily for 15 days in a lipopolysaccharide-induced PD model using male Wistar rats. Although LPS-induced motor asymmetry in cylinder test was not affected by Microbiot®, impairment of motor coordination in the narrow-beam test was significantly reduced by this probiotic. Moreover, Microbiot® treatment reduced microglial activation suggesting an anti-inflammatory effect. While further mechanistic investigation of Microbiot® in neurodegenerative diseases is warranted, our results support the potential utility of probiotics in PD.
Collapse
Affiliation(s)
- Irving Parra
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, San Claudio CU, 14 Sur Y AvCol. San Manuel, 72570, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, San Claudio CU, 14 Sur Y AvCol. San Manuel, 72570, Puebla, Mexico
| | - Lizbeth Vásquez-Celaya
- Laboratorio de Neurofisiología, Centro de Investigaciones Regionales "Dr, Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Jose L Gongora-Alfaro
- Laboratorio de Neurofisiología, Centro de Investigaciones Regionales "Dr, Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Liliana Mendieta
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, San Claudio CU, 14 Sur Y AvCol. San Manuel, 72570, Puebla, Mexico.
| |
Collapse
|
12
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
13
|
The Crosstalk between Microbiome and Mitochondrial Homeostasis in Neurodegeneration. Cells 2023; 12:cells12030429. [PMID: 36766772 PMCID: PMC9913973 DOI: 10.3390/cells12030429] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are highly dynamic organelles that serve as the primary cellular energy-generating system. Apart from ATP production, they are essential for many biological processes, including calcium homeostasis, lipid biogenesis, ROS regulation and programmed cell death, which collectively render them invaluable for neuronal integrity and function. Emerging evidence indicates that mitochondrial dysfunction and altered mitochondrial dynamics are crucial hallmarks of a wide variety of neurodevelopmental and neurodegenerative conditions. At the same time, the gut microbiome has been implicated in the pathogenesis of several neurodegenerative disorders due to the bidirectional communication between the gut and the central nervous system, known as the gut-brain axis. Here we summarize new insights into the complex interplay between mitochondria, gut microbiota and neurodegeneration, and we refer to animal models that could elucidate the underlying mechanisms, as well as novel interventions to tackle age-related neurodegenerative conditions, based on this intricate network.
Collapse
|
14
|
Mehrabani S, Khorvash F, Heidari Z, Tajabadi-Ebrahimi M, Amani R. The effects of synbiotic supplementation on oxidative stress markers, mental status, and quality of life in patients with Parkinson’s disease: A double-blind, placebo-controlled, randomized controlled trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
16
|
Chronic Treatment with the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 Attenuates Motor Impairment, Striatal Microglial Activation, and Dopaminergic Loss in Rats with 6-Hydroxydopamine-induced Hemiparkinsonism. Neuroscience 2022; 507:79-98. [PMID: 36370934 DOI: 10.1016/j.neuroscience.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Gut dysbiosis is considered a risk factor for Parkinson's disease (PD), and chronic treatment with probiotics could prevent it. Here we report the assessment of a probiotic mixture [Lacticaseibacillus rhamnosus GG (LGG), and Bifidobacterium animalis lactis BB-12 (BB-12)] administered to male rats 2 weeks before and 3 weeks after injecting 6-hydroxydopamine (6-OHDA) into the right striatum, a model that mimics the early stages of PD. Before and after lesion, animals were subjected to behavioral tests: narrow beam, cylinder test, and apomorphine (APO)-induced rotations. Dopaminergic (DA) denervation and microglia recruitment were assessed with tyrosine hydroxylase (TH+) and ionized calcium-binding protein-1 adapter (Iba1+) immunostaining, respectively. Post 6-OHDA injury, rats treated with sunflower oil (probiotics vehicle) developed significant decrease in crossing speed and increases in contralateral paw slips (narrow beam), forepaw use asymmetry (cylinder), and APO-induced rotations. In striatum, 6-OHDA eliminated ≈2/3 of TH+ area and caused significant increase of Iba1+ microglia population. Retrograde axonal degeneration suppressed ≈2/5 of TH+ neurons in the substantia nigra pars compacta (SNpc). In hemiparkinsonian rats, probiotics treatment significantly improved the crossing speed, and also reduced paw slips (postlesion days 14 and 21), the loss of TH+ neurons in SNpc, and the loss of TH+ area and of Iba1+ microglia count in striatum, without affecting the proportion of microglia morphological phenotypes. Probiotics treatment did not attenuate forepaw use asymmetry nor APO-induced rotations. These results indicate that the mixture of probiotics LGG and BB-12 protects nigrostriatal DA neurons against 6-OHDA-induced damage, supporting their potential as preventive treatment of PD.
Collapse
|
17
|
Mangosteen Pericarp Extract Supplementation Boosts Antioxidant Status via Rebuilding Gut Microbiota to Attenuate Motor Deficit in 6-OHDA-Induced Parkinson's Disease. Antioxidants (Basel) 2022; 11:antiox11122396. [PMID: 36552604 PMCID: PMC9774421 DOI: 10.3390/antiox11122396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and gut dysbiosis have been known to precede Parkinson's disease (PD). An antioxidant-rich product, mangosteen pericarp (MP), has the ability to counterbalance excessive free radicals and the imbalanced gut microbiota composition, suggesting the MP's capacity to delay PD progression. In this study, we explored the effects of two doses of MP extract in a unilateral 6-hydroxydopamine (6-OHDA)-induced PD rat model. We revealed that the 8-week supplementation of a low dose (LMP) and a high dose of the MP extract (HMP) improved motor function, as observed in decreased contralateral rotation, improved time spent on rod, and higher dopamine binding transporter (DAT) in the substantia nigra pars compacta (SNc). The MP extract, especially the HMP, also increased antioxidant-related gene expressions, restored muscle mitochondrial function, and remodeled fecal microbiota composition, which were followed by reduced reactive oxygen species levels in brain and inflammation in plasma. Importantly, bacterial genera Sutterella, Rothia, and Aggregatibacter, which were negatively correlated with antioxidant gene expressions, decreased in the HMP group. It is imperative to note that in addition to directly acting as an antioxidant to reduce excessive free radicals, MP extract might also increase antioxidant state by rebuilding gut microbiota, thereby enhanced anti-inflammatory capacity and restored mitochondrial function to attenuate motor deficit in 6-OHDA-induced PD-like condition. All in all, MP extract is a potential candidate for auxiliary therapy for PD.
Collapse
|
18
|
Tung YT, Wu CH, Chen WC, Pan CH, Chen YW, Tsao SP, Chen CJ, Huang HY. Ascophyllum nodosum and Fucus vesiculosus Extracts Improved Lipid Metabolism and Inflammation in High-Energy Diet-Induced Hyperlipidemia Rats. Nutrients 2022; 14:4665. [PMID: 36364926 PMCID: PMC9658475 DOI: 10.3390/nu14214665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Ascophyllum nodosum and Fucus vesiculosus both contain unique polyphenols called phlorotannins. Phlorotannins reportedly possess various pharmacological activities. A previous study reported that the activity of phlorotannin is strongly correlated with the normalization of metabolic function, and phlorotannins are extremely promising nutrients for use in the treatment of metabolic syndrome. To date, no study has explored the antihyperlipidemic effects of phlorotannins from A. nodosum and F. vesiculosus in animal models. Therefore, in the present study, we investigated the effects of phlorotannins using a rat model of high-energy diet (HED)-induced hyperlipidemia. The results showed that the rats that were fed an HED and treated with phlorotannin-rich extract from A. nodosum and F. vesiculosus had significantly lower serum fasting blood sugar (FBS), aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triacylglyceride (TG) and free fatty acids (FFAs) levels and hepatic TG level and had higher serum insulin, high-density lipoprotein cholesterol (HDL-C) levels and lipase activity in their fat tissues than in the case with the rats that were fed the HED alone. A histopathological analysis revealed that phlorotannin-rich extract could significantly reduce the size of adipocytes around the epididymis. In addition, the rats treated with phlorotannin-rich extract had significantly lowered interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels and increased superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities than did those in the HED group. These results suggested that the phlorotannin-rich extract stimulated lipid metabolism and may have promoted lipase activity in rats with HED-induced hyperlipidemia. Our results indicated that A. nodosum and F. vesiculosus, marine algae typically used as health foods, have strong antihyperlipidemic effects and may, therefore, be useful for preventing atherosclerosis. These algae may be incorporated into antihyperlipidemia pharmaceuticals and functional foods.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chieh-Hsi Wu
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chao Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chun-Hsu Pan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Jung Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Digestive Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
20
|
Raj K, Singh S, Chib S, Mallan S. Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Curr Pharm Des 2022; 28:3049-3067. [PMID: 36200207 DOI: 10.2174/1381612828666221003112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/02/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.
Collapse
Affiliation(s)
- Khadga Raj
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shivani Chib
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Sudhanshu Mallan
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
21
|
Skowron K, Budzyńska A, Wiktorczyk-Kapischke N, Chomacka K, Grudlewska-Buda K, Wilk M, Wałecka-Zacharska E, Andrzejewska M, Gospodarek-Komkowska E. The Role of Psychobiotics in Supporting the Treatment of Disturbances in the Functioning of the Nervous System-A Systematic Review. Int J Mol Sci 2022; 23:7820. [PMID: 35887166 PMCID: PMC9319704 DOI: 10.3390/ijms23147820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Stress and anxiety are common phenomena that contribute to many nervous system dysfunctions. More and more research has been focusing on the importance of the gut-brain axis in the course and treatment of many diseases, including nervous system disorders. This review aims to present current knowledge on the influence of psychobiotics on the gut-brain axis based on selected diseases, i.e., Alzheimer's disease, Parkinson's disease, depression, and autism spectrum disorders. Analyses of the available research results have shown that selected probiotic bacteria affect the gut-brain axis in healthy people and people with selected diseases. Furthermore, supplementation with probiotic bacteria can decrease depressive symptoms. There is no doubt that proper supplementation improves the well-being of patients. Therefore, it can be concluded that the intestinal microbiota play a relevant role in disorders of the nervous system. The microbiota-gut-brain axis may represent a new target in the prevention and treatment of neuropsychiatric disorders. However, this topic needs more research. Such research could help find effective treatments via the modulation of the intestinal microbiome.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Karolina Chomacka
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Monika Wilk
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Małgorzata Andrzejewska
- Department of Hygiene, Epidemiology, Ergonomy and Postgraduate Education, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland;
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.B.); (N.W.-K.); (K.C.); (K.G.-B.); (M.W.); (E.G.-K.)
| |
Collapse
|
22
|
Fan HX, Sheng S, Zhang F. New hope for Parkinson's disease treatment: Targeting gut microbiota. CNS Neurosci Ther 2022; 28:1675-1688. [PMID: 35822696 PMCID: PMC9532916 DOI: 10.1111/cns.13916] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/14/2022] Open
Abstract
There might be more than 10 million confirmed cases of Parkinson's disease (PD) worldwide by 2040. However, the pathogenesis of PD is still unclear. Host health is closely related to gut microbiota, which are affected by factors such as age, diet, and exercise. Recent studies have found that gut microbiota may play key roles in the progression of a wide range of diseases, including PD. Changes in the abundance of gut bacteria, such as Helicobacter pylori, Enterococcus faecalis, and Desulfovibrio, might be involved in PD pathogenesis or interfere with PD therapy. Gut microbiota and the distal brain achieve action on each other through a gut‐brain axis composed of the nervous system, endocrine system, and immune system. Here, this review focused on the current understanding of the connection between Parkinson's disease and gut microbiota, to provide potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Hong-Xia Fan
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Sheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
23
|
Gubert C, Gasparotto J, H. Morais L. Convergent pathways of the gut microbiota-brain axis and neurodegenerative disorders. Gastroenterol Rep (Oxf) 2022; 10:goac017. [PMID: 35582476 PMCID: PMC9109005 DOI: 10.1093/gastro/goac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Recent research has been uncovering the role of the gut microbiota for brain health and disease. These studies highlight the role of gut microbiota on regulating brain function and behavior through immune, metabolic, and neuronal pathways. In this review we provide an overview of the gut microbiota axis pathways to lay the groundwork for upcoming sessions on the links between the gut microbiota and neurogenerative disorders. We also discuss how the gut microbiota may act as an intermediate factor between the host and the environment to mediate disease onset and neuropathology. Based on the current literature, we further examine the potential for different microbiota-based therapeutic strategies to prevent, to modify, or to halt the progress of neurodegeneration.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, Alfenas, Minas Gerais, Brasil
| | - Livia H. Morais
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
24
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
25
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Probiotic Enhancement of Antioxidant Capacity and Alterations of Gut Microbiota Composition in 6-Hydroxydopamin-Induced Parkinson's Disease Rats. Antioxidants (Basel) 2021; 10:antiox10111823. [PMID: 34829694 PMCID: PMC8615185 DOI: 10.3390/antiox10111823] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress plays a key role in the degeneration of dopaminergic neurons in Parkinson's disease (PD), which may be aggravated by concomitant PD-associated gut dysbiosis. Probiotics and prebiotics are therapeutically relevant to these conditions due to their antioxidant, anti-inflammatory, and gut microbiome modulation properties. However, the mechanisms by which probiotic/prebiotic supplementation affects antioxidant capacity and the gut microbiome in PD remains poorly characterized. In this study, we assessed the effects of a Lactobacillus salivarius AP-32 probiotic, a prebiotic (dried AP-32 culture medium supernatant), and a probiotic/prebiotic cocktail in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced PD. The neuroprotective effects and levels of oxidative stress were evaluated after eight weeks of daily supplementation. Fecal microbiota composition was analyzed by fecal 16S rRNA gene sequencing. The supplements were associated with direct increases in host antioxidant enzyme activities and short-chain fatty acid production, protected dopaminergic neurons, and improved motor functions. The supplements also altered the fecal microbiota composition, and some specifically enriched commensal taxa correlated positively with superoxide dismutase, glutathione peroxidase, and catalase activity, indicating supplementation also promotes antioxidant activity via an indirect pathway. Therefore, L. salivarius AP-32 supplementation enhanced the activity of host antioxidant enzymes via direct and indirect modes of action in rats with 6-OHDA-induced PD.
Collapse
|