1
|
Holland C, Dravecz N, Owens L, Benedetto A, Dias I, Gow A, Broughton S. Understanding exogenous factors and biological mechanisms for cognitive frailty: A multidisciplinary scoping review. Ageing Res Rev 2024; 101:102461. [PMID: 39278273 DOI: 10.1016/j.arr.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
Cognitive frailty (CF) is the conjunction of cognitive impairment without dementia and physical frailty. While predictors of each element are well-researched, mechanisms of their co-occurrence have not been integrated, particularly in terms of relationships between social, psychological, and biological factors. This interdisciplinary scoping review set out to categorise a heterogenous multidisciplinary literature to identify potential pathways and mechanisms of CF, and research gaps. Studies were included if they used the definition of CF OR focused on conjunction of cognitive impairment and frailty (by any measure), AND excluded studies on specific disease populations, interventions, epidemiology or prediction of mortality. Searches used Web of Science, PubMed and Science Direct. Search terms included "cognitive frailty" OR (("cognitive decline" OR "cognitive impairment") AND (frail*)), with terms to elicit mechanisms, predictors, causes, pathways and risk factors. To ensure inclusion of animal and cell models, keywords such as "behavioural" or "cognitive decline" or "senescence", were added. 206 papers were included. Descriptive analysis provided high-level categorisation of determinants from social and environmental through psychological to biological. Patterns distinguishing CF from Alzheimer's disease were identified and social and psychological moderators and mediators of underlying biological and physiological changes and of trajectories of CF development were suggested as foci for further research.
Collapse
Affiliation(s)
- Carol Holland
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Nikolett Dravecz
- Division of Health Research, Health Innovation One, Sir John Fisher Drive, Lancaster University, Lancaster LA1 4YW, UK.
| | - Lauren Owens
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Alexandre Benedetto
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| | - Irundika Dias
- Aston University Medical School, Aston University, Birmingham B4 7ET, UK.
| | - Alan Gow
- Centre for Applied Behavioural Sciences, Department of Psychology, School of Social Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Susan Broughton
- Division of Biomedical and Life Sciences, Furness College, Lancaster University, LA1 4YG, UK.
| |
Collapse
|
2
|
Chao CT, Chiang CK, Hung KY. Extracellular MicroRNAs as Potential Biomarkers for Frail Kidney Phenotype: Progresses and Precautions. Aging Dis 2024; 15:1474-1481. [PMID: 37611904 PMCID: PMC11272190 DOI: 10.14336/ad.2023.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Frailty describes the cumulative subtle health deficits leading to an increased vulnerability to insults among older individuals or disease-laden ones. The prevalence of frailty increases substantially and relentlessly over declining renal function. Frailty in patients with chronic kidney disease (CKD) carries kidney-specific risk factors, clinical correlates and outcomes associations, hence alternatively termed frail kidney phenotype by researchers. Pathogenetically, miRNAs participate extensively in the development and aggravation of frailty, including the occurrence of frail kidney phenotype in CKD patients. These understandings spark profound interest in discovering biomarkers for identifying this detrimental phenotype, and extracellular miRNAs emerge as potentially useful ones. Pilot studies identify promising miRNA candidates for evaluating intermediates and surrogates of frail kidney phenotype, and more are underway. Several potential miRNA species in biologic fluids, such as circulating miR-29b and miR-223 (as inflammatory markers), exosomal miR-16-5p, miR-17/92 cluster members, and miR-106-5p (for uremic vasculopathy), serum exosomal miR-203a-3p (for uremic sarcopenia) have been examined and can be promising choices. Nonetheless, there remains research gap in affirming the direct connections between specific miRNAs and frail kidney phenotype. This stems partially from multiple limitations less well acknowledged before. From this perspective, we further outline the limitations and precautions prior to validating specific extracellular miRNA(s) for this purpose, from the definition of frailty definition, the functional and tissue specificity of miRNAs, the severity of CKD, and various technical considerations. It is expected that more affirmative studies can be produced for extending the utility of extracellular miRNAs in predicting frail kidney phenotype.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital BeiHu branch, Taipei, Taiwan.
- Center of Faculty Development, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Blood purification division, Department of Integrative Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Kuan-Yu Hung
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Nephrology division, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
3
|
Venkatesan D, Muthukumar S, Iyer M, Babu HWS, Gopalakrishnan AV, Yadav MK, Vellingiri B. Heavy metals toxicity on epigenetic modifications in the pathogenesis of Alzheimer's disease (AD). J Biochem Mol Toxicol 2024; 38:e23741. [PMID: 38816991 DOI: 10.1002/jbt.23741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD) is a progressive decline in cognitive ability and behavior which eventually disrupts daily activities. AD has no cure and the progression rate varies unlikely. Among various causative factors, heavy metals are reported to be a significant hazard in AD pathogenesis. Metal-induced neurodegeneration has been focused globally with thorough research to unravel the mechanistic insights in AD. Recently, heavy metals suggested to play an important role in epigenetic alterations which might provide evidential results on AD pathology. Epigenetic modifications are known to play towards novel therapeutic approaches in treating AD. Though many studies focus on epigenetics and heavy metal implications in AD, there is a lack of research on heavy metal influence on epigenetic toxicity in neurological disorders. The current review aims to elucidate the plausible role of cadmium (Cd), iron (Fe), arsenic (As), copper (Cu), and lithium (Li) metals on epigenetic factors and the increase in amyloid beta and tau phosphorylation in AD. Also, the review discusses the common methods of heavy metal detection to implicate in AD pathogenesis. Hence, from this review, we can extend the need for future research on identifying the mechanistic behavior of heavy metals on epigenetic toxicity and to develop diagnostic and therapeutic markers in AD.
Collapse
Affiliation(s)
- Dhivya Venkatesan
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Sindduja Muthukumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Qin T, Fan C, Liu Q, Wang J, Zhu X. Development and validation of a nomogram for predicting cognitive frailty in patients on maintenance haemodialysis. J Adv Nurs 2024. [PMID: 38807450 DOI: 10.1111/jan.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
AIMS This study aimed to construct a nomogram for predicting the risk of cognitive frailty in patients on maintenance haemodialysis. DESIGN An explorative cross-sectional design was adopted. METHODS From April 2022 to July 2022, 496 participants were recruited from five haemodialysis centres in Qingdao, Shandong Province, China. Participants with cognitive frailty were screened by Frailty Phenotype scale and Mini-Mental State Examination. Least Absolute Shrinkage and Selection Operator (LASSO) regression and multivariate logistic regression were utilized to determine predictors. The predictive performance of the nomogram was validated by calibration and discrimination. Decision curve analysis was used to assess clinical utility. Internal validation was implemented using 1000 bootstrap samples to mitigate overfitting. RESULTS The prevalence of cognitive frailty was 17.5% (n = 87). Six risk predictors, namely health empowerment, alexithymia, age, educational level, marital status and dialysis vintage, were screened and used to develop a nomogram model. The nomogram had satisfactory discrimination and calibration, and decision curve analysis revealed considerable clinical utility. CONCLUSIONS A nomogram incorporated with the six risk predictors was developed, and it exhibited excellent prediction performance. The nomogram may strengthen the effective screening of patients at high risk of cognitive frailty. IMPACT This study established a tool for healthcare staff to predict cognitive frailty probability and identify risk factors in patients on maintenance haemodialysis. The nomogram can meet the needs of personalized care and precision medicine simultaneously. PATIENT OR PUBLIC CONTRIBUTION Data were collected from patients on maintenance haemodialysis by using questionnaire survey. REPORTING METHOD STROBE checklist was used.
Collapse
Affiliation(s)
- Tong Qin
- Nursing department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chun Fan
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Qingwei Liu
- Nursing department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jizhe Wang
- Nursing department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiuli Zhu
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Musazzi L, Carini G, Barbieri SS, Maggi S, Veronese N, Popoli M, Barbon A, Ieraci A. Phenotypic Frailty Assessment in SAMP8 Mice: Sex Differences and Potential Role of miRNAs as Peripheral Biomarkers. J Gerontol A Biol Sci Med Sci 2023; 78:1935-1943. [PMID: 37422721 DOI: 10.1093/gerona/glad160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 07/10/2023] Open
Abstract
Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research. The senescence-accelerated prone-8 (SAMP8) mouse strain exhibits early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as a model of aging and neurodegenerative diseases. Here, we examined the frailty phenotype, which includes body weight, strength, endurance, activity, and slow walking speed, in male and female SAMP8 and senescence-accelerated mouse resistant (SAMR1) mice at 6- and 9-months of age. We found that the prevalence of frailty was higher in SAMP8 mice compared with SAMR1 mice, regardless of sex. The overall percentage of prefrail and frail mice was similar in male and female SAMP8 mice, although the percentage of frail mice was slightly higher in males than in females. In addition, we found sex- and frailty-specific changes in selected miRNAs blood levels. In particular, the levels of miR-34a-5p and miR-331-3p were higher in both prefrail and frail mice, whereas miR-26b-5p was increased only in frail mice compared with robust mice. Finally, levels of miR-331-3p were also increased in whole blood from a small group of frail patients. Overall, these results suggest that SAMP8 mice may be a useful mouse model for identifying potential biomarkers and studying biological mechanisms of frailty.
Collapse
Affiliation(s)
- Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Stefania Maggi
- Aging Branch, Neuroscience Institute, National Research Council, Padua, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| |
Collapse
|
6
|
Mone P, Lombardi A, Kansakar U, Varzideh F, Jankauskas SS, Pansini A, Marzocco S, De Gennaro S, Famiglietti M, Macina G, Frullone S, Santulli G. Empagliflozin Improves the MicroRNA Signature of Endothelial Dysfunction in Patients with Heart Failure with Preserved Ejection Fraction and Diabetes. J Pharmacol Exp Ther 2023; 384:116-122. [PMID: 36549862 PMCID: PMC9827502 DOI: 10.1124/jpet.121.001251] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 01/12/2023] Open
Abstract
Endothelial dysfunction represents a key mechanism underlying heart failure with preserved ejection fraction (HFpEF), diabetes mellitus (DM), and frailty. However, reliable biomarkers to monitor endothelial dysfunction in these patients are lacking. In this study, we evaluated the expression of a panel of circulating microRNAs (miRs) involved in the regulation of endothelial function in a population of frail older adults with HFpEF and DM treated for 3 months with empagliflozin, metformin, or insulin. We identified a distinctive pattern of miRs that were significantly regulated in HFpEF patients compared to healthy controls and to HFpEF patients treated with the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin. Three miRs were significantly downregulated (miR-126, miR-342-3p, and miR-638) and two were significantly upregulated (miR-21 and miR-92) in HFpEF patients compared to healthy controls. Strikingly, two of these miRs (miR-21 and miR-92) were significantly reduced in HFpEF patients after the 3-month treatment with empagliflozin, whereas no significant differences in the profile of endothelial miRs were detected in patients treated with metformin or insulin. Taken together, our findings demonstrate for the first time that specific circulating miRs involved in the regulation of endothelial function are significantly regulated in frail HFpEF patients with DM and in response to SGLT2 inhibition. SIGNIFICANCE STATEMENT: We have identified a novel microRNA signature functionally involved in the regulation of endothelial function that is significantly regulated in frail patients with HFpEF and diabetes. Moreover, the treatment with the SGLT2 inhibitor empagliflozin caused a modification of some of these microRNAs in a direction that was opposite to what observed in HFpEF patients, indicating a rescue of endothelial function. Our findings are relevant for clinical practice inasmuch as we were able to establish novel biomarkers of disease and response to therapy.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Urna Kansakar
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Fahimeh Varzideh
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Stanislovas S Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Antonella Pansini
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Stefania Marzocco
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Stefano De Gennaro
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Michele Famiglietti
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Gaetano Macina
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Salvatore Frullone
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York City, New York (P.M., A.L., U.K., F.V., S.S.J., G.S.); Azienda Sanitaria Locale (ASL) Avellino, Avellino, Italy (P.M., A.P., S.D.G., M.F., G.M., S.F.); University of Salerno, Fisciano, Italy (S.M.); International Translational Research and Medical Education Consortium (ITME) and Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy (G.S.); and Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, New York (U.K., F.V., S.S.J., G.S.)
| |
Collapse
|
7
|
Alvarez M, Trent E, Goncalves BDS, Pereira DG, Puri R, Frazier NA, Sodhi K, Pillai SS. Cognitive dysfunction associated with COVID-19: Prognostic role of circulating biomarkers and microRNAs. Front Aging Neurosci 2022; 14:1020092. [PMID: 36268187 PMCID: PMC9577202 DOI: 10.3389/fnagi.2022.1020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sneha S. Pillai
- Department of Surgery, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
8
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|
9
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
10
|
Chen Y, He Y, Zhao S, He X, Xue D, Xia Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front Aging Neurosci 2022; 14:847374. [PMID: 35615595 PMCID: PMC9124822 DOI: 10.3389/fnagi.2022.847374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Hypoxia and ischemia cause inflammatory injury and critically participate in the pathogenesis of various diseases in various organs. However, the protective strategies against hypoxic and ischemic insults are very limited in clinical settings up to date. It is of utmost importance to improve our understanding of hypoxic/ischemic (H/I) inflammation and find novel therapies for better prevention/treatment of H/I injury. Recent studies provide strong evidence that the expression of microRNAs (miRNAs), which regulate gene expression and affect H/I inflammation through post-transcriptional mechanisms, are differentially altered in response to H/I stress, while δ-opioid receptors (DOR) play a protective role against H/I insults in different organs, including both H/I-sensitive organs (e.g., brain, kidney, and heart) and H/I-insensitive organs (e.g., liver and muscle). Indeed, many studies have demonstrated the crucial role of the DOR-mediated cyto-protection against H/I injury by several molecular pathways, including NLRP3 inflammasome modulated by miRNAs. In this review, we summarize our recent studies along with those of others worldwide, and compare the effects of DOR on H/I expression of miRNAs in H/I-sensitive and -insensitive organs. The alternation in miRNA expression profiles upon DOR activation and the potential impact on inflammatory injury in different organs under normoxic and hypoxic conditions are discussed at molecular and cellular levels. More in-depth investigations into this field may provide novel clues for new protective strategies against H/I inflammation in different types of organs.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yichen He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuchen Zhao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Dong Xue,
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- Ying Xia,
| |
Collapse
|
11
|
Frailty and senile apathy in the everyday clinical practice in the conditions of COVID-19. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The article covers the pathogenesis, clinical manifestations, and diagnostic criteria of frailty and senile apathy in the elderly. Special attention is paid to sarcopenia: the phenotypic classification and modern approaches to the treatment are discussed. The knowledge and understanding of the main pathogenetic links of sarcopenia, frailty and senile apathy, as well as the development of a single therapeutic line for these pathological conditions can significantly improve the life quality and expectancy of the elderly.
Collapse
|
12
|
miRNome Profiling Detects miR-101-3p and miR-142-5p as Putative Blood Biomarkers of Frailty Syndrome. Genes (Basel) 2022; 13:genes13020231. [PMID: 35205276 PMCID: PMC8872439 DOI: 10.3390/genes13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty. Using the Fried index, we enrolled 22 robust and 19 frail subjects. Blood and urine samples were analysed for several biochemical parameters. We observed that sTNF-R was robustly upregulated in the frail group, indicating the presence of an inflammatory state. Further, by RNA-seq, we profiled 2654 mature miRNAs in the whole blood of the two groups. Expression levels of selected differentially expressed miRNAs were validated by qPCR, and target prediction analyses were performed for the dysregulated miRNAs. We identified 2 miRNAs able to significantly differentiate frail patients from robust subjects. Both miR-101-3p and miR-142-5p were found to be downregulated in the frail vs. robust group. Finally, using bioinformatics targets prediction tools, we explored the potential molecular mechanisms and cellular pathways regulated by the two miRNAs and potentially involved in frailty.
Collapse
|
13
|
Mone P, de Donato A, Varzideh F, Kansakar U, Jankauskas SS, Pansini A, Santulli G. Functional role of miR-34a in diabetes and frailty. FRONTIERS IN AGING 2022; 3:949924. [PMID: 35923683 PMCID: PMC9340262 DOI: 10.3389/fragi.2022.949924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/29/2022] [Indexed: 01/05/2023]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) play critical role in the pathogenesis of several disorders. In the present minireview, we focus our attention on the functional role of a specific miRNA, namely miR-34a, in the pathophysiology of frailty and diabetes mellitus. Based on the current literature, we speculate that this miRNA may serve as a potential biomarker of frailty in diabetic older adults. Additionally, its actions on oxidative stress might represent a druggable target to obtain new potentials treatments.
Collapse
Affiliation(s)
- Pasquale Mone
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- ASL Avellino, Avellino, Italy
- *Correspondence: Pasquale Mone, ;,
| | | | - Fahimeh Varzideh
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Urna Kansakar
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | - Stanislovas S. Jankauskas
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| | | | - Gaetano Santulli
- Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- Department of Molecular Pharmacology, Einstein Institute for Aging Research, Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|