1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Shen Y, Zhang G, Wei C, Zhao P, Wang Y, Li M, Sun L. Potential role and therapeutic implications of glutathione peroxidase 4 in the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:613-631. [PMID: 38886929 PMCID: PMC11433915 DOI: 10.4103/nrr.nrr-d-23-01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yanxin Shen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Chunxiao Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Panpan Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
- Cognitive Impairment Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Wang P, Sun ZY, Zhang GY, Jin Y, Sun WL, Zhao BS, Chen X, Li QB. Regulation of the NF-κB/NLRP3 signalling pathway by Shenghui Yizhi decoction reduces neuroinflammation in mice with Alzheimer's disease. Ann Med 2024; 56:2411011. [PMID: 39391949 PMCID: PMC11486153 DOI: 10.1080/07853890.2024.2411011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Shenghui Yizhi Decoction (SHYZD) has exhibited the capacity to enhance cognitive function and learning abilities in individuals diagnosed with Alzheimer's disease (AD) while ameliorating pre-existing neuroinflammation. Nevertheless, the precise mechanism underlying its therapeutic effects on AD remains to be elucidated. METHODS Twenty-four male SAMP8 mice were randomly divided into three groups, and eight male SAMR1 mice were used as a blank control, to examine their learning and spatial memory abilities. The expression of amyloid β1-42 (Aβ1-42) was detected by immunohistochemical staining of hippocampal tissue. ELISA was used to detect the interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) expressions. Real time PCR was used to detect NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cysteine protease-1 (Caspase-1), and IL-1β mRNA expression. Western blot was used to detect nuclear factor kappa-B (NF-κB), inhibitor of NF-κB α (IκBα), IκB kinase α (IKKα), NLRP3, Caspase-1, and IL-1β protein expression. RESULTS In this study, SAMP8 mice, employed as an AD model, displayed markedly diminished abilities in terms of spatial localization, navigation, and spatial exploration when compared to the blank control group. Additionally, there was a substantial upregulation of Aβ1-42 expression in the hippocampus of these mice, along with a significant increase in the levels of inflammation-associated factors, including IL-1β, IL-6, TNF-α, NLRP3, Caspase-1, as well as the NF-κB pathway-related proteins, namely, NF-κB, IκBα, and IKKα. Moreover, after treatment with positive drugs (donepezil hydrochloride) and SHYZD, the learning abilities of the mice exhibited significant improvements. Furthermore, the hallmark AD protein Aβ1-42, inflammatory factors, and NF-κB/NLRP3 signalling pathway proteins were significantly reduced. These findings collectively suggest that SHYZD exerts a therapeutic effect on AD. CONCLUSION In summary, the specific molecular mechanisms through which SHYZD alleviates AD and the potential role for SHYZD in the NF-κB/NLRP3 signalling pathway are identified in this study.
Collapse
Affiliation(s)
- Peng Wang
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| | - Zi-yi Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gao-yu Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jin
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Wei-liang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Bao-sheng Zhao
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| | - Qiu-bing Li
- The Second Department of Healthcare, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
5
|
Li S, Yang J. Pathogenesis of Alzheimer's disease and therapeutic strategies involving traditional Chinese medicine. RSC Med Chem 2024:d4md00660g. [PMID: 39430949 PMCID: PMC11484936 DOI: 10.1039/d4md00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative disorder affecting the central nervous system of the elderly. Patients primarily manifest cognitive decline and non-cognitive neuro-psychiatric symptoms. Currently, western medications for AD primarily include cholinesterase inhibitors and glutamate receptor inhibitors, which have limited efficacy and accompanied by significant toxic side effects. Given the intricate pathogenesis of AD, the use of single-target inhibitors is limited. In recent years, as research on AD has progressed, traditional Chinese medicine (TCM) and its active ingredients have increasingly played a crucial role in clinical treatment. Numerous studies demonstrate that TCM and its active ingredients can exert anti-Alzheimer's effects by modulating pathological protein production and deposition, inhibiting tau protein hyperphosphorylation, apoptosis, inflammation, and oxidative stress, while enhancing the central cholinergic system, protecting neurons and synapses, and optimizing energy metabolism. This article summarizes extracts from TCM and briefly elucidates their pharmacological mechanisms against AD, aiming to provide a foundation for further research into the specific mechanisms of TCM in the prevention and treatment of the disease, as well as the identification of efficacious active ingredients.
Collapse
Affiliation(s)
- Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
| | - Jinfei Yang
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine Qingdao 266041 China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| |
Collapse
|
6
|
Ma X, Sun Y, Li C, Wang M, Zang Q, Zhang X, Wang F, Niu Y, Hua J. Novel Insights Into DLAT's Role in Alzheimer's Disease-Related Copper Toxicity Through Microglial Exosome Dynamics. CNS Neurosci Ther 2024; 30:e70064. [PMID: 39428563 PMCID: PMC11491298 DOI: 10.1111/cns.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/10/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a complex neurodegenerative disorder, with recent research emphasizing the roles of microglia and their secreted extracellular vesicles in AD pathology. However, the involvement of specific molecular pathways contributing to neuronal death in the context of copper toxicity remains largely unexplored. OBJECTIVE This study investigates the interaction between pyruvate kinase M2 (PKM2) and dihydrolipoamide S-acetyltransferase (DLAT), particularly focusing on copper-induced neuronal death in Alzheimer's disease. METHODS Gene expression datasets were analyzed to identify key factors involved in AD-related copper toxicity. The role of DLAT was validated using 5xFAD transgenic mice, while in vitro experiments were conducted to assess the impact of microglial exosomes on neuronal PKM2 transfer and DLAT expression. The effects of inhibiting the PKM2 transfer via microglial exosomes on DLAT expression and copper-induced neuronal death were also evaluated. RESULTS DLAT was identified as a critical factor in the pathology of AD, particularly in copper toxicity. In 5xFAD mice, increased DLAT expression was linked to hippocampal damage and cognitive decline. In vitro, microglial exosomes were shown to facilitate the transfer of PKM2 to neurons, leading to upregulation of DLAT expression and increased copper-induced neuronal death. Inhibition of PKM2 transfer via exosomes resulted in a significant reduction in DLAT expression, mitigating neuronal death and slowing AD progression. CONCLUSION This study uncovers a novel pathway involving microglial exosomes and the PKM2-DLAT interaction in copper-induced neuronal death, providing potential therapeutic targets for Alzheimer's disease. Blocking PKM2 transfer could offer new strategies for reducing neuronal damage and slowing disease progression in AD.
Collapse
Affiliation(s)
- Xiang Ma
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Yusheng Sun
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Changchun Li
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Man Wang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Qijiao Zang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Xuxia Zhang
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Feng Wang
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Yulan Niu
- Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanP. R. China
| | - Jiai Hua
- Laboratory of Biochemistry and PharmacyTaiyuan Institute of TechnologyTaiyuanP. R. China
| |
Collapse
|
7
|
Vashishth S, Ambasta RK, Kumar P. Deciphering the microbial map and its implications in the therapeutics of neurodegenerative disorder. Ageing Res Rev 2024; 100:102466. [PMID: 39197710 DOI: 10.1016/j.arr.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Every facet of biological anthropology, including development, ageing, diseases, and even health maintenance, is influenced by gut microbiota's significant genetic and metabolic capabilities. With current advancements in sequencing technology and with new culture-independent approaches, researchers can surpass older correlative studies and develop mechanism-based studies on microbiome-host interactions. The microbiota-gut-brain axis (MGBA) regulates glial functioning, making it a possible target for the improvement of development and advancement of treatments for neurodegenerative diseases (NDDs). The gut-brain axis (GBA) is accountable for the reciprocal communication between the gastrointestinal and central nervous system, which plays an essential role in the regulation of physiological processes like controlling hunger, metabolism, and various gastrointestinal functions. Lately, studies have discovered the function of the gut microbiome for brain health-different microbiota through different pathways such as immunological, neurological and metabolic pathways. Additionally, we review the involvement of the neurotransmitters and the gut hormones related to gut microbiota. We also explore the MGBA in neurodegenerative disorders by focusing on metabolites. Further, targeting the blood-brain barrier (BBB), intestinal barrier, meninges, and peripheral immune system is investigated. Lastly, we discuss the therapeutics approach and evaluate the pre-clinical and clinical trial data regarding using prebiotics, probiotics, paraprobiotics, fecal microbiota transplantation, personalised medicine, and natural food bioactive in NDDs. A comprehensive study of the GBA will felicitate the creation of efficient therapeutic approaches for treating different NDDs.
Collapse
Affiliation(s)
- Shrutikirti Vashishth
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, School of Medicine, VUMC, Vanderbilt University, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
8
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. Pyroptosis in Diabetic Peripheral Neuropathy and its Therapeutic Regulation. J Inflamm Res 2024; 17:3839-3864. [PMID: 38895141 PMCID: PMC11185259 DOI: 10.2147/jir.s465203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Pyroptosis is a pro-inflammatory form of cell death resulting from the activation of gasdermins (GSDMs) pore-forming proteins and the release of several pro-inflammatory factors. However, inflammasomes are the intracellular protein complexes that cleave gasdermin D (GSDMD), leading to the formation of robust cell membrane pores and the initiation of pyroptosis. Inflammasome activation and gasdermin-mediated membrane pore formation are the important intrinsic processes in the classical pyroptotic signaling pathway. Overactivation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome triggers pyroptosis and amplifies inflammation. Current evidence suggests that the overactivation of inflammasomes and pyroptosis may further induce the progression of cancers, nerve injury, inflammatory disorders and metabolic dysfunctions. Current evidence also indicates that pyroptosis-dependent cell death accelerates the progression of diabetes and its frequent consequences including diabetic peripheral neuropathy (DPN). Pyroptosis-mediated inflammatory reaction further exacerbates DPN-mediated CNS injury. Accumulating evidence shows that several molecular signaling mechanisms trigger pyroptosis in insulin-producing cells, further leading to the development of DPN. Numerous studies have suggested that certain natural compounds or drugs may possess promising pharmacological properties by modulating inflammasomes and pyroptosis, thereby offering potential preventive and practical therapeutic approaches for the treatment and management of DPN. This review elaborates on the underlying molecular mechanisms of pyroptosis and explores possible therapeutic strategies for regulating pyroptosis-regulated cell death in the pharmacological treatment of DPN.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, 323000, People’s Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
10
|
Yan H, Wang W, Cui T, Shao Y, Li M, Fang L, Feng L. Advances in the Understanding of the Correlation Between Neuroinflammation and Microglia in Alzheimer's Disease. Immunotargets Ther 2024; 13:287-304. [PMID: 38881647 PMCID: PMC11180466 DOI: 10.2147/itt.s455881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease with a subtle and progressive onset and is the most common type of dementia. However, its etiology and pathogenesis have not yet been fully elucidated. The common pathological manifestations of AD include extraneuronal β-amyloid deposition (Aβ), intraneuronal tau protein phosphorylation leading to the formation of 'neurofibrillary tangles' (NFTs), neuroinflammation, progressive loss of brain neurons/synapses, and glucose metabolism disorders. Current treatment approaches for AD primarily focus on the 'Aβ cascade hypothesis and abnormal aggregation of hyperphosphorylation of tau proteins', but have shown limited efficacy. Therefore, there is an ongoing need to identify more effective treatment targets for AD. The central nervous system (CNS) inflammatory response plays a key role in the occurrence and development of AD. Neuroinflammation is an immune response activated by glial cells in the CNS that usually occurs in response to stimuli such as nerve injury, infection and toxins or in response to autoimmunity. Neuroinflammation ranks as the third most prominent pathological feature in AD, following Aβ and NFTs. In recent years, the focus on the role of neuroinflammation and microglia in AD has increased due to the advancements in genome-wide association studies (GWAS) and sequencing technology. Furthermore, research has validated the pivotal role of microglia-mediated neuroinflammation in the progression of AD. Therefore, this article reviews the latest research progress on the role of neuroinflammation triggered by microglia in AD in recent years, aiming to provide a new theoretical basis for further exploring the role of neuroinflammation in the process of AD occurrence and development.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Wei Wang
- Department of Intensive Care Unit, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Tingting Cui
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Yanxin Shao
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| | - Mingquan Li
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Limei Fang
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Lina Feng
- Department of Neurology, The Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, People's Republic of China
| |
Collapse
|
11
|
Yang H, Park G, Lee S, Lee S, Kim Y, Zamora NA, Yi D, Kim S, Choi CW, Choi S, Park YH. Anti-inflammatory effect of Trichospira verticillata via suppression of the NLRP3 inflammasome in neutrophilic asthma. J Cell Mol Med 2024; 28:e18356. [PMID: 38668995 PMCID: PMC11048967 DOI: 10.1111/jcmm.18356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Trichospira verticillata is an annual herb that belongs to the family Asteraceae. Trichospira verticillata extract (TVE) elicits anti-plasmodial activity; however, there has been no detailed report about its anti-inflammatory effects and molecular mechanisms. In addition, herbal plants exhibit anti-inflammatory effects by suppressing the NLRP3 inflammasome. Therefore, the primary goal of this study was to examine the effects of TVE on NLRP3 inflammasome activation by measuring interleukin-1β (IL-1β) secretion. We treated lipopolysaccharides (LPS)-primed J774A.1 and THP-1 cells with TVE, which attenuated NLRP3 inflammasome activation. Notably, TVE did not affect nuclear factor-kappa B (NF-κB) signalling or intracellular reactive oxygen species (ROS) production and potassium efflux, suggesting that it inactivates the NLRP3 inflammasome via other mechanisms. Moreover, TVE suppressed the formation of apoptosis-associated speck-like protein (ASC) speck and oligomerization. Immunoprecipitation data revealed that TVE reduced the binding of NLRP3 to NIMA-related kinase 7 (NEK7), resulting in reduced ASC oligomerization and speck formation. Moreover, TVE alleviated neutrophilic asthma (NA) symptoms in mice. This study demonstrates that TVE modulates the binding of NLPR3 to NEK7, thereby reporting novel insights into the mechanism by which TVE inhibits NLRP3 inflammasome. These findings suggest TVE as a potential therapeutic of NLRP3 inflammasome-mediated diseases, particularly NA.
Collapse
Affiliation(s)
- Hyeyun Yang
- Department of MicrobiologyAjou University School of MedicineSuwonRepublic of Korea
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
| | - Gunwoo Park
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
- Department of Allergy and Clinical ImmunologyAjou University School of MedicineSuwonRepublic of Korea
| | - Sojung Lee
- Department of MicrobiologyAjou University School of MedicineSuwonRepublic of Korea
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
| | - Sumin Lee
- Department of MicrobiologyAjou University School of MedicineSuwonRepublic of Korea
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
| | - YeJi Kim
- Department of MicrobiologyAjou University School of MedicineSuwonRepublic of Korea
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
| | - Nelson A. Zamora
- Instituto Nacional de Biodiversidad (INBio)Santo DomingoCosta Rica
| | - Dong‐Keun Yi
- International Biological Material Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Soo‐Yong Kim
- International Biological Material Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Chun Whan Choi
- Natural Biomaterial TeamGyeonggi Bio‐CenterSuwonRepublic of Korea
| | - Sangho Choi
- International Biological Material Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonRepublic of Korea
| | - Yong Hwan Park
- Department of MicrobiologyAjou University School of MedicineSuwonRepublic of Korea
- Department of Biomedical SciencesGraduate School of Ajou UniversitySuwonRepublic of Korea
| |
Collapse
|
12
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
13
|
Zhang LC, Li N, Xu M, Chen JL, He H, Liu J, Wang TH, Zuo ZF. Salidroside protects RGC from pyroptosis in diabetes-induced retinopathy associated with NLRP3, NFEZL2 and NGKB1, revealed by network pharmacology analysis and experimental validation. Eur J Med Res 2024; 29:60. [PMID: 38243268 PMCID: PMC10799395 DOI: 10.1186/s40001-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To investigate the effect of salidroside (SAL) in protecting retinal ganglion cell (RGC) from pyroptosis and explore associated molecular network mechanism in diabetic retinapathy (DR) rats. METHODS HE, Nissl and immunofluorescence staining were used to observe the retinal morphological change, and the related target genes for salidroside, DR and pyroptosis were downloaded from GeneCard database. Then Venny, PPI, GO, KEGG analysis and molecular docking were used to reveal molecular network mechanism of SAL in inhibiting the pyroptosis of RGC. Lastly, all hub genes were confirmed by using qPCR. RESULTS HE and Nissl staining showed that SAL could improve the pathological structure known as pyroptosis in diabetic retina, and the fluorescence detection of pyroptosis marker in DM group was the strongest, while they decreased in the SAL group(P < 0.05)). Network pharmacological analysis showed 6 intersecting genes were obtained by venny analysis. GO and KEGG analysis showed 9 biological process, 3 molecular function and 3 signaling pathways were involved. Importantly, molecular docking showed that NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1 could combine with salidroside, and qPCR validates the convincible change of CASP3, NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1. CONCLUSION Salidroside can significantly improve diabetes-inducedRGC pyrotosis in retina, in which, the underlying mechanism is associated with the NLRP3, NFEZL2 and NGKB1 regulation.
Collapse
Affiliation(s)
- Lan-Chun Zhang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Min Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ji-Lin Chen
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Hua He
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Jia Liu
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
14
|
Guo Y, Wang S, Li L, Zhang H, Chen X, Huang Z, Liu Y. Immunoproteasome Subunit Low Molecular Mass Peptide 2 (LMP2) Deficiency Ameliorates LPS/Aβ 1-42-Induced Neuroinflammation. Mol Neurobiol 2024; 61:28-41. [PMID: 37568045 DOI: 10.1007/s12035-023-03564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Low molecular mass peptide 2 (LMP2) is the β1i subunit of immunoproteasome (iP) which plays a key role in neuroinflammatory responses, and inhibition of iP exhibits a high neuroprotective action against neurodegenerative diseases. Since neuroinflammation has been shown to be involved in the development and progression of Alzheimer's disease (AD), the aim of this study was to evaluate the anti-inflammatory role of LMP2 deficiency in AD in vivo and in vitro. Here, we found that LMP2 was upregulated in the brains of 5 × FAD and APP/PS1 mice and increased with age in C57/BL6 mice. We showed that the lack of LMP2 significantly decreased NLRP3 expression and downstream cytokine release in microglia, resulting in partially blocking Aβ1-42- or LPS-induced inflammation in vivo and in vitro, which ameliorated cognitive deficits in aged rats and D-galactose + Aβ1-42-treated rats. These results suggest that LMP2 contributes to the regulation of LPS-or Aβ-driven innate immune responses by diminishing NLRP3 expression and clarify that inhibition of iP function may mediate the inflammatory-related cognitive phenotype.
Collapse
Affiliation(s)
- Yueting Guo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Shiyi Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou City, 350122, Fujian Province, China
- Department of Cell Biology and Genetics of Basic Medical Sciences, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Hengce Zhang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Xiaoyang Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Zihan Huang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yingchun Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China.
| |
Collapse
|
15
|
Zhang E, Dai F. Diagnostic Model for Alzheimer's Disease Based on PANoptosis-Related Genes. J Alzheimers Dis 2024; 97:813-828. [PMID: 38160361 DOI: 10.3233/jad-231103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND The pathophysiology of Alzheimer's disease (AD) involves the interplay of three different processes: pyroptosis, apoptosis, and necroptosis. OBJECTIVE To explore role of PANoptosis, a novel pro-inflammatory programmed cell death pathway, in AD patients. METHODS We performed a consensus clustering analysis to identify distinct transcriptional profiles in the samples using the R package "ConsensusClusterPlus". The PANoptosis key genes were obtained by crossing the WGCNA brown module and differentially expressed PANoptosis genes. We accomplished regression analyses using the LASSO-Cox method, combined with pathological status and gene expression data. At the same time, we also constructed PANscore system. The expression of PANoptosis hub genes were validated by qRT-PCR in AD transgenic mice. RESULTS Our study utilized tissue expression profile data from AD patients to construct three distinct PANoptosis patterns, each with unique molecular and clinical characteristics. We have created a risk scoring system called PANscore, which can analyze patterns specific for each AD patient. Additionally, we observed significantly lower levels of follicular helper T (Tfh) cells in the high PANscore and AD patients. Further analysis revealed a significant negative correlation of Tfh with GSDMD and MLKL. CONCLUSIONS These findings provide a roadmap for personalized patient stratification, enabling clinicians to develop personalized treatment plans for AD patients and advance the field of precision medicine.
Collapse
Affiliation(s)
- Erdong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fengqiu Dai
- Department of Anatomy, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Yu J, Tang L, Yang L, Zheng M, Yu H, Luo Y, Liu J, Xu J. Role and mechanism of MiR-542-3p in regulating TLR4 in nonylphenol-induced neuronal cell pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155123. [PMID: 37976699 DOI: 10.1016/j.phymed.2023.155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND This study aimed to investigate the spatial learning/memory and motor abilities of rats and the alteration of miR-542-3p and pyroptosis in the midbrain nigrostriatal area in vivo after nonylphenol (NP) gavage and to explore the mechanism of miR-542-3p regulation of Toll-like receptor 4 (TLR4) in NP-induced pyroptosis in BV2 microglia in vitro. METHODS In vivo: Thirty-six specific-pathogen-free-grade Sprague-Dawley rats were divided into three equal groups: blank control group (treated with pure corn oil), NP group (treated with NP, 80 mg/kg body weight per day for 90 days), and positive control group [treated with lipopolysaccharide (LPS), 2 mg/kg body weight for 7 days]. In vitro: The first part of the experiment was divided into blank group (control, saline), LPS group [1 µg/ml + 1 mM adenosine triphosphate (ATP)], and NP group (40 µmol/L). The second part was divided into mimics NC (negative control) group, miR-542-3p mimics group, mimics NC + NP group, and miR-542-3p mimics + NP group. RESULTS In vivo: Behaviorally, the spatial learning/memory and motor abilities of rats after NP exposure declined, as detected via Y-maze, open field, and rotarod tests. Some microglia in the substantia nigra of the NP-treated rats were activated. The downregulation of miR-542-3p was observed in rat brain tissue after NP exposure. The mRNA/protein expression of pyroptosis-related indicators (TLR4), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin-D (GSDMD), cysteinyl aspartate-specific proteinase-1 (caspase-1), and interleukin-1β (IL-1β) in the substantia nigra of the midbrain increased after NP exposure. In vitro: ASC fluorescence intensity increased in BV2 cells after NP exposure. The mRNA and/or protein expression of pyroptosis-related indicators (TLR4, NLRP3, GSDMD, caspase-1, and IL-1β) in BV2 cells was upregulated after NP exposure. The transfection of miR-542-3p mimics inhibited NP-induced ASC expression in BV2 cells. The overexpression of miR-542-3p, followed by NP exposure, significantly reduced TLR4, NLRP3, ASC, caspase-1, and IL-1β gene and/or protein expression. CONCLUSIONS This study suggested that NP exposure caused a decline in spatial learning memory and whole-body motor ability in rats. Our study was novel in reporting that the upregulation of miR-542-3p targeting and regulating TLR4 could inhibit NLRP3 inflammatory activation and alleviate NP-induced microglia pyroptosis.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lan Tang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China; Department of Nosocomial Infection Control, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, 550002, PR China
| | - Lilin Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Mucong Zheng
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Huawen Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jinqing Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
17
|
Demirtaş N, Mazlumoğlu BŞ, Palabıyık Yücelik ŞS. Role of NLRP3 Inflammasomes in Neurodegenerative Diseases. Eurasian J Med 2023; 55:98-105. [PMID: 39109852 PMCID: PMC11075041 DOI: 10.5152/eurasianjmed.2023.23349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 08/11/2024] Open
Abstract
Large-scale neuronal degeneration in the human brain is a hallmark of neurodegenerative diseases. These diseases range in location and cause, but they all have neurodegenerative characteristics in common. Neurodegenerative diseases, which have almost no efective treatment options, tend to progress irreversibly and cause large socioeconomic and healthcare costs. In recent years, due to the increase in the elderly population, neurodegenerative diseases that have a risk factor with aging are becoming increasingly common. Evidence that neurodegenerative diseases, which have an important place in public health, may be caused by neuroinflammation, has led to comprehensive investigation of neurodegenerative diseases in this regard. Inflammasomes are innate immune system-associated multiproteins that regulate caspase-1 activation and induce inflammation. The NLRP3 inflammasome is the most researched inflammasome and also located in microglia, its activation mediates the maturation and secretion of the inflammatory cytokines interleukin1beta (IL-1β) and IL-18, thus exerting its efects in the central nervous system. Within the scope of this review, experimental and human studies evaluating the role of NLRP3 inflammasome activation and the efects of its inhibition in neurodegenerative diseases frequently encountered in society have been compiled with studies from past to present.
Collapse
Affiliation(s)
- Nagihan Demirtaş
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Büşra Şahin Mazlumoğlu
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
| | - Şaziye Sezin Palabıyık Yücelik
- Department of Pharmaceutical Toxicology, Atatürk University Faculty of Pharmacy, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Jiang Y, Bian W, Chen J, Cao X, Dong C, Xiao Y, Xu B, Sun X. miRNA-137-5p improves spatial memory and cognition in Alzheimer's mice by targeting ubiquitin-specific peptidase 30. Animal Model Exp Med 2023; 6:526-536. [PMID: 38111333 PMCID: PMC10757218 DOI: 10.1002/ame2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder causing progressive dementia. Research suggests that microRNAs (miRNAs) could serve as biomarkers and therapeutic targets for AD. Reduced levels of miR-137 have been observed in the brains of AD patients, but its specific role and downstream mechanisms remain unclear. This study sought to examine the therapeutic potential of miR-137-5p agomir in alleviating cognitive dysfunction induced in AD models and explore its potential mechanisms. METHODS This study utilized bioinformatic analysis and a dual-luciferase reporter assay to investigate the relationship between miR-137-5p and ubiquitin-specific peptidase 30 (USP30). In vitro experiments were conducted using SH-SY5Y cells to assess the impact of miR-137-5p on Aβ1-42 neurotoxicity. In vivo experiments on AD mice evaluated the effects of miR-137-5p on cognition, Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis, as well as its influence on USP30 levels. RESULTS It was discovered that miR-137-5p mimics efficiently counteract Aβ1-42 neurotoxicity in SH-SY5Y cells, a protective effect that is negated by USP30 overexpression. In vivo experiments demonstrated that miR-137-5p enhances the cognition and mobility of AD mice, significantly reducing Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis within the hippocampus and cortex regions. Mechanistically, miR-137-5p significantly suppresses USP30 levels in mice, though USP30 overexpression partially buffers against miR-137-5p-induced AD symptom improvement. CONCLUSION Our study proposes that miR-137-5p, by instigating the downregulation of USP30, has the potential to act as a novel and promising therapeutic target for AD.
Collapse
Affiliation(s)
- Yang Jiang
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
| | - Wei Bian
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Jing Chen
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - Xiaopan Cao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - ChunYao Dong
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Ying Xiao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Bing Xu
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - XiaoHong Sun
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
- Science Experiment CenterChina Medical UniversityShenyangChina
| |
Collapse
|
19
|
Wu KJ, Wang WR, Cheng QH, Li H, Yan WZ, Zhou FR, Zhang RJ. Pyroptosis in neurodegenerative diseases: from bench to bedside. Cell Biol Toxicol 2023; 39:2467-2499. [PMID: 37491594 DOI: 10.1007/s10565-023-09820-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The central nervous system regulates all aspects of physiology to some extent. Neurodegenerative diseases (NDDs) lead to the progressive loss and dysfunction of neurons, which are particularly evident in Alzheimer's disease, Parkinson's disease, and many other conditions. NDDs are multifactorial diseases with complex pathogeneses, and there has been a rapid increase in the prevalence of NDDs. However, none of these diseases can be cured, making the development of novel treatment strategies an urgent necessity. Numerous studies have indicated how pyroptosis induces inflammation and affects many aspects of NDD. Therefore, components related to pyroptosis are potential therapeutic candidates and are attracting increasing attention. Here, we review the role of pyroptosis in the pathogenesis of NDDs and potential treatment options. Additionally, several of the current drugs and relevant inhibitors are discussed. Through this article, we provide theoretical support for exploring new therapeutic targets and updating clinical treatment strategies for NDDs. Notably, pyroptosis, a recently widely studied mode of cell death, is still under-researched compared to other traditional forms of cell death. Moreover, the focus of research has been on the onset and progression of NDDs, and the lack of organ-specific target discovery and drug development is a common problem for many basic studies. This urgent problem requires scientists and companies worldwide to collaborate in order to develop more effective drugs against NDDs.
Collapse
Affiliation(s)
- Ke-Jia Wu
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wan-Rong Wang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Qian-Hui Cheng
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Hao Li
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Wei-Zhen Yan
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Fei-Ran Zhou
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China
| | - Rui-Jie Zhang
- College of Life Sciences, Anhui Medical University, Tanghe Road, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
20
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
21
|
Han H, Zhao Y, Du J, Wang S, Yang X, Li W, Song J, Zhang S, Zhang Z, Tan Y, Hatch GM, Zhang M, Chen L. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia. Immun Ageing 2023; 20:63. [PMID: 37978517 PMCID: PMC10655345 DOI: 10.1186/s12979-023-00390-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exercise is postulated to be a promising non-pharmacological intervention for the improvement of neurodegenerative disease pathology. However, the mechanism of beneficial effects of exercise on the brain remains to be further explored. In this study, we investigated the effect of an exercise-induced metabolite, lactate, on the microglia phenotype and its association with learning and memory. RESULTS Microglia were hyperactivated in the brains of AlCl3/D-gal-treated mice, which was associated with cognitive decline. Running exercise ameliorated the hyperactivation and increased the anti-inflammatory/reparative phenotype of microglia and improved cognition. Mice were injected intraperitoneally with sodium lactate (NaLA) had similar beneficial effects as that of exercise training. Exogenous NaLA addition to cultured BV2 cells promoted their transition from a pro-inflammatory to a reparative phenotype. CONCLUSION The elevated lactate acted as an "accelerator" of the endogenous "lactate timer" in microglia promoting this transition of microglia polarization balance through lactylation. These findings demonstrate that exercise-induced lactate accelerates the phenotypic transition of microglia, which plays a key role in reducing neuroinflammation and improving cognitive function.
Collapse
Affiliation(s)
- Hao Han
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Yawei Zhao
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Junda Du
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Xuehan Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Weijie Li
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Jiayi Song
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Siwei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China
| | - Ziyi Zhang
- The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yongfei Tan
- South China Institute of Collaborative Innovation, Dongguan, 523808, China
| | - Grant M Hatch
- Departments of Pharmacology and Therapeutics, Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, DREAM Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, R3E0T6, Canada
| | - Ming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| | - Li Chen
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
22
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
23
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
24
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
25
|
Qu X, Zhang L, Wang L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14432-14457. [PMID: 37786984 DOI: 10.1021/acs.jafc.3c06238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Neurological disorders are diverse, have complex causes, and often result in disability; yet, effective treatments remain scarce. The resveratrol derivative pterostilbene possesses numerous physiological activities that hold promise as a novel therapy for the central nervous system (CNS) disorders. This review aimed to summarize the protective mechanisms of pterostilbene in in vitro and in vivo models of CNS disorders and the pharmacokinetics and safety to assess its possible effects on CNS disorders. Available evidence supports the protective effects of pterostilbene in CNS disorders involving mechanisms such as antioxidant and anti-inflammatory activity, regulation of lipid metabolism and vascular smooth muscle cell proliferation, improvement of synaptic function and neurogenesis, induction of glioma cell cycle arrest, and inhibition of glioma cell migration and invasion. Studies have identified possible molecular targets and pathways for the protective actions of pterostilbene in CNS disorders including the AMPK/STAT3, Akt, NF-κB, MAPK, and ERK signaling pathways. The possible pharmacological effects and molecular pathways of pterostilbene in CNS disorders are critically discussed in this review. Future studies should aim to increase our understanding of pterostilbene in animal models and humans to further evaluate its role in CNS disorders and the detailed mechanisms.
Collapse
Affiliation(s)
- Xin Qu
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110004, Liaoning, P.R. China
| | - Lijuan Zhang
- Departments of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| | - Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110000, Liaoning, P.R. China
| |
Collapse
|
26
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
27
|
Guo Y, Zhang L. Ghrelin inhibits NLRP3 inflammasome activation by upregulating autophagy to improve Alzheimer's disease. In Vitro Cell Dev Biol Anim 2023; 59:665-673. [PMID: 37989934 DOI: 10.1007/s11626-023-00818-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/21/2023] [Indexed: 11/23/2023]
Abstract
Nod-like receptor protein 3 (NLRP3) inflammasome, autophagy, and the aggregation of β-amyloid (Aβ) are key factors in Alzheimer's disease (AD) development. Ghrelin has shown promise in providing neuroprotection for AD. However, the mechanism underlying ghrelin's ability to improve AD by modulating autophagy and the NLRP3 inflammasome requires further clarification. Primary hippocampus neurons and mice were stimulated with Aβ1-42 to create an in vitro and in vivo AD model, followed by ghrelin administration for intervention. Additionally, we subjected the cells to 3-methyladenine (3-MA) treatment. Neuron morphology, microtubule-associated protein 2 (MAP-2) expression, apoptosis, cytokine levels, and protein expression were measured using various techniques. The escape latency of mice was assessed using the Morris water maze (MWM) test, and histopathology of the hippocampus was determined using hematoxylin-eosin staining. At 1-100 nM, ghrelin increased neuron/synapse numbers and MAP-2 expression dose-dependently while blocking apoptosis in Aβ1-42-treated cells. Moreover, ghrelin reduced the expression of Aβ1-42, p-Tau/Tau, p62, NLRP3, ASC, and cleaved Caspase-1, while increasing the expression of LC3II/LC3I and Beclin1 in AD cells. Furthermore, ghrelin treatment also decreased the levels of Aβ1-42, IL-1β, and IL-18 in the cells. The effects of ghrelin were reversed by 3-MA. Our in vivo experiments provided further confirmation of the above effect of ghrelin on AD. Additionally, the injection of Aβ1-42 induced increased escape latency in mice and histopathological changes in hippocampal neurons. All of these abnormalities were significantly improved following administration of ghrelin. Ghrelin mitigated Aβ1-42-induced neurotoxicity and relieved neuronal damage by upregulating autophagy to inactivate NLRP3, thus showing promising potential in treating AD.
Collapse
Affiliation(s)
- Yaoxue Guo
- Department of Clinical Pharmacy, Donghe District, Baotou Central Hospital, 61 Huancheng Road, Baotou, 014040, Inner Mongolia, China
| | - Lixiang Zhang
- Department of Clinical Pharmacy, Donghe District, Baotou Central Hospital, 61 Huancheng Road, Baotou, 014040, Inner Mongolia, China.
| |
Collapse
|
28
|
Zhou L, Huang X, Li H, Wang J, Lu Z. Triptolide improves Alzheimer's disease by regulating the NF‑κB signaling pathway through the lncRNA NEAT1/microRNA 361‑3p/TRAF2 axis. Exp Ther Med 2023; 26:440. [PMID: 37614428 PMCID: PMC10443046 DOI: 10.3892/etm.2023.12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is a serious social and medical problem threatening human health. The present study investigated the effect and underlying action mechanism of triptolide (Tri) on AD progression. Reverse transcription-quantitative PCR and western blotting analysis were used to determine the changes in RNA expression and levels of NF-κB signaling pathway proteins before and after lipopolysaccharide (LPS) induction. Nucleocytoplasmic separation experiments determined the intracellular localization of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1). A dual-luciferase assay was used to analyze the binding between NEAT1 and microRNA (miRNA/miR)-361 or tumor necrosis factor receptor-associated factor 2 (TRAF2) and miR-361-3p and RNA pull-down was used to analyze the binding between NEAT1 and miR-361-3p. Cell Counting Kit-8, flow cytometry and ELISA were used to detect the effects of interaction between Tri and NEAT1/miR-361-3p/TRAF2 on cell viability, apoptosis and inflammatory factor levels, respectively. The results showed that LPS-mediated human microglial clone 3 cell line (HMC3) viability decreased and apoptosis and inflammatory factors (IL-1β, IL-6, IL-18 and TNF-α) increased. Tri inhibited LPS-mediated effects in a dose-dependent manner by downregulating NEAT1 expression. NEAT1 is highly expressed in the cytoplasm and reduces the transcription and translation of downstream TRAF2 by acting as a competitive endogenous RNA that adsorbs miR-361-3p. LPS-mediated HMC3 cell injury, inflammation and activation of NF-κB signaling were partially reversed in presence of Tri. The miR-361-3p mimic promoted the Tri effect and overexpression of (ov)-NEAT1 partially reversed the Tri-miR-361-3p combined effect. The effects of ov-NEAT1 were partially attenuated by small interfering (si)-TRAF2. Overall, Tri inhibited the LPS-induced decrease in viability, increase in apoptosis and inflammation and activation of NF-κB signaling in HMC3 cells. Tri regulation affected the NEAT1/miR-361-3p/TRAF2 axis. These findings suggested a potential therapeutic role for Tri in the clinical management of AD by modulating this molecular axis.
Collapse
Affiliation(s)
- Li Zhou
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuming Huang
- Department of Rehabilitation, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Haiyan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jihui Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
29
|
Xue JS, Li JQ, Wang CC, Ma XH, Dai H, Xu CB, Meng XL. Dauricine alleviates cognitive impairment in Alzheimer's disease mice induced by D-galactose and AlCl 3 via the Ca 2+/CaM pathway. Toxicol Appl Pharmacol 2023; 474:116613. [PMID: 37414289 DOI: 10.1016/j.taap.2023.116613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Dysregulation of intracellular Ca2+ homeostasis plays a critical role in the pathological development of AD. Dauricine (DAU) is a bisbenzylisoquinoline alkaloid isolated from Menispermum dauricum DC., which can prevent the influx of extracellular Ca2+ and inhibit the release of Ca2+ from the endoplasmic reticulum. DAU has a potential for anti-AD. However, it is unclear whether DAU can exert its anti-AD effect in vivo by regulating the Ca2+ related signaling pathways. Here, we investigated the effect and mechanism of DAU on D-galactose and AlCl3 combined-induced AD mice based on the Ca2+/CaM pathway. The results showed that DAU (1 mg/kg and 10 mg/kg for 30 days) treatment attenuated learning and memory deficits and improved the nesting ability of AD mice. The HE staining assay showed that DAU could inhibit the histopathological alterations and attenuate neuronal damage in the hippocampus and cortex of AD mice. Studies on the mechanism indicated that DAU decreased the phosphorylation of CaMKII and Tau and reduced the formation of NFTs in the hippocampus and cortex. DAU treatment also reduced the abnormally high expression of APP, BACE1, and Aβ1-42, which inhibited the deposition of Aβ plaques. Moreover, DAU could decrease Ca2+ levels and inhibit elevated CaM protein expression in the hippocampus and cortex of AD mice. The molecular docking results showed that DAU may have a high affinity with CaM or BACE1. DAU has a beneficial impact on pathological changes in AD mice induced by D-galactose and AlCl3 and may act by negative regulation of the Ca2+/CaM pathway and its downstream molecules such as CaMKII and BACE1.
Collapse
Affiliation(s)
- Jing-Su Xue
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Jin-Qiu Li
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Cheng Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Xiao-Han Ma
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Hui Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
| | - Cheng-Bin Xu
- School of Environmental Science, Liaoning University, Shenyang, China
| | - Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, China.
| |
Collapse
|
30
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
31
|
Yang X, Tang Z. The role of pyroptosis in cognitive impairment. Front Neurosci 2023; 17:1206948. [PMID: 37332874 PMCID: PMC10272378 DOI: 10.3389/fnins.2023.1206948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cognitive impairment is a major global disease, manifests as a decline in cognitive functioning and endangers the health of the population worldwide. The incidence of cognitive impairment has increased rapidly with an increasingly aging population. Although the mechanisms of cognitive impairment have partly been elucidated with the development of molecular biological technology, treatment methods are very limited. As a unique form of programmed cell death, pyroptosis is highly pro-inflammatory and is closely associated with the incidence and progression of cognitive impairment. In this review, we discuss the molecular mechanisms of pyroptosis briefly and the research progress on the relationship between pyroptosis and cognitive impairment and its potential therapeutic values, to provide a reference for research in the field of cognitive impairment.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Jin X, Ma Y, Liu D, Huang Y. Role of pyroptosis in the pathogenesis and treatment of diseases. MedComm (Beijing) 2023; 4:e249. [PMID: 37125240 PMCID: PMC10130418 DOI: 10.1002/mco2.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/16/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Programmed cell death (PCD) is regarded as a pathological form of cell death with an intracellular program mediated, which plays a pivotal role in maintaining homeostasis and embryonic development. Pyroptosis is a new paradigm of PCD, which has received increasing attention due to its close association with immunity and disease. Pyroptosis is a form of inflammatory cell death mediated by gasdermin that promotes the release of proinflammatory cytokines and contents induced by inflammasome activation. Recently, increasing evidence in studies shows that pyroptosis has a crucial role in inflammatory conditions like cardiovascular diseases (CVDs), cancer, neurological diseases (NDs), and metabolic diseases (MDs), suggesting that targeting cell death is a potential intervention for the treatment of these inflammatory diseases. Based on this, the review aims to identify the molecular mechanisms and signaling pathways related to pyroptosis activation and summarizes the current insights into the complicated relationship between pyroptosis and multiple human inflammatory diseases (CVDs, cancer, NDs, and MDs). We also discuss a promising novel strategy and method for treating these inflammatory diseases by targeting pyroptosis and focus on the pyroptosis pathway application in clinics.
Collapse
Affiliation(s)
- Xiangyu Jin
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yinchu Ma
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Didi Liu
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| | - Yi Huang
- Wuxi School of MedicineJiangnan UniversityJiangsuChina
| |
Collapse
|
33
|
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Friend or foe: role of pathological tau in neuronal death. Mol Psychiatry 2023; 28:2215-2227. [PMID: 36918705 DOI: 10.1038/s41380-023-02024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Bing Bao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Dongling Li
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China.
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Liang MQ, Wang FF, Li Q, Lei X, Chen Y, Hu N. LncRNA SNHG3 Promotes Sevoflurane-Induced Neuronal Injury by Activating NLRP3 via NEK7. Neurochem Res 2023:10.1007/s11064-023-03939-3. [PMID: 37093343 DOI: 10.1007/s11064-023-03939-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Early exposure to sevoflurane may cause brain tissue degeneration; however, the mechanism involved in this process has not been explored. In this study, we investigated the role of long non-coding RNA small nucleolar RNA host gene 3 (lncRNA SNHG3) in sevoflurane-induced neuronal injury. METHODS The injury models of HT22 and primary cultures of neurons were constructed using sevoflurane treatment. The WST-8 reduction was detected by CCK-8 assay, the level of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA), and cell pyroptosis was detected by flow cytometry. The expression of genes and proteins was detected by qRT-PCR and Western blot, respectively. The level of β-tubulin III in primary cultures of hippocampal neurons was analyzed by immunofluorescence. The relationship among SNHG3, PTBP1 and NEK7 was confirmed by RIP assay. RESULTS The expression of SNHG3 and NEK7 were enhanced in sevoflurane-treated HT22 cells. Sevoflurane inhibited the WST-8 reduction in a concentration-dependent manner, promoted the pyroptosis, and increased pyroptosis-related protein expression. SNHG3 knockdown significantly inhibited sevoflurane-induced pyroptosis and inflammatory injury in HT22 cells and primary cultures of neurons. Furthermore, SNHG3 regulated NEK7 expression by binding to PTBP1. NEK7 knockdown reversed the decrease in WST-8 reduction, inhibited pyroptosis, and decreased the release of inflammatory factors and pyroptosis-related protein expression by inactivation of NLRP3 signaling in sevoflurane-induced HT22 cells. Moreover, NEK7 overexpression attenuated the effect of SNHG3 knockdown on neuronal pyroptosis and inflammation injury. CONCLUSION Downregulation of SNHG3 attenuates sevoflurane-induced neuronal inflammation and pyroptosis by mediating the NEK7/NLRP3 axis, suggesting that SNHG3 could be a potential target gene for neuronal injury.
Collapse
Affiliation(s)
- Meng-Qiu Liang
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiao Tong University, Chengdu, 610031, Sichuan Province, P.R. China
| | - Feng-Feng Wang
- Department of Anesthesiology, Wuhan Red Cross Hospital, Wuhan, 430015, Hubei Province, P.R. China
| | - Qiang Li
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiao Tong University, Chengdu, 610031, Sichuan Province, P.R. China
| | - Xue Lei
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiao Tong University, Chengdu, 610031, Sichuan Province, P.R. China
| | - Yong Chen
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Southwest Jiao Tong University, Chengdu, 610031, Sichuan Province, P.R. China
| | - Na Hu
- Department of Anesthesiology, Union hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P.R. China.
| |
Collapse
|
35
|
Zhu X, Wu J, Zheng SW, Liu G, Zou YC. Ghrelin Inhibits ACL Derived Fibroblasts Pyroptosis and Promotes Migration Through Regulating NF-κB p65/NLRP3 Signaling. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Guo S, Lei Q, Guo H, Yang Q, Xue Y, Chen R. Edaravone Attenuates Aβ 1-42-Induced Inflammatory Damage and Ferroptosis in HT22 Cells. Neurochem Res 2023; 48:570-578. [PMID: 36333599 DOI: 10.1007/s11064-022-03782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
Ferroptosis and neuroinflammation play a crucial role in the pathogenesis of Alzheimer's disease (AD), and Edaravone (EDA) has been demonstrated to have anti-inflammatory, antioxidant and neuroprotective effects in neurodegenerative diseases. However, the relationship between EDA and ferroptosis in AD is unidentified. This research aimed to elucidate the mechanism of EDA in AD with Aβ 1-42-induced HT22 cells as in vitro cell model. The results showed that EDA could significantly reduce Aβ1-42-induced apoptosis of HT22 cells and formation of pro-inflammatory factors TNF-α, IL-1β and IL-6, prevent the activation of TLR4/NF-κB /NLRP3 signaling pathway, and inhibit ferroptosis and lipid peroxidation. Taken together, EDA contributes to inhibiting neuroinflammatory injury and ferroptosis in Aβ 1-42-induced HT22 cells, and thus may be a potential candidate for the treatment of AD.
Collapse
Affiliation(s)
- Shenglong Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qi Lei
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Hena Guo
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Qian Yang
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Yanli Xue
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Ruili Chen
- Department II of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
37
|
Wang X, Qian J, Meng Y, Wang P, Cheng R, Zhou G, Zhu S, Liu C. Salidroside ameliorates severe acute pancreatitis-induced cell injury and pyroptosis by inactivating Akt/NF-κB and caspase-3/GSDME pathways. Heliyon 2023; 9:e13225. [PMID: 36747537 PMCID: PMC9898447 DOI: 10.1016/j.heliyon.2023.e13225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Our previous studies showed that Salidroside (Sal), a glucoside of the phenylpropanoid tyrosol isolated from Rhodiola rosea L, alleviated severe acute pancreatitis (SAP) by inhibiting inflammation. However, the detailed mechanism remains unclear. Recent evidence has indicated a critical role of Sal in ameliorating inflammatory disorders by regulating pyroptosis. The present study aimed to explore the involvement of Sal and pyroptosis in the pathogenesis of SAP and investigate the potential mechanism. The effects of Sal on pyroptosis were first evaluated using SAP rat and cell model. Our results revealed that Sal treatment significantly decreased SAP-induced pancreatic cell damage and pyroptosis in vivo and in vitro, as well as reduced the release of lactate dehydrogenase (LDH), IL-1β and IL-18. Search Tool for Interacting Chemicals (STITCH) online tool identified 4 genes (CASP3, AKT1, HIF1A and IL10) as candidate targets of Sal in both rattus norvegicus and homo sapiens. Western blot and immunohistochemistry staining validated that Sal treatment decreased the phosphorylation levels of Akt and NF-κB p65, as well as cleaved caspase-3 and N-terminal fragments of GSDME (GSDME-N), suggesting that Sal might suppress pyroptosis through inactivating Akt/NF-κB and Caspase-3/GSDME pathways. Furthermore, overexpression of AKT1 or CASP3 could partially reverse the inhibitory effects of Sal on cell injury and pyroptosis, while downregulation of AKT1 or CASP3 promoted the inhibitory effects of Sal. Taken together, our data indicate that Sal suppresses SAP-induced pyroptosis through inactivating Akt/NF-κB and Caspase-3/GSDME pathways.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China,Corresponding author.
| | - Jing Qian
- Department of General Surgery, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Yun Meng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Ping Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Ruizhi Cheng
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng, 211900, Jiangsu, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong, 226001, Jiangsu, China
| |
Collapse
|
38
|
Liao Y, Wang X, Huang L, Qian H, Liu W. Mechanism of pyroptosis in neurodegenerative diseases and its therapeutic potential by traditional Chinese medicine. Front Pharmacol 2023; 14:1122104. [PMID: 36713841 PMCID: PMC9880437 DOI: 10.3389/fphar.2023.1122104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Neurodegenerative diseases (NDs) are disorders characterized by degenerative degeneration of neurons and loss of their function. NDs have a complicated pathophysiology, of which neuroinflammation and neuronal death are significant factors. The inflammatory process known as pyroptosis ("fiery death") is caused by a family of pore-forming proteins called Gasdermins (GSDMs), which appears downstream from the activation of the inflammasome. Clear evidence of enhanced pyroptosis-related proteins activity in common NDs has coincided with abnormal aggregation of pathological proteins (such as Aβ, tau, α-synuclein et al.), making pyroptosis an attractive direction for the recent study of NDs. The purpose of this review is to provide an overview of the molecular mechanisms driving pyroptosis, the mechanistic links between pyroptosis and NDs, and emerging therapeutic strategies in Traditional Chinese Medicine (TCM) to inhibit pyroptosis for the treatment of NDs.
Collapse
Affiliation(s)
- Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liting Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hu Qian
- Department of Breast Cancer Oncology, Foshan No 1 Hospital, Foshan, China,*Correspondence: Hu Qian, ; Wei Liu,
| | - Wei Liu
- The First Clinical Medicine College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,Integrative Cancer Centre, The First Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, China,*Correspondence: Hu Qian, ; Wei Liu,
| |
Collapse
|
39
|
Li J, Li L, He J, Xu J, Bao F. The NLRP3 inflammasome is a potential mechanism and therapeutic target for perioperative neurocognitive disorders. Front Aging Neurosci 2023; 14:1072003. [PMID: 36688154 PMCID: PMC9845955 DOI: 10.3389/fnagi.2022.1072003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are frequent complications associated with cognitive impairment during the perioperative period, including acute postoperative delirium and long-lasting postoperative cognitive dysfunction. There are some risk factors for PNDs, such as age, surgical trauma, anesthetics, and the health of the patient, but the underlying mechanism has not been fully elucidated. Pyroptosis is a form of programmed cell death that is mediated by the gasdermin protein and is involved in cognitive dysfunction disorders. The canonical pathway induced by nucleotide oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasomes contributes to PNDs, which suggests that targeting NLRP3 inflammasomes may be an effective strategy for the treatment of PNDs. Therefore, inhibiting upstream activators and blocking the assembly of the NLRP3 inflammasome may attenuate PNDs. The present review summarizes recent studies and systematically describes the pathogenesis of NLRP3 activation and regulation and potential therapeutics targeting NLRP3 inflammasomes in PNDs patients.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Li Li
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jiannan He
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Jianhong Xu
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Fangping Bao
- Department of Anesthesiology, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China,Department of Anesthesiology, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Fangping Bao,
| |
Collapse
|
40
|
Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z, Zhou F. NLRP3 Inflammasome: An Emerging Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2023; 96:1383-1398. [PMID: 37980662 DOI: 10.3233/jad-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Alzheimer's disease (AD) is currently the most prevalent neurological disease, and no effective and practical treatments and therapies exist. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain- containing receptor 3 (NLRP3) inflammasome is vital in the human innate immune response. However, when the NLRP3 inflammasome is overactivated by persistent stimulation, several immune-related diseases, including AD, atherosclerosis, and obesity, result. This review will focus on the composition and activation mechanism of the NLRP3 inflammasome, the relevant mechanisms of involvement in the inflammatory response to AD, and AD treatment targeting NLRP3 inflammasome. This review aims to reveal the pathophysiological mechanism of AD from a new perspective and provide the possibility of more effective and novel strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Shuqi Tao
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenyuan Fan
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Tong Wang
- Department of Neurosurgery, Wei Fang People's Hospital, Weifang, Shandong Province, China
| | - Haoning Zheng
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, China
| | - Yanchun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhangyu Guo
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Fenghua Zhou
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
41
|
Ren Y, Ye D, Ding Y, Wei N. Ginsenoside Rk1 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease via activating silence information regulator 3-mediated Nrf2/HO-1 signaling pathway. Hum Exp Toxicol 2023; 42:9603271231220610. [PMID: 38105596 DOI: 10.1177/09603271231220610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Objectives: Ginsenoside Rk1, a novel ginsenoside isolated from red ginseng, has anti-inflammatory and anti-tumor activities. This study was designed to elucidate the role of RK1 in an in vitro 1-methyl-4-phenylpyridinium (MPP+) cell model and an in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of Parkinson's disease (PD).Methods: The grasping test, pole-climbing test, and rotarod test were performed to measure the effects of RK1 on MPTP-induced motor disorders. The expression of tyrosine hydroxylase (TH) and IBA-1 were evaluated by western blotting. CCK-8 and flow cytometry assays were utilized to assess cell viability and apoptosis. Reactive oxygen species (ROS), Lactate dehydrogenase (LDH), and superoxide dismutase (SOD) were detected to analyze the effects of RK1 on oxidative stress. The levels of inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA).Results: The results showed that RK1 allayed motor deficit elicited by MPTP in a mouse model. RK1 administration augmented tyrosine hydroxylase (TH) expression in the brain striatum and substantia nigra (SN) of MPTP-treated mice. Moreover, RK1 pretreatment promoted viability and suppressed apoptosis in MPP+-induced PC-12 cells. Further, RK1 also attenuated MPP+-stimulated oxidative stress and inflammatory response in PC-12 cells. Besides, RK1 augmented the level of SIRT3, and SIRT3 deletion counteracted RK1-induced repression on MPP+-elicited apoptosis, oxidative stress, and inflammatory response in PC-12 cells via modulating the Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway.Conclusions: RK1 might exert neuroprotective effects against MPP+/MPTP-induced neurotoxicity via activating SIRT3-mediated Nrf2/HO-1 signaling. RK1 might be a promising candidate against PD.
Collapse
Affiliation(s)
- Yi Ren
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dan Ye
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yiping Ding
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ning Wei
- Department of Neurology, the First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
42
|
Tan W, Qi L, Hu X, Tan Z. Research progress in traditional Chinese medicine in the treatment of Alzheimer's disease and related dementias. Front Pharmacol 2022; 13:921794. [PMID: 36506569 PMCID: PMC9729772 DOI: 10.3389/fphar.2022.921794] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the world's leading cause of dementia and has become a huge economic burden on nations and families. However, the exact etiology of AD is still unknown, and there are no efficient medicines or methods to prevent the deterioration of cognition. Traditional Chinese medicine (TCM) has made important contributions in the battle against AD based on the characteristics of multiple targets of TCM. This study reviewed the treatment strategies and new discoveries of traditional Chinese medicine in current research, which may be beneficial to new drug researchers.
Collapse
Affiliation(s)
- Wanying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lingjun Qi
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghuai Tan
- Sichuan Academy of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
43
|
Lo J, Liu CC, Li YS, Lee PY, Liu PL, Wu PC, Lin TC, Chen CS, Chiu CC, Lai YH, Chang YC, Wu HE, Chen YR, Huang YK, Huang SP, Wang SC, Li CY. Punicalagin Attenuates LPS-Induced Inflammation and ROS Production in Microglia by Inhibiting the MAPK/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Inflamm Res 2022; 15:5347-5359. [PMID: 36131784 PMCID: PMC9484772 DOI: 10.2147/jir.s372773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1β was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1β, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Lo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ching-Chih Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yueh-Shan Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Yen Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Chang Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tzu-Chieh Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Hung Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yo-Chen Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yuan-Ru Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Shu-Pin Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan.,Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| |
Collapse
|
44
|
He M, Fan J, Zhou R, Gao G, Li R, Zuo Y, Li B, Li Y, Sun T. NLRP3/Caspase-1-Mediated Pyroptosis of Astrocytes Induced by Antipsychotics Is Inhibited by a Histamine H1 Receptor-Selective Agonist. Front Aging Neurosci 2022; 14:847561. [PMID: 35615587 PMCID: PMC9125084 DOI: 10.3389/fnagi.2022.847561] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging data indicate that antipsychotic treatment causes brain volume loss and astrocyte death, but the mechanisms remain elusive. Pyroptosis, inflammatory cell death characterized by the formation of inflammatory bodies, increased expression of nod-like receptor proteins (NLRPs) such as NLRP3, and activation of caspases and gasdermin D (GSDMD) are largely associated with innate immunity, inflammation, and cell injury/death. However, the main effect of antipsychotics on astrocyte pyroptotic signaling and the molecular mechanisms remain obscure. In the present study, 72-h treatment with olanzapine, quetiapine, risperidone, or haloperidol significantly decreased the viability of astrocytes. Twenty-four hour treatment with olanzapine, quetiapine, risperidone, or haloperidol dose-dependently increased the protein expression of astrocytic NLRP3, NLRP6, caspase-1, caspase-4, and GSDMD. Co-treatment with a histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl) histamine (FMPH), dose-dependently reduced the increased expression of NLRP3, caspase-1 and GSDMD induced by olanzapine, quetiapine, risperidone, or haloperidol. Moreover, olanzapine, quetiapine, risperidone, or haloperidol treatment induced pore formation in the membranes of astrocytes, and these effects were inhibited by FMPH co-treatment. Taken together, antipsychotic treatment activated astrocyte pyroptotic signaling, and these effects may be related to antipsychotic-induced astrocyte death. H1 receptor activation is an effective treatment strategy to suppress antipsychotic-induced astrocyte pyroptosis and inflammation.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YuFeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yanmei Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
- *Correspondence: Taolei Sun,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Yanmei Li,
| |
Collapse
|