1
|
Al Ojaimi Y, Vallet N, Dangoumau A, Lanznaster D, Bruno C, Lefevre A, Osman S, Dupuy C, Emond P, Vourc'h P, Corcia P, Krupova Z, Veyrat-Durebex C, Blasco H. Metabolomic and Proteomic Profiling of Serum-Derived Extracellular Vesicles from Early-Stage Amyotrophic Lateral Sclerosis Patients. J Mol Neurosci 2025; 75:21. [PMID: 39954028 DOI: 10.1007/s12031-025-02315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
The identification of reliable biomarkers for amyotrophic lateral sclerosis (ALS) is an unmet medical need for the development of diagnostic and therapeutic strategies. Brain-derived extracellular vesicles (EVs) have been described in peripheral blood serum and used as a direct readout of the status of the central nervous system. Here, we aimed to explore exosome-enriched EVs (referred to simply as EVs) from ALS patients via omics analysis at an early disease stage. Serum EVs were obtained from 9 healthy controls and 9 ALS patients. After EV purification, proteomic (LC‒MS/MS followed by TimsTOF Pro Mass Spectrometry) and metabolomic (Q Exactive mass spectrometer) analyses were performed. No differences in the size or concentration of EVs were observed between the controls and ALS patients. Proteomic analysis revealed 45 proteins differentially expressed in the EVs of ALS patients compared with those of controls. Metabolomic analysis revealed several distinctly represented metabolites involved in the citrate cycle and complex lipid metabolism between patients and controls. Interomics correlation analysis revealed 2 modules that were strongly associated with ALS and included several lipid metabolism-related proteins and metabolites. This study is the first to evaluate EVs by integrated proteomics and metabolomics in early-stage ALS patients, highlighting the technological progress in global inter-omics explorations of small biological samples. The differences observed in the levels of several exosomal proteins and metabolites, including phospholipids, could be used to identify serum biomarkers and novel players involved in ALS pathogenesis.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France.
| | - Nicolas Vallet
- Hematology and Cell Therapy Department, U1069 N2COx, Tours University Hospital, INSERM, Tours, France
| | - Audrey Dangoumau
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
| | - Débora Lanznaster
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
| | - Clement Bruno
- Laboratoire de Biochimie Et Biologie Moléculaire, CHRU Tours, Tours, France
| | - Antoine Lefevre
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Département de Métabolomique de PST-ASB, METABOHUB, Université de Tours, Tours, France
| | - Samira Osman
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
| | - Camille Dupuy
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Département de Métabolomique de PST-ASB, METABOHUB, Université de Tours, Tours, France
| | - Patrick Emond
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Département de Métabolomique de PST-ASB, METABOHUB, Université de Tours, Tours, France
| | - Patrick Vourc'h
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Laboratoire de Biochimie Et Biologie Moléculaire, CHRU Tours, Tours, France
| | - Philippe Corcia
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU Tours, Tours, France
| | | | - Charlotte Veyrat-Durebex
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Laboratoire de Biochimie Et Biologie Moléculaire, CHRU Tours, Tours, France
| | - Hélène Blasco
- INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, 37032, Tours, France
- Laboratoire de Biochimie Et Biologie Moléculaire, CHRU Tours, Tours, France
- Département de Métabolomique de PST-ASB, METABOHUB, Université de Tours, Tours, France
| |
Collapse
|
2
|
Chico-Sordo L, García-Velasco JA. MicroRNAs as Biomarkers and Therapeutic Targets in Female Infertility. Int J Mol Sci 2024; 25:12979. [PMID: 39684688 PMCID: PMC11640832 DOI: 10.3390/ijms252312979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The study of microRNAs (miRNAs) has emerged in recent decades as a key approach to understanding the pathophysiology of many diseases, exploring their potential role as biomarkers, and testing their use as future treatments. Not only have neurological, cardiovascular diseases, or cancer benefited from this research but also infertility. Female infertility, as a disease, involves alterations at multiple levels, such as ovarian and uterine alterations. This review compiles the latest studies published in humans that link female disorders that affect fertility with altered miRNA profiles. Studies on ovarian alterations, including diminished ovarian reserve (DOR), poor ovarian response to stimulation (POR), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are summarized and classified based on the expression and type of sample analyzed. Regarding uterine disorders, this review highlights upregulated and downregulated miRNAs primarily identified as biomarkers for endometriosis, adenomyosis, decreased endometrial receptivity, and implantation failure. However, despite the large number of studies in this field, the same limitations that reduce reproducibility are often observed. Therefore, at the end of this review, the main limitations of this type of study are described, as well as specific precautions or safety measures that should be considered when handling miRNAs.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain;
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
- School of Health Sciences, Medical Specialties and Public Health, Obstetrics and Gynecology Area, Rey Juan Carlos University Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
3
|
Maity D, Kaundal RK. Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis. Neurol Sci 2024:10.1007/s10072-024-07840-x. [PMID: 39570437 DOI: 10.1007/s10072-024-07840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids. However, variability across studies complicates their diagnostic utility in ALS. This study aims to identify significantly dysregulated miRNAs in ALS through meta-analysis to elucidate disease mechanisms and improve diagnostic strategies. METHODS We systematically searched PubMed, Google Scholar, and the Cochrane Library, following predefined inclusion and exclusion criteria. The primary effect measure was the standardized mean difference (SMD) with a 95% confidence interval, analyzed using a random-effects model. Additionally, we used network pharmacology to examine the targets of dysregulated miRNAs and their roles in ALS pathology. RESULTS Analysing 34 studies, we found significant upregulation of hsa-miR-206, hsa-miR-133b, hsa-miR-23a, and hsa-miR-338-3p, and significant downregulation of hsa-miR-218, hsa-miR-21-5p, and hsa-let-7b-5p in ALS patients. These miRNAs are involved in ALS pathophysiology, including stress granule formation, nuclear pore complex, SMCR8 and Sig1R dysfunction, histone methyltransferase complex alterations, and MAPK signaling perturbation, highlighting their critical role in ALS progression. CONCLUSION This study identifies several dysregulated miRNAs in ALS patients, offering insights into their role in the disease and potential as diagnostic biomarkers. These findings enhance our understanding of ALS mechanisms and may inform future diagnostic strategies. Validating these results and exploring miRNA-based interventions are crucial for improving ALS diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
4
|
Ueno Y, Morishima Y, Hata T, Shindo A, Murata H, Saito T, Nakamura Y, Shindo K. Current progress in microRNA profiling of circulating extracellular vesicles in amyotrophic lateral sclerosis: A systematic review. Neurobiol Dis 2024; 200:106639. [PMID: 39168358 DOI: 10.1016/j.nbd.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons, leading to death resulting mainly from respiratory failure, for which there is currently no curative treatment. Underlying pathological mechanisms for the development of ALS are diverse and have yet to be elucidated. Non-invasive testing to isolate circulating molecules including microRNA to diagnose ALS has been reported, but circulating extracellular vesicle (EV)-derived microRNA has not been fully studied in the ALS population. METHODS A systematic literature review to explore studies investigating the profile of microRNAs in EVs from blood samples of ALS patients was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline. RESULTS Eleven studies including a total of 263 patients with ALS were included in the present systematic review. The majority of patients had sporadic ALS, though a small number of patients with ALS having genetic mutations were included. Seven studies used plasma-derived EVs, and the remaining four studies used serum-derived EVs. RNA sequencing or microarrays were used in eight studies, and quantitative PCR was used in eight studies, of which five studies used RNA sequencing or microarrays for screening and quantitative PCR for validation. There was overlap of miR-199a-3p and miR-199a-5p in three studies. CONCLUSIONS Overall, the systematic review addressed the current advances in the profiling of microRNAs in circulating EVs of ALS patients. Blood samples, isolation of EVs, and microRNA analysis were diverse. Although there was an overlap of miR-199a-3p and miR-199a-5p, collection of further evidence is warranted.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, University of Yamanashi, Chuo, Japan.
| | - Yuto Morishima
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Takanori Hata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Atsuhiko Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Hiroaki Murata
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Tatsuya Saito
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Yuki Nakamura
- Department of Neurology, University of Yamanashi, Chuo, Japan
| | - Kazumasa Shindo
- Department of Neurology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
5
|
Banack SA, Dunlop RA, Mehta P, Mitsumoto H, Wood SP, Han M, Cox PA. A microRNA diagnostic biomarker for amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae268. [PMID: 39280119 PMCID: PMC11398878 DOI: 10.1093/braincomms/fcae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Blood-based diagnostic biomarkers for amyotrophic lateral sclerosis will improve patient outcomes and positively impact novel drug development. Critical to the development of such biomarkers is robust method validation, optimization and replication with adequate sample sizes and neurological disease comparative blood samples. We sought to test an amyotrophic lateral sclerosis biomarker derived from diverse samples to determine if it is disease specific. Extracellular vesicles were extracted from blood plasma obtained from individuals diagnosed with amyotrophic lateral sclerosis, primary lateral sclerosis, Parkinson's disease and healthy controls. Immunoaffinity purification was used to create a neural-enriched extracellular vesicle fraction. MicroRNAs were measured across sample cohorts using real-time polymerase chain reaction. A Kruskal-Wallis test was used to assess differences in plasma microRNAs followed by post hoc Mann-Whitney tests to compare disease groups. Diagnostic accuracy was determined using a machine learning algorithm and a logistic regression model. We identified an eight-microRNA diagnostic signature for blood samples from amyotrophic lateral sclerosis patients with high sensitivity and specificity and an area under the curve calculation of 98% with clear statistical separation from neurological controls. The eight identified microRNAs represent disease-related biological processes consistent with amyotrophic lateral sclerosis. The direction and magnitude of gene fold regulation are consistent across four separate patient cohorts with real-time polymerase chain reaction analyses conducted in two laboratories from diverse samples and sample collection procedures. We propose that this diagnostic signature could be an aid to neurologists to supplement current clinical metrics used to diagnose amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MND/ALS Research Center, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Moon Han
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | | |
Collapse
|
6
|
Vassileff N, Spiers JG, Lee JD, Woodruff TM, Ebrahimie E, Mohammadi Dehcheshmeh M, Hill AF, Cheng L. A Panel of miRNA Biomarkers Common to Serum and Brain-Derived Extracellular Vesicles Identified in Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2024; 61:5901-5915. [PMID: 38252383 PMCID: PMC11249427 DOI: 10.1007/s12035-023-03857-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease characterised by the deposition of aggregated proteins including TAR DNA-binding protein 43 (TDP-43) in vulnerable motor neurons and the brain. Extracellular vesicles (EVs) facilitate the spread of neurodegenerative diseases and can be easily accessed in the bloodstream. This study aimed to identify a panel of EV miRNAs that can capture the pathology occurring in the brain and peripheral circulation. EVs were isolated from the cortex (BDEVs) and serum (serum EVs) of 3 month-old and 6-month-old TDP-43*Q331K and TDP-43*WT mice. Following characterisation and miRNA isolation, the EVs underwent next-generation sequencing where 24 differentially packaged miRNAs were identified in the TDP-43*Q331K BDEVs and 7 in the TDP-43*Q331K serum EVs. Several miRNAs, including miR-183-5p, were linked to ALS. Additionally, miR-122-5p and miR-486b-5p were identified in both panels, demonstrating the ability of the serum EVs to capture the dysregulation occurring in the brain. This is the first study to identify miRNAs common to both the serum EVs and BDEVs in a mouse model of ALS.
Collapse
Affiliation(s)
- Natasha Vassileff
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Jereme G Spiers
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Acton, ACT, Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Australia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3000, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Andrew F Hill
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
7
|
Huang J, Yu Y, Pang D, Li C, Wei Q, Cheng Y, Cui Y, Ou R, Shang H. Lnc-HIBADH-4 Regulates Autophagy-Lysosome Pathway in Amyotrophic Lateral Sclerosis by Targeting Cathepsin D. Mol Neurobiol 2024; 61:4768-4782. [PMID: 38135852 PMCID: PMC11236912 DOI: 10.1007/s12035-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent and lethal class of severe motor neuron diseases (MND) with no efficacious treatment. The pathogenic mechanisms underlying ALS remain unclear. Nearly 90% of patients exhibit sporadic onset (sALS). Therefore, elucidating the pathophysiology of ALS is imperative. Long non-coding RNA (lncRNA) is a large class of non-coding RNAs that regulate transcription, translation, and post-translational processes. LncRNAs contribute to the pathogenesis of diverse neurodegenerative disorders and hold promise as targets for interference in the realm of neurodegeneration. However, the mechanisms of which lncRNAs are involved in ALS have not been thoroughly investigated. We identified and validated a downregulated lncRNA, lnc-HIBADH-4, in ALS which correlated with disease severity and overall survival. Lnc-HIBADH-4 acted as a "molecular sponge" regulating lysosomal function through the lnc-HIBADH-4/miR-326/CTSD pathway, thereby impacting autophagy-lysosome dynamics and the levels of cell proliferation and apoptosis. Therefore, this study discovered and revealed the role of lnc-HIBADH-4 in the pathogenesis of ALS. With further research, lnc-HIBADH-4 is expected to provide a new biomarker in the diagnosis and treatment of ALS.
Collapse
Affiliation(s)
- Jingxuan Huang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yujiao Yu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, No.37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Tao H, Gao B. Exosomes for neurodegenerative diseases: diagnosis and targeted therapy. J Neurol 2024; 271:3050-3062. [PMID: 38605227 DOI: 10.1007/s00415-024-12329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Neurodegenerative diseases are still challenging clinical issues, with no curative interventions available and early, accurate diagnosis remaining difficult. Finding solutions to them is of great importance. In this review, we discuss possible exosomal diagnostic biomarkers and explore current explorations in exosome-targeted therapy for some common neurodegenerative diseases, offering insights into the clinical transformation of exosomes in this field. RECENT FINDINGS The burgeoning research on exosomes has shed light on their potential applications in disease diagnosis and treatment. As a type of extracellular vesicles, exosomes are capable of crossing the blood - brain barrier and exist in various body fluids, whose components can reflect pathophysiological changes in the brain. In addition, they can deliver specific drugs to brain tissue, and even possess certain therapeutic effects themselves. And the recent advancements in engineering modification technology have further enabled exosomes to selectively target specific sites, facilitating the possibility of targeted therapy for neurodegenerative diseases. The unique properties of exosomes give them great potential in the diagnosis and treatment of neurodegenerative diseases, and provide novel ideas for dealing with such diseases.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
10
|
Corell-Sierra J, Marquez-Molins J, Marqués MC, Hernandez-Azurdia AG, Montagud-Martínez R, Cebriá-Mendoza M, Cuevas JM, Albert E, Navarro D, Rodrigo G, Gómez G. SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity. NPJ Syst Biol Appl 2024; 10:41. [PMID: 38632240 PMCID: PMC11024147 DOI: 10.1038/s41540-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | | | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010, Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| | - Gustavo Gómez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| |
Collapse
|
11
|
Chico-Sordo L, Ruiz-Martínez T, Toribio M, González-Martín R, Spagnolo E, Domínguez F, Hernández A, García-Velasco JA. Identification of miR-30c-5p microRNA in Serum as a Candidate Biomarker to Diagnose Endometriosis. Int J Mol Sci 2024; 25:1853. [PMID: 38339132 PMCID: PMC10855247 DOI: 10.3390/ijms25031853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
The diagnosis of endometriosis by laparoscopy is delayed until advanced stages. In recent years, microRNAs have emerged as novel biomarkers for different diseases. These molecules are small non-coding RNA sequences involved in the regulation of gene expression and can be detected in peripheral blood. Our aim was to identify candidate serum microRNAs associated with endometriosis and their role as minimally invasive biomarkers. Serum samples were obtained from 159 women, of whom 77 were diagnosed with endometriosis by laparoscopy and 82 were healthy women. First, a preliminary study identified 29 differentially expressed microRNAs between the two study groups. Next, nine of the differentially expressed microRNAs in the preliminary analysis were evaluated in a new cohort of 67 women with endometriosis and 72 healthy women. Upon validation by quantitative real-time PCR technique, the circulating level of miR-30c-5p was significantly higher in the endometriosis group compared with the healthy women group. The area under the curve value of miR-30c-5p was 0.8437, demonstrating its diagnostic potential even when serum samples registered an acceptable limit of hemolysis. Dysregulation of this microRNA was associated with molecular pathways related to cancer and neuronal processes. We concluded that miR-30c-5p is a potential minimally invasive biomarker of endometriosis, with higher expression in the group of women with endometriosis diagnosed by laparoscopy.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | | | - Mónica Toribio
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
| | - Roberto González-Martín
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | - Emanuela Spagnolo
- Gynaecology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Francisco Domínguez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
| | - Alicia Hernández
- Gynaecology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Juan A. García-Velasco
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (L.C.-S.); (F.D.); (J.A.G.-V.)
- IVIRMA Global Research Alliance, IVIRMA Madrid, 28023 Madrid, Spain
- School of Health Sciences, Medical Specialties and Public Health, Obstetrics and Gynecology Area, Rey Juan Carlos University Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
12
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|