1
|
Gao Y, Liang C, Zhang Q, Zhuang H, Sui C, Zhang N, Feng M, Xin H, Guo L, Wang Y. Brain iron deposition and cognitive decline in patients with cerebral small vessel disease : a quantitative susceptibility mapping study. Alzheimers Res Ther 2025; 17:17. [PMID: 39789638 PMCID: PMC11715900 DOI: 10.1186/s13195-024-01638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions. PURPOSE Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function. MATERIALS AND METHODS A total of 321 subjects were enrolled in this study. All subjects had cognitive examination including the Stroop color word test (SCWT) and MRI including multiecho gradient echo (mGRE) sequence. The patients with CSVD were divided into mild to moderate group (CSVD-M, total CSVD score ≤ 1) and severe group (CSVD-S, total CSVD score > 1). Morphology-enabled dipole inversion with an automated uniform cerebrospinal fluid zero reference algorithm (MEDI + 0) was used to generate brain QSM maps from mGRE data. Deep gray regional susceptibility values and cognitive function were compared among three groups (CSVD-S, CSVD-M, and HC) using multiple linear regression analysis and mediation effect analysis. RESULTS There were significant differences in the SCWT scores and mean susceptibility values of the globus pallidus (GP), putamen (Put), and caudate nucleus (CN) among the three groups (P < 0.05, FDR correction). Age had a significant positive impact on the susceptibility values of GP (p = 0.018), Put (p < 0.001), and CN (p < 0.001). A history of diabetes had a significant positive influence on the susceptibility values of Put (p = 0.011) and CN (p < 0.001). A smoking history had a significant positive association with the susceptibility values of CN (p = 0.019). Mediation effect analysis demonstrated that iron deposition in the neostriatum partially mediated the relationship between hypertension and cognitive function. Age, diabetes, and smoking may increase iron deposition in the basal ganglia, associated with cognitive decline. The mean susceptibility values of the neostriatum played a mediating role in the association between hypertension and cognitive scores. CONCLUSIONS Age, diabetes, and smoking are associated with increased iron deposition in the basal ganglia and also linked to cognitive decline. This can help with understanding CSVD and its prevention and treatment.
Collapse
Affiliation(s)
- Yian Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Qihao Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hangwei Zhuang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA, Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Chaofan Sui
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China
| | - Mengmeng Feng
- Department of Radiology, Department of Radiology and Nuclear medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Haotian Xin
- Department of Radiology, Department of Radiology and Nuclear medicine, Xuanwu Hospital, Capital Medical University, No. 45 Chang-chun St, Xicheng District, Beijing, China
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-wu Road, Jinan, 250021, China.
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Xu C, Xia J, Qiang Y, Wu Y. Relationship between burden of cerebral small vessel disease on imaging and cognitive impairment of COPD patients. J Neurosci Methods 2024; 410:110218. [PMID: 38996845 DOI: 10.1016/j.jneumeth.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE This study aims to explore the relationship between the burden of cerebral small vessel disease (CSVD) on imaging and cognitive impairment (CI) in patients with chronic obstructive pulmonary disease (COPD). METHODS The study included 118 COPD patients admitted to Changxing People's Hospital between July 2020 and July 2023. All patients received a 1.5 T MRI of the brain and pulmonary function tests. A cognitive function assessment was conducted via the Montreal Cognitive Assessment (MoCA) scale, and patients were divided into two groups. The relationship between the MoCA and CSVD burden score was analyzed by Pearson correlation, and to identify risk factors, multiple logistic regression analysis was performed. RESULTS The study showed a negative correlation between the MoCA and CSVD burden score in COPD patients (r=-0.479, P<0.001). Multiple logistic regression analysis found that age (OR=2.264, 95 % CI: 1.426-3.596, P<0.001), COPD grade (OR=3.139, 95 % CI: 2.012-4.898, P<0.001), as well as CSVD burden score (OR=5.336, 95 % CI: 1.191-23.900, P<0.001) were the independent risk factors for CI in COPD patients (P<0.05). CONCLUSION When screening for cognitive impairment in COPD patients, the CSVD burden score can be used in conjunction with cognitive assessment scales to make judgments.
Collapse
Affiliation(s)
- Chentao Xu
- Department of Radiology, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Jinjin Xia
- Department of Neurology, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Yanfei Qiang
- Department of Respiration, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Yingzhe Wu
- Department of Radiology, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| |
Collapse
|
3
|
Sullivan EV, Zahr NM, Zhao Q, Pohl KM, Sassoon SA, Pfefferbaum A. Contributions of Cerebral White Matter Hyperintensities to Postural Instability in Aging With and Without Alcohol Use Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:998-1009. [PMID: 38569932 PMCID: PMC11442683 DOI: 10.1016/j.bpsc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Both postural instability and brain white matter hyperintensities (WMHs) are noted markers of normal aging and alcohol use disorder (AUD). Here, we questioned what variables contribute to the sway path-WMH relationship in individuals with AUD and healthy control participants. METHODS The data comprised 404 balance platform sessions, yielding sway path length and magnetic resonance imaging data acquired cross-sectionally or longitudinally in 102 control participants and 158 participants with AUD ages 25 to 80 years. Balance sessions were typically conducted on the same day as magnetic resonance imaging fluid-attenuated inversion recovery acquisitions, permitting WMH volume quantification. Factors considered in multiple regression analyses as potential contributors to the relationship between WMH volumes and postural instability were age, sex, socioeconomic status, education, pedal 2-point discrimination, systolic and diastolic blood pressure, body mass index, depressive symptoms, total alcohol consumed in the past year, and race. RESULTS Initial analysis identified diagnosis, age, sex, and race as significant contributors to observed sway path-WMH relationships. Inclusion of these factors as predictors in multiple regression analyses substantially attenuated the sway path-WMH relationships in both AUD and healthy control groups. Women, irrespective of diagnosis or race, had shorter sway paths than men. Black participants, irrespective of diagnosis or sex, had shorter sway paths than non-Black participants despite having modestly larger WMH volumes than non-Black participants, which is possibly a reflection of the younger age of the Black sample. CONCLUSIONS Longer sway paths were related to larger WMH volumes in healthy men and women with and without AUD. Critically, however, age almost fully accounted for these associations.
Collapse
Affiliation(s)
- Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Natalie M Zahr
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Center for Health Sciences, SRI International, Menlo Park, California
| | - Qingyu Zhao
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Kilian M Pohl
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Stephanie A Sassoon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Center for Health Sciences, SRI International, Menlo Park, California
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Center for Health Sciences, SRI International, Menlo Park, California
| |
Collapse
|
4
|
Stoisavljevic S, Zdraljevic M, Radojicic A, Pavlovic A, Mijajlovic M. Carotid artery stenosis is related to cerebral small vessel disease magnetic resonance imaging burden. Heliyon 2024; 10:e36052. [PMID: 39224254 PMCID: PMC11367513 DOI: 10.1016/j.heliyon.2024.e36052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Cerebral small vessel disease (CSVD) encompasses conditions that affect small blood vessels of the brain, the most common being atherosclerosis. Magnetic resonance imaging (MRI) CSVD markers include lacunar strokes (LS), white matter hyperintensities (WMH), microbleeds, enlarged perivascular spaces (EPVS), and brain atrophy. Large and small cerebral arteries share an anatomical and functional connection, but the role of large vessel atherosclerosis in atherosclerotic CSVD hasn't been established. The aim of this study was to evaluate the involvement of large vessel pathology in atherosclerotic CSVD. Methods This cross-sectional study included 98 patients treated at the Neurology Clinic of the University Clinical Center of Serbia in Belgrade, from February 2018 to December 2023, who had atherosclerotic CSVD confirmed by neuroimaging and underwent extracranial color duplex sonography. Data on patients' gender, age, cerebrovascular risk factors (dyslipidemia, hypertension, diabetes mellitus, smoking status), ultrasonography findings (intima-media thickness - IMT, carotid and vertebral artery stenosis, and hemodynamics), and CSVD imaging markers were collected, and the CSVD MRI burden score was calculated. Results Age correlated with LS and WMH (p < 0.05 for both). Hypertension correlated with WMH (p = 0.016), and smoking with LS (p = 0.043). Brain atrophy was more common in women (p = 0.016). The majority of patients had low-grade (<50 %) carotid stenosis. There was a strong correlation between all morphological parameters of internal carotid artery stenosis and the CSVD burden score (p < 0.05 for all). The hemodynamic parameters of internal carotid artery stenosis and morphological and hemodynamic parameters of vertebral artery stenosis didn't correlate with the CSVD burden score. Conclusions This study shows a strong correlation between cerebral large and small vessel pathology. We recommend the use of extracranial color duplex sonography in the evaluation of patients with CSVD as a supplementary method for follow-up, as this would allow the identification of patients whose condition might progress.
Collapse
Affiliation(s)
| | - Mirjana Zdraljevic
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| | - Aleksandra Radojicic
- Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| | - Aleksandra Pavlovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, 11000, Belgrade, Serbia
| | - Milija Mijajlovic
- Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
- Neurology Clinic, University Clinical Center of Serbia, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
SULLIVAN EV, ZAHR NM, ZHAO Q, POHL KM, SASSOON SA, PFEFFERBAUM A. Contributions of cerebral white matter hyperintensities, age, and pedal perception to postural sway in people with HIV. AIDS 2024; 38:1153-1162. [PMID: 38537080 PMCID: PMC11141235 DOI: 10.1097/qad.0000000000003894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
OBJECTIVE With aging, people with HIV (PWH) have diminishing postural stability that increases liability for falls. Factors and neuromechanisms contributing to instability are incompletely known. Brain white matter abnormalities seen as hyperintense (WMH) signals have been considered to underlie instability in normal aging and PWH. We questioned whether sway-WMH relations endured after accounting for potentially relevant demographic, physiological, and HIV-related variables. DESIGN Mixed cross-sectional/longitudinal data were acquired over 15 years in 141 PWH and 102 age-range matched controls, 25-80 years old. METHODS Multimodal structural MRI data were quantified for seven total and regional WMH volumes. Static posturography acquired with a force platform measured sway path length separately with eyes closed and eyes open. Statistical analyses used multiple regression with mixed modeling to test contributions from non-MRI and nonpath data on sway path-WMH relations. RESULTS In simple correlations, longer sway paths were associated with larger WMH volumes in PWH and controls. When demographic, physiological, and HIV-related variables were entered into multiple regressions, the sway-WMH relations under both vision conditions in the controls were attenuated when accounting for age and two-point pedal discrimination. Although the sway-WMH relations in PWH were influenced by age, 2-point pedal discrimination, and years with HIV infection, the sway-WMH relations endured for five of the seven regions in the eyes-open condition. CONCLUSION The constellation of age-related increasing instability while standing, degradation of brain white matter integrity, and peripheral pedal neuropathy is indicative of advancing fraility and liability for falls as people age with HIV infection.
Collapse
Affiliation(s)
- Edith V. SULLIVAN
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Natalie M. ZAHR
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
- Center for Health Sciences, SRI International, Menlo Park, CA
| | - Qingyu ZHAO
- Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Kilian M. POHL
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Stephanie A. SASSOON
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
- Center for Health Sciences, SRI International, Menlo Park, CA
| | | |
Collapse
|
6
|
Xu X, Xiao C, Yi M, Yang J, Liao M, Zhou K, Hu L, Ouyang F, Lan L, Fan Y. Cerebral Perfusion Characteristics and Dynamic Brain Structural Changes in Stroke-Prone Renovascular Hypertensive Rats: A Preclinical Model for Cerebral Small Vessel Disease. Transl Stroke Res 2024:10.1007/s12975-024-01239-8. [PMID: 38443727 DOI: 10.1007/s12975-024-01239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Hypertension is a leading cause of cerebral small vessel disease (CSVD) and vascular dementia in elderly individuals. We aimed to assess cerebral perfusion and dynamic changes in brain structure in stroke-prone renovascular hypertensive rats (RHRSPs) with different durations of hypertension and to investigate whether they have pathophysiological features similar to those of humans with CSVD. The RHRSP model was established using the two-kidney, two-clip (2k2c) method, and the Morris water maze (MWM) test, MRI, immunohistochemistry, and biochemical analysis were performed at multiple time points for up to six months following the 2k2c operation. Systolic blood pressure was significantly greater in the RHRSP group than in the sham-operated group at week 4 post-surgery and continued to increase over time, leading to cognitive decline by week 20. Arterial spin labeling revealed cerebral hypoperfusion in the RHRSP group at 8 weeks, accompanied by vascular remodeling and decreased vessel density. Diffusion tensor imaging and Luxol fast blue staining indicated that white matter disintegration and demyelination gradually progressed in the corpus callosum and that myelin basic protein levels decreased. Eight weeks after surgery, blood-brain barrier (BBB) leakage into the corpus callosum was observed. The albumin leakage area was negatively correlated with the myelin sheath area (r=-0.88, p<0.001). RNA-seq analysis revealed downregulation of most angiogenic genes and upregulation of antiangiogenic genes in the corpus callosum of RHRSPs 24 weeks after surgery. RHRSPs developed cerebral hypoperfusion, BBB disruption, spontaneous white matter damage, and cognitive impairment as the duration of hypertension increased. RHRSPs share behavioral and neuropathological characteristics with CSVD patients, making them suitable animal models for preclinical trials related to CSVD.
Collapse
Affiliation(s)
- Xiangming Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chi Xiao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Ming Yi
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Mengshi Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Kun Zhou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Liuting Hu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Fubing Ouyang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Linfang Lan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yuhua Fan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|