1
|
Cerebral metabolic pattern associated with progressive parkinsonism in non-human primates reveals early cortical hypometabolism. Neurobiol Dis 2022; 167:105669. [DOI: 10.1016/j.nbd.2022.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
|
2
|
Bang Y, Lim J, Choi HJ. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson's disease: clues to early diagnosis and effective treatment. Arch Pharm Res 2021; 44:588-604. [PMID: 34145553 PMCID: PMC8254697 DOI: 10.1007/s12272-021-01337-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by movement dysfunction due to selective degeneration of dopaminergic neurons in the substantia nigra pars compacta. Non-motor symptoms of PD (e.g., sensory dysfunction, sleep disturbance, constipation, neuropsychiatric symptoms) precede motor symptoms, appear at all stages, and impact the quality of life, but they frequently go unrecognized and remain untreated. Even when identified, traditional dopamine replacement therapies have little effect. We discuss here the pathology of two PD-associated non-motor symptoms: olfactory dysfunction and depression. Olfactory dysfunction is one of the earliest non-motor symptoms in PD and predates the onset of motor symptoms. It is accompanied by early deposition of Lewy pathology and neurotransmitter alterations. Because of the correlation between olfactory dysfunction and an increased risk of progression to PD, olfactory testing can potentially be a specific diagnostic marker of PD in the prodromal stage. Depression is a prevalent PD-associated symptom and is often associated with reduced quality of life. Although the pathophysiology of depression in PD is unclear, studies suggest a causal relationship with abnormal neurotransmission and abnormal adult neurogenesis. Here, we summarize recent progress in the pathology of the non-motor symptoms of PD, aiming to provide better guidance for its effective management.
Collapse
Affiliation(s)
- Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea
| | - Juhee Lim
- College of Pharmacy, Woosuk University, Wanju, Jeollabuk-do, 55338, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Gyeonggi-do, 11160, Republic of Korea.
| |
Collapse
|
3
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
4
|
Immunohistochemical Assessment of the Compensatory Responses in Rat Olfactory Bulbs after 6-Hydroxydopamine-Induced Lesion of the Substantia Nigra. Bull Exp Biol Med 2019; 166:811-815. [PMID: 31020581 DOI: 10.1007/s10517-019-04446-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 10/26/2022]
Abstract
We assessed changes of olfactory bulbs in rata with 6-hydroxydopamine destruction of the substantia nigra. The expression of marker proteins of immature and differentiated neurons and glia (vimentin, PSA-NCAM, tyrosine hydroxylase, and S100) was analyzed by immunohistochemical and morphometric methods. The number of periglomerular dopamine neurons and astroglia in the olfactory bulbs increased on the side of toxin injection and expression of PSA-NCAM and vimentin increased in the rostral migratory stream. Destruction of the substantia nigra shifted differentiation of neuronal progenitors towards the dopaminergic phenotype and increased their survival in the olfactory bulbs, which can be explained by increased expression of PSA-NCAM.
Collapse
|
5
|
Guo X, Zhang S, Lu S, Zheng B, Xie P, Chen J, Li G, Liu C, Wu Q, Cheng H, Sang N. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1018-1026. [PMID: 30029309 DOI: 10.1016/j.envpol.2018.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shengnan Zhang
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine/probenecid impairs intestinal motility and olfaction in the early stages of Parkinson's disease in mice. J Neurol Sci 2018; 392:77-82. [DOI: 10.1016/j.jns.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/28/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
7
|
Bellucci A, Antonini A, Pizzi M, Spano P. The End Is the Beginning: Parkinson's Disease in the Light of Brain Imaging. Front Aging Neurosci 2017; 9:330. [PMID: 29066967 PMCID: PMC5641408 DOI: 10.3389/fnagi.2017.00330] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD), the most common neurodegenerative disorder, is characterized by abnormal accumulation of α-synuclein aggregates known as Lewy bodies (LB) and loss of nigrostriatal dopaminergic neurons. Recent neuroimaging studies suggest that in the early phases of PD, synaptic and axonal damage anticipate the onset of a frank neuronal death. Paralleling, even post mortem studies on the brain of affected patients and on animal models support that synapses might represent the primary sites of functional and pathological changes. Indeed, α-synuclein microaggregation and spreading at terminals, by dysregulating the synaptic junction, would block neurotransmitter release, thus triggering a retrograde neurodegenerative process ending with neuronal cell loss by proceeding through the axons. Rather than neurodegeneration, loss of dopaminergic neuronal endings and axons could thus underlie the onset of connectome dysfunction and symptoms in PD and parkinsonisms. However, the manifold biases deriving from the interpretation of human brain imaging data hinder the validation of this hypothesis. Here, we present pivotal evidence supporting that novel comparative brain imaging studies, in patients and experimental models of PD in preliminary stages of disease, could be instrumental for proving whether synaptic endings are the sites where degeneration begins and initiating the factual achievement of disease modifying approaches. The need for such investigations is timely to define an early therapeutic window of intervention to attempt disease halting by terminal and/or axonal healing.
Collapse
Affiliation(s)
- Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Laboratory of Preventive and Personalized Medicine, University of Brescia, Brescia, Italy
| | - Angelo Antonini
- Department of Neurosciences, University of Padova, Padova, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Camillo, Venezia, Italy
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) San Camillo, Venezia, Italy
| |
Collapse
|
8
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|