1
|
Bellegarda C, Auer F, Schoppik D. Zebrafish as a model to understand extraocular motor neuron diversity. Curr Opin Neurobiol 2025; 90:102964. [PMID: 39740266 PMCID: PMC11839329 DOI: 10.1016/j.conb.2024.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Motor neurons have highly diverse anatomical, functional and molecular features, and differ significantly in their susceptibility in disease. Extraocular motor neurons, residing in the oculomotor, trochlear and abducens cranial nuclei (nIII, nIV and nVI), control eye movements. Recent work has begun to clarify the developmental mechanisms by which functional diversity among extraocular motor neurons arises. However, we know little about the role and consequences of extraocular motor neuron diversity in eye movement control. Here, we highlight recent work investigating the anatomical, functional and molecular features of extraocular motor neurons. Further, we frame hypotheses where studying ocular motor circuits in the larval zebrafish is poised to illuminate the consequences of motor neuron diversity for behavior.
Collapse
Affiliation(s)
- Celine Bellegarda
- Departments of Otolaryngology, Neuroscience, and the Neuroscience Institute, NYU Grossman School of Medicine, USA
| | - Franziska Auer
- Departments of Otolaryngology, Neuroscience, and the Neuroscience Institute, NYU Grossman School of Medicine, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience, and the Neuroscience Institute, NYU Grossman School of Medicine, USA.
| |
Collapse
|
2
|
Mayadali ÜS, Chertes CAM, Sinicina I, Shaikh AG, Horn AKE. Ion channel profiles of extraocular motoneurons and internuclear neurons in human abducens and trochlear nuclei. Front Neuroanat 2024; 18:1411154. [PMID: 38957435 PMCID: PMC11217180 DOI: 10.3389/fnana.2024.1411154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Introduction Extraocular muscles are innervated by two anatomically and histochemically distinct motoneuron populations: motoneurons of multiply-innervated fibers (MIF), and of singly-innervated fibers (SIF). Recently, it has been established by our research group that these motoneuron types of monkey abducens and trochlear nuclei express distinct ion channel profiles: SIF motoneurons, as well as abducens internuclear neurons (INT), express strong Kv1.1 and Kv3.1b immunoreactivity, indicating their fast-firing capacity, whereas MIF motoneurons do not. Moreover, low voltage activated cation channels, such as Cav3.1 and HCN1 showed differences between MIF and SIF motoneurons, indicating distinct post-inhibitory rebound characteristics. However, the ion channel profiles of MIF and SIF motoneurons have not been established in human brainstem tissue. Methods Therefore, we used immunohistochemical methods with antibodies against Kv, Cav3 and HCN channels to (1) examine the human trochlear nucleus in terms of anatomical organization of MIF and SIF motoneurons, (2) examine immunolabeling patterns of ion channel proteins in the distinct motoneurons populations in the trochlear and abducens nuclei. Results In the examination of the trochlear nucleus, a third motoneuron subgroup was consistently encountered with weak perineuronal nets (PN). The neurons of this subgroup had -on average- larger diameters than MIF motoneurons, and smaller diameters than SIF motoneurons, and PN expression strength correlated with neuronal size. Immunolabeling of various ion channels revealed that, in general, human MIF and SIF motoneurons did not differ consistently, as opposed to the findings in monkey trochlear and abducens nuclei. Kv1.1, Kv3.1b and HCN channels were found on both MIF and SIF motoneurons and the immunolabeling density varied for multiple ion channels. On the other hand, significant differences between SIF motoneurons and INTs were found in terms of HCN1 immunoreactivity. Discussion These results indicated that motoneurons may be more variable in human in terms of histochemical and biophysiological characteristics, than previously thought. This study therefore establishes grounds for any histochemical examination of motor nuclei controlling extraocular muscles in eye movement related pathologies in the human brainstem.
Collapse
Affiliation(s)
- Ümit S. Mayadali
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| | - Christina A. M. Chertes
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| | - Inga Sinicina
- Faculty of Medicine, Institute of Legal Medicine, LMU Munich, Munich, Germany
| | - Aasef G. Shaikh
- Department of Neurology, University Hospitals, Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Anja K. E. Horn
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, LMU Munich, Munich, Germany
| |
Collapse
|
3
|
Saleem KS, Avram AV, Glen D, Schram V, Basser PJ. The Subcortical Atlas of the Marmoset ("SAM") monkey based on high-resolution MRI and histology. Cereb Cortex 2024; 34:bhae120. [PMID: 38647221 PMCID: PMC11494440 DOI: 10.1093/cercor/bhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications in anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g. thalamic subregions, etc.) derived from high-resolution Mean Apparent Propagator-MRI, T2W, and magnetization transfer ratio images ex vivo. We then confirmed the location and borders of these segmented regions in the MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within Analysis of Functional NeuroImages software. Tracing and validating these important deep brain structures in 3D will improve neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, functional MRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
- Military Traumatic Brain Injury Initiative (MTBI2), Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), NIH, 10 Center Drive, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, 35 Convent Drive, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Health (NIH), 13, South Drive, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Saleem KS, Avram AV, Glen D, Schram V, Basser PJ. The Subcortical Atlas of the Marmoset ("SAM") monkey based on high-resolution MRI and histology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574429. [PMID: 38260391 PMCID: PMC10802408 DOI: 10.1101/2024.01.06.574429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g., thalamic subregions, etc.) derived from the high-resolution MAP-MRI, T2W, and MTR images ex vivo. We then confirmed the location and borders of these segmented regions in MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within AFNI. Tracing and validating these important deep brain structures in 3D improves neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, fMRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
- Military Traumatic Brain Injury Initiative (MTBI), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH)
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892
| |
Collapse
|
5
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in marmoset monkeys using high-resolution MRI and matched histology with multiple stains. Neuroimage 2023; 281:120311. [PMID: 37634884 DOI: 10.1016/j.neuroimage.2023.120311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States.
| | - Alexandru V Avram
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Kulam Najmudeen Magdoom
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States; Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Vincent Schram
- Microscopy and Imaging Core (MIC), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Saleem KS, Avram AV, Yen CCC, Magdoom KN, Schram V, Basser PJ. Multimodal anatomical mapping of subcortical regions in Marmoset monkeys using high-resolution MRI and matched histology with multiple stains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534950. [PMID: 37034636 PMCID: PMC10081239 DOI: 10.1101/2023.03.30.534950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.
Collapse
|
7
|
Distribution and postnatal development of chondroitin sulfate proteoglycans in the perineuronal nets of cholinergic motoneurons innervating extraocular muscles. Sci Rep 2022; 12:21606. [PMID: 36517521 PMCID: PMC9751140 DOI: 10.1038/s41598-022-25692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Fine control of extraocular muscle fibers derives from two subpopulations of cholinergic motoneurons in the oculomotor-, trochlear- and abducens nuclei. Singly- (SIF) and multiply innervated muscle fibers (MIF) are supplied by the SIF- and MIF motoneurons, respectively, representing different physiological properties and afferentation. SIF motoneurons, as seen in earlier studies, are coated with chondroitin sulfate proteoglycan rich perineuronal nets (PNN), whereas MIF motoneurons lack those. Fine distribution of individual lecticans in the composition of PNNs and adjacent neuropil, as well as the pace of their postnatal accumulation is, however, still unknown. Therefore, the present study aims, by using double immunofluorescent identification and subsequent morphometry, to describe local deposition of lecticans in the perineuronal nets and neuropil of the three eye movement nuclei. In each nucleus PNNs were consequently positive only with WFA and aggrecan reactions, suggesting the dominating role of aggrecan is PNN establishment. Brevican, neurocan and versican however, did not accumulate at all in PNNs but were evenly and moderately present throughout the neuropils. The proportion of PNN bearing motoneurons appeared 76% in oculomotor-, 72.2% in trochlear- and 78.3% in the abducens nucleus. We also identified two morphological subsets of PNNs, the focal and diffuse nets of SIF motoneurons. The process of CSPG accumulation begins just after birth, although considerable PNNs occur at week 1 age around less than half of the motoneurons, which ratio doubles until 2-month age. These findings may be related to the postnatal establishment of the oculokinetic network, performing different repertoires of voluntary eye movements in functionally afoveolate and foveolate animals.
Collapse
|
8
|
Avram AV, Saleem KS, Komlosh ME, Yen CC, Ye FQ, Basser PJ. High-resolution cortical MAP-MRI reveals areal borders and laminar substructures observed with histological staining. Neuroimage 2022; 264:119653. [PMID: 36257490 DOI: 10.1016/j.neuroimage.2022.119653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.
Collapse
Affiliation(s)
- Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA.
| | - Kadharbatcha S Saleem
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Michal E Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA; Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road,Bethesda, 20814,MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., 6720A Rockledge Drive, Bethesda, 20814, MD, USA
| | - Cecil C Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892, MD, USA
| | - Frank Q Ye
- National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, 20892,MD, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health,9000 Rockville Pike,Bethesda 20892, MD, USA
| |
Collapse
|
9
|
Bohlen MO, Warren S, May PJ. Is the central mesencephalic reticular formation a purely horizontal gaze center? Brain Struct Funct 2022; 227:2367-2393. [PMID: 35871423 DOI: 10.1007/s00429-022-02532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 01/12/2023]
Abstract
Historically, the central mesencephalic reticular formation has been regarded as a purely horizontal gaze center based on the fact that electrical stimulation of this region produces horizontal saccades, it provides monosynaptic input to medial rectus motoneurons, and cells recorded in this region often display a peak in firing when horizontal saccades are made. We tested the proposition that the central mesencephalic reticular formation is purely a horizontal gaze center by examining whether this region also supplies terminals to superior rectus and levator palpebrae superioris motoneurons, both of which fire when making vertical eye movements. The experiments were carried out using dual tracer techniques at the light and electron microscopic level in macaque monkeys. Injections of biotinylated dextran amine or Phaseolus vulgaris leukoagglutinin into the central mesencephalic reticular formation produced anterogradely labeled terminals that were in synaptic contact with superior rectus and levator palpebrae superioris motoneurons that had been retrogradely labeled. These results indicate that this region is not purely connected with horizontal gaze motoneurons. In addition, we found that the number of contacts on vertical gaze motoneurons increased with more rostral injections involving the mesencephalic reticular formation adjacent to the interstitial nucleus of Cajal. This suggests that there is a caudal to rostral gradient for horizontal to vertical saccades, respectively, represented within the midbrain reticular formation. Finally, we utilized post-embedding immunohistochemistry to show that a portion of the labeled terminals were GABAergic, indicating they likely originate from downgaze premotor neurons.
Collapse
Affiliation(s)
- Martin O Bohlen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216, USA.
| |
Collapse
|
10
|
Saccadic premotor burst neurons and histochemical correlates of their firing patterns in rhesus monkey. J Neurol Sci 2022; 439:120328. [DOI: 10.1016/j.jns.2022.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
|
11
|
Basic framework of the vestibulo-ocular reflex. PROGRESS IN BRAIN RESEARCH 2022; 267:131-153. [DOI: 10.1016/bs.pbr.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Robinson DA. The behavior of motoneurons. PROGRESS IN BRAIN RESEARCH 2022; 267:15-42. [DOI: 10.1016/bs.pbr.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Pastor AM, Blumer R, de la Cruz RR. Extraocular Motoneurons and Neurotrophism. ADVANCES IN NEUROBIOLOGY 2022; 28:281-319. [PMID: 36066830 DOI: 10.1007/978-3-031-07167-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity. According to their innervation pattern, extraocular muscle fibers can be classified as singly innervated muscle fiber (SIF), or the peculiar multiply innervated muscle fiber (MIF). SIF motoneurons show anatomical and physiological differences with MIF motoneurons. The latter are smaller and display lower eye position and velocity sensitivities as compared with SIF motoneurons.
Collapse
Affiliation(s)
- Angel M Pastor
- Departamento de Fisiología, Universidad de Sevilla, Seville, Spain.
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
14
|
Saleem KS, Avram AV, Glen D, Yen CCC, Ye FQ, Komlosh M, Basser PJ. High-resolution mapping and digital atlas of subcortical regions in the macaque monkey based on matched MAP-MRI and histology. Neuroimage 2021; 245:118759. [PMID: 34838750 PMCID: PMC8815330 DOI: 10.1016/j.neuroimage.2021.118759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.
Collapse
Affiliation(s)
- Kadharbatcha S Saleem
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States.
| | - Alexandru V Avram
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health (NIMH), United States
| | | | - Frank Q Ye
- Neurophysiology Imaging Facility, NIMH and NINDS, NIH, , United States
| | - Michal Komlosh
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| | - Peter J Basser
- Center for Neuroscience and Regenerative Medicine (CNRM), Henry M. Jackson Foundation (HJF) for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, United States; Section on Quantitative Imaging and Tissue Sciences (SQITS), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, United States
| |
Collapse
|
15
|
Carrero-Rojas G, Hernández RG, Blumer R, de la Cruz RR, Pastor AM. MIF versus SIF Motoneurons, What Are Their Respective Contribution in the Oculomotor Medial Rectus Pool? J Neurosci 2021; 41:9782-9793. [PMID: 34675089 PMCID: PMC8612643 DOI: 10.1523/jneurosci.1480-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Multiply-innervated muscle fibers (MIFs) are peculiar to the extraocular muscles as they are non-twitch but produce a slow build up in tension on repetitive stimulation. The motoneurons innervating MIFs establish en grappe terminals along the entire length of the fiber, instead of the typical en plaque terminals that singly-innervated muscle fibers (SIFs) motoneurons establish around the muscle belly. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. We aimed to discern the function of MIF motoneurons by recording medial rectus motoneurons of the oculomotor nucleus. Single-unit recordings in awake cats demonstrated that electrophysiologically-identified medial rectus MIF motoneurons participated in different types of eye movements, including fixations, rapid eye movements or saccades, convergences, and the slow and fast phases of the vestibulo-ocular nystagmus, the same as SIF motoneurons did. However, MIF medial rectus motoneurons presented lower firing frequencies, were recruited earlier and showed lower eye position (EP) and eye velocity (EV) sensitivities than SIF motoneurons. MIF medial rectus motoneurons were also smaller, had longer antidromic latencies and a lower synaptic coverage than SIF motoneurons. Peristimulus time histograms (PSTHs) revealed that electrical stimulation to the myotendinous junction, where palisade endings are located, did not recurrently affect the firing probability of medial rectus motoneurons. Therefore, we conclude there is no division of labor between MIF and SIF motoneurons based on the type of eye movement they subserve.SIGNIFICANCE STATEMENT In addition to the common singly-innervated muscle fiber (SIF), extraocular muscles also contain multiply-innervated muscle fibers (MIFs), which are non-twitch and slow in contraction. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. In the present work, by single-unit extracellular recordings in awake cats, we demonstrate, however, that both SIF and MIF motoneurons, electrophysiologically-identified, participate in the different types of eye movements. However, MIF motoneurons showed lower firing rates (FRs), recruitment thresholds, and eye-related sensitivities, and could thus contribute to the fine adjustment of eye movements. Electrical stimulation of the myotendinous junction activates antidromically MIF motoneurons but neither MIF nor SIF motoneurons receive a synaptic reafferentation that modifies their discharge probability.
Collapse
Affiliation(s)
- Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
- Center of Anatomy and Cell Biology, Medical Imaging Cluster, Medical University Vienna, Vienna 1090, Austria
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| | - Roland Blumer
- Center of Anatomy and Cell Biology, Medical Imaging Cluster, Medical University Vienna, Vienna 1090, Austria
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain
| |
Collapse
|
16
|
Schob S, Puchta J, Winter K, Michalski D, Mages B, Martens H, Emmer A, Hoffmann KT, Gaunitz F, Meinicke A, Krause M, Härtig W. Surfactant protein C is associated with perineuronal nets and shows age-dependent changes of brain content and hippocampal deposits in wildtype and 3xTg mice. J Chem Neuroanat 2021; 118:102036. [PMID: 34626771 DOI: 10.1016/j.jchemneu.2021.102036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023]
Abstract
Surfactant protein C (SP-C) modulates cerebrospinal fluid (CSF) rheology. During ageing, its declining levels are accompanied by an increased burden of white matter lesions. Pulmonary SP-C intermediates harbouring the BRICHOS-domain prevent protein misfolding in the lungs. Thus, cerebral SP-C intermediates may counteract cerebral β-amyloidosis, a hallmark of Alzheimer's disease (AD). However, data on the molecular neuroanatomy of SP-C and its alterations in wildtype and triple transgenic (3xTg) mice, featuring essential elements of AD-neuropathology, are lacking. Therefore, this study investigated SP-C-containing structures in murine forebrains and their spatial relationships with vascular, glial and neuronal components of the neurovascular unit. Fluorescence labelling demonstrated neuronal SP-C in the medial habenula, the indusium griseum and the hippocampus. Glial counterstaining elucidated astrocytes in the corpus callosum co-expressing SP-C and S100β. Notably, perineuronal nets were associated with SP-C in the nucleus reticularis thalami, the lateral hypothalamus and the retrosplenial cortex. In the hippocampus of aged 3xTg mice, an increased number of dot-like depositions containing SP-C and Reelin, but devoid of BRICHOS-immunoreactivity were observed apart from AD-like lesions. Wildtype and 3xTg mice revealed an age-dependent increase of such deposits markedly pronounced in about 24-month-old 3xTg mice. SP-C levels of the intracellular and extracellular compartments in each group revealed an inverse correlation of SP-C and Reelin, with reduced SP-C and increased Reelin in an age-dependent fashion especially in 3xTg mice. Taken together, extracellular SP-C, as modulator of glymphatic clearance and potential ligand of PNs, declines in 3xTg mice, which show an accumulation of extracellular Reelin depositions during ageing.
Collapse
Affiliation(s)
- Stefan Schob
- Department of Neuroradiology, Clinic and Policlinic of Radiology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany.
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany; Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Karsten Winter
- Institute for Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Bianca Mages
- Institute for Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Henrik Martens
- Synaptic Systems GmbH, Rudolf-Wissell-Str. 28a, 37079 Göttingen, Germany
| | - Alexander Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany
| | - Karl-Titus Hoffmann
- Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Anton Meinicke
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany; Institute of Neuroradiology, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Matthias Krause
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103 Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Liebigstr.19, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Candy TR, Cormack LK. Recent understanding of binocular vision in the natural environment with clinical implications. Prog Retin Eye Res 2021; 88:101014. [PMID: 34624515 PMCID: PMC8983798 DOI: 10.1016/j.preteyeres.2021.101014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Technological advances in recent decades have allowed us to measure both the information available to the visual system in the natural environment and the rich array of behaviors that the visual system supports. This review highlights the tasks undertaken by the binocular visual system in particular and how, for much of human activity, these tasks differ from those considered when an observer fixates a static target on the midline. The everyday motor and perceptual challenges involved in generating a stable, useful binocular percept of the environment are discussed, together with how these challenges are but minimally addressed by much of current clinical interpretation of binocular function. The implications for new technology, such as virtual reality, are also highlighted in terms of clinical and basic research application.
Collapse
Affiliation(s)
- T Rowan Candy
- School of Optometry, Programs in Vision Science, Neuroscience and Cognitive Science, Indiana University, 800 East Atwater Avenue, Bloomington, IN, 47405, USA.
| | - Lawrence K Cormack
- Department of Psychology, Institute for Neuroscience, and Center for Perceptual Systems, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
18
|
Abstract
Eye movements are indispensable for visual image stabilization during self-generated and passive head and body motion and for visual orientation. Eye muscles and neuronal control elements are evolutionarily conserved, with novel behavioral repertoires emerging during the evolution of frontal eyes and foveae. The precise execution of eye movements with different dynamics is ensured by morphologically diverse yet complementary sets of extraocular muscle fibers and associated motoneurons. Singly and multiply innervated muscle fibers are controlled by motoneuronal subpopulations with largely selective premotor inputs from task-specific ocular motor control centers. The morphological duality of the neuromuscular interface is matched by complementary biochemical and molecular features that collectively assign different physiological properties to the motor entities. In contrast, the functionality represents a continuum where most motor elements contribute to any type of eye movement, although within preferential dynamic ranges, suggesting that signal transmission and muscle contractions occur within bands of frequency-selective pathways.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
19
|
Mayadali ÜS, Fleuriet J, Mustari M, Straka H, Horn AKE. Transmitter and ion channel profiles of neurons in the primate abducens and trochlear nuclei. Brain Struct Funct 2021; 226:2125-2151. [PMID: 34181058 PMCID: PMC8354957 DOI: 10.1007/s00429-021-02315-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/04/2021] [Indexed: 01/28/2023]
Abstract
Extraocular motoneurons initiate dynamically different eye movements, including saccades, smooth pursuit and vestibulo-ocular reflexes. These motoneurons subdivide into two main types based on the structure of the neuro-muscular interface: motoneurons of singly-innervated (SIF), and motoneurons of multiply-innervated muscle fibers (MIF). SIF motoneurons are thought to provoke strong and brief/fast muscle contractions, whereas MIF motoneurons initiate prolonged, slow contractions. While relevant for adequate functionality, transmitter and ion channel profiles associated with the morpho-physiological differences between these motoneuron types, have not been elucidated so far. This prompted us to investigate the expression of voltage-gated potassium, sodium and calcium ion channels (Kv1.1, Kv3.1b, Nav1.6, Cav3.1-3.3, KCC2), the transmitter profiles of their presynaptic terminals (vGlut1 and 2, GlyT2 and GAD) and transmitter receptors (GluR2/3, NMDAR1, GlyR1α) using immunohistochemical analyses of abducens and trochlear motoneurons and of abducens internuclear neurons (INTs) in macaque monkeys. The main findings were: (1) MIF and SIF motoneurons express unique voltage-gated ion channel profiles, respectively, likely accounting for differences in intrinsic membrane properties. (2) Presynaptic glutamatergic synapses utilize vGlut2, but not vGlut1. (3) Trochlear motoneurons receive GABAergic inputs, abducens neurons receive both GABAergic and glycinergic inputs. (4) Synaptic densities differ between MIF and SIF motoneurons, with MIF motoneurons receiving fewer terminals. (5) Glutamatergic receptor subtypes differ between MIF and SIF motoneurons. While NMDAR1 is intensely expressed in INTs, MIF motoneurons lack this receptor subtype entirely. The obtained cell-type-specific transmitter and conductance profiles illuminate the structural substrates responsible for differential contributions of neurons in the abducens and trochlear nuclei to eye movements.
Collapse
Affiliation(s)
- Ümit Suat Mayadali
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jérome Fleuriet
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
- Intensive Care Unit, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris, Garches, France
| | - Michael Mustari
- Washington National Primate Research Center, Department of Ophthalmology, University of Washington Seattle, Seattle, WA, USA
| | - Hans Straka
- Department of Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Anja Kerstin Ellen Horn
- Institute of Anatomy and Cell Biology, Dept. I, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
20
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
21
|
Histochemical Characterization of the Vestibular Y-Group in Monkey. THE CEREBELLUM 2020; 20:701-716. [PMID: 33083961 PMCID: PMC8629908 DOI: 10.1007/s12311-020-01200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.
Collapse
|
22
|
Bekdash RA. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019; 11:nu11122995. [PMID: 31817768 PMCID: PMC6950346 DOI: 10.3390/nu11122995] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that physical and mental health are influenced by an intricate interaction between genes and environment. Environmental factors have been shown to modulate neuronal gene expression and function by epigenetic mechanisms. Exposure to these factors including nutrients during sensitive periods of life could program brain development and have long-lasting effects on mental health. Studies have shown that early nutritional intervention that includes methyl-donors improves cognitive functions throughout life. Choline is a micronutrient and a methyl donor that is required for normal brain growth and development. It plays a pivotal role in maintaining structural and functional integrity of cellular membranes. It also regulates cholinergic signaling in the brain via the synthesis of acetylcholine. Via its metabolites, it participates in pathways that regulate methylation of genes related to memory and cognitive functions at different stages of development. Choline-related functions have been dysregulated in some neurodegenerative diseases suggesting choline role in influencing mental health across the lifespan.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
23
|
Marcos P, Coveñas R. Neuroanatomical relationship between the cholinergic and tachykininergic systems in the adult human brainstem: An immunohistochemical study. J Chem Neuroanat 2019; 102:101701. [PMID: 31585148 DOI: 10.1016/j.jchemneu.2019.101701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
The cholinergic system plays an important role in brain homeostasis and interacts with the neuropeptidergic systems, and the functional relationships between both systems are well known. However, in the brainstem the possible physiological interactions between neurokinins and acetylcholine are unknown, although both substances have been detected in the same brainstem nuclei and have been implicated in similar functions controlled from brainstem regions such as some cranial motor nuclei. The aim of this work is to determine whether these possible physiological interactions might have a neuroanatomical basis by means of the double immunohistochemical detection of neurokinins (NK) and the enzyme choline acetyl-transferase (ChAT) in the human brainstem. No double-labelled structures were detected, although both NK and ChAT were observed in cell bodies and fibers of the same brainstem nuclei. The distribution of immunoreactive fibers is widespread, and NK and ChAT were observed in several motor cranial nerves as well as in the substantia nigra. The results obtained in the present work provide a neuroanatomical basis for possible physiological interactions between NK and ChAT that may be carried out by volume-transmission mechanisms. These interactions might participate in motor regulation or in limbic pathways as well as influence on other neurotransmitter systems such as the dopaminergic system.
Collapse
Affiliation(s)
- P Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, CRIB (Regional Centre of Biomedical Research), Avenida de Almansa 14, 02006 Albacete, Spain.
| | - R Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Abstract
Extraocular muscles contain two types of muscle fibers according to their innervation pattern: singly innervated muscle fibers (SIFs), similar to most skeletal muscle fibers, and multiply innervated muscle fibers (MIFs). Morphological studies have revealed that SIF and MIF motoneurons are segregated anatomically and receive different proportions of certain afferents, suggesting that while SIF motoneurons would participate in the whole repertoire of eye movements, MIF motoneurons would contribute only to slow eye movements and fixations. We have tested that proposal by performing single-unit recordings, in alert behaving cats, of electrophysiologically identified MIF and SIF motoneurons in the abducens nucleus. Our results show that both types of motoneuron discharge in relation to eye position and velocity, displaying a tonic-phasic firing pattern for different types of eye movement (saccades, vestibulo-ocular reflex, vergence) and gaze-holding. However, MIF motoneurons presented an overall reduced firing rate compared with SIF motoneurons, and had significantly lower recruitment threshold and also lower eye position and velocity sensitivities. Accordingly, MIF motoneurons could control mainly gaze in the off-direction, when less force is needed, whereas SIF motoneurons would contribute to increase muscle tension progressively toward the on-direction as more force is required. Anatomically, MIF and SIF motoneurons distributed intermingled within the abducens nucleus, with MIF motoneurons being smaller and having a lesser somatic synaptic coverage. Our data demonstrate the functional participation of both MIF and SIF motoneurons in fixations and slow and phasic eye movements, although their discharge properties indicate a functional segregation.
Collapse
|
25
|
Merolli A, Louro P, Kohn J. Reciprocal nerve staining (RNS) for the concurrent detection of choline acetyltransferase and myelin basic protein on paraffin-embedded sections. J Neurosci Methods 2018; 311:235-238. [PMID: 30391262 DOI: 10.1016/j.jneumeth.2018.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Objective of our work was to develop a sequential double nonfluorescent immunostaining method which allows the selective identification of myelinated motor fibers in paraffin-embedded samples of peripheral nerves. Motor recovery after a nerve gap-lesion repaired by artificial nerve-guides ("conduits") is often less complete and slower than sensory recovery. The mechanism for this is not fully understood. NEW METHOD Incubation in sheep polyclonal choline acetyltransferase antibody (Abcam 18,736) at dilution of 1:150 was followed by incubation in mouse monoclonal anti-myelin basic protein antibody (Abcam 62,631) at a dilution of 1:5000. Counterstaining was performed with hematoxylin QS (Vector Labs H-3404). RESULTS Immunostaining of choline acetyltransferase and myelin basic protein can be combined together and results show a good contrast between the light brown of the choline acetyltransferase reaction product and the green of myelin basic protein reaction product. Cell nuclei are stained blue. This new protocol retains the advantages of paraffin embedded sections such as (i) having a relatively simple methodology, (ii) years-long storage life, and (iii) easy sharing among laboratories. Comparison with existing method. This specific combinatorial protocol has never been used before on paraffin embedded sections. It has been named "reciprocal nerve staining" (RNS). CONCLUSIONS Routine combination of choline acetyltransferase and myelin basic protein immunostaining provides a highly specific, highly contrasted paraffin-embedded sections where optical differentiation of myelinated motor fibers is easy and straightforward. This method will likely simplify and speed-up the routine histological study of nerve regeneration and will contribute a better identification of the nerve motor component.
Collapse
Affiliation(s)
- Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers- The State University of New Jersey, Piscataway, New Jersey, United States
| | - Pedro Louro
- Research Pathology Services, Rutgers -The State University of New Jersey, Piscataway, New Jersey, United States
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers- The State University of New Jersey, Piscataway, New Jersey, United States
| |
Collapse
|