1
|
Donatelli G, Emmi A, Costagli M, Cecchi P, Macchi V, Biagi L, Lancione M, Tosetti M, Porzionato A, De Caro R, Cosottini M. Brainstem anatomy with 7-T MRI: in vivo assessment and ex vivo comparison. Eur Radiol Exp 2023; 7:71. [PMID: 37968363 PMCID: PMC10651583 DOI: 10.1186/s41747-023-00389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The brainstem contains grey matter nuclei and white matter tracts to be identified in clinical practice. The small size and the low contrast among them make their in vivo visualisation challenging using conventional magnetic resonance imaging (MRI) sequences at high magnetic field strengths. Combining higher spatial resolution, signal- and contrast-to-noise ratio and sensitivity to magnetic susceptibility (χ), susceptibility-weighted 7-T imaging could improve the assessment of brainstem anatomy. METHODS We acquired high-resolution 7-T MRI of the brainstem in a 46-year-old female healthy volunteer (using a three-dimensional multi-echo gradient-recalled-echo sequence; spatial resolution 0.3 × 0.3 × 1.2 mm3) and in a brainstem sample from a 48-year-old female body donor that was sectioned and stained. Images were visually assessed; nuclei and tracts were labelled and named according to the official nomenclature. RESULTS This in vivo imaging revealed structures usually evaluated through light microscopy, such as the accessory olivary nuclei, oculomotor nucleus and the medial longitudinal fasciculus. Some fibre tracts, such as the medial lemniscus, were visible for most of their course. Overall, in in vivo acquisitions, χ and frequency maps performed better than T2*-weighted imaging and allowed for the evaluation of a greater number of anatomical structures. All the structures identified in vivo were confirmed by the ex vivo imaging and histology. CONCLUSIONS The use of multi-echo GRE sequences at 7 T allowed the visualisation of brainstem structures that are not visible in detail at conventional magnetic field and opens new perspectives in the diagnostic and therapeutical approach to brain disorders. RELEVANCE STATEMENT In vivo MR imaging at UHF provides detailed anatomy of CNS substructures comparable to that obtained with histology. Anatomical details are fundamentals for diagnostic purposes but also to plan a direct targeting for a minimally invasive brain stimulation or ablation. KEY POINTS • The in vivo brainstem anatomy was explored with ultrahigh field MRI (7 T). • In vivo T2*-weighted magnitude, χ, and frequency images revealed many brainstem structures. • Ex vivo imaging and histology confirmed all the structures identified in vivo. • χ and frequency imaging revealed more brainstem structures than magnitude imaging.
Collapse
Affiliation(s)
- Graziella Donatelli
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Imago7 Research Foundation, Pisa, Italy
| | - Aron Emmi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Mauro Costagli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Paolo Cecchi
- Neuroradiology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Imago7 Research Foundation, Pisa, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Laura Biagi
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Michela Tosetti
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris, Pisa, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padua, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Mirco Cosottini
- Department of Translational Research On New Technologies in Medicine and Surgery, Neuroradiology Unit, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
2
|
Oane I, Barborica A, Mindruta IR. Cingulate Cortex: Anatomy, Structural and Functional Connectivity. J Clin Neurophysiol 2023; 40:482-490. [PMID: 36930223 DOI: 10.1097/wnp.0000000000000970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
SUMMARY The cingulate cortex is a paired brain region located on the medial wall of each hemisphere. This review explores the anatomy as well as the structural and functional connectivity of the cingulate cortex underlying essential roles this region plays in emotion, autonomic, cognitive, motor control, visual-spatial processing, and memory.
Collapse
Affiliation(s)
- Irina Oane
- Epilepsy Monitoring Unit, Neurology Department, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Andrei Barborica
- Physics Department, University of Bucharest, Bucharest, Romania; and
| | - Ioana R Mindruta
- Epilepsy Monitoring Unit, Neurology Department, University Emergency Hospital Bucharest, Bucharest, Romania
- Neurology Department, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Insausti R, Insausti AM, Muñoz López M, Medina Lorenzo I, Arroyo-Jiménez MDM, Marcos Rabal MP, de la Rosa-Prieto C, Delgado-González JC, Montón Etxeberria J, Cebada-Sánchez S, Raspeño-García JF, Iñiguez de Onzoño MM, Molina Romero FJ, Benavides-Piccione R, Tapia-González S, Wisse LEM, Ravikumar S, Wolk DA, DeFelipe J, Yushkevich P, Artacho-Pérula E. Ex vivo, in situ perfusion protocol for human brain fixation compatible with microscopy, MRI techniques, and anatomical studies. Front Neuroanat 2023; 17:1149674. [PMID: 37034833 PMCID: PMC10076536 DOI: 10.3389/fnana.2023.1149674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
We present a method for human brain fixation based on simultaneous perfusion of 4% paraformaldehyde through carotids after a flush with saline. The left carotid cannula is used to perfuse the body with 10% formalin, to allow further use of the body for anatomical research or teaching. The aim of our method is to develop a vascular fixation protocol for the human brain, by adapting protocols that are commonly used in experimental animal studies. We show that a variety of histological procedures can be carried out (cyto- and myeloarchitectonics, histochemistry, immunohistochemistry, intracellular cell injection, and electron microscopy). In addition, ex vivo, ex situ high-resolution MRI (9.4T) can be obtained in the same specimens. This procedure resulted in similar morphological features to those obtained by intravascular perfusion in experimental animals, provided that the postmortem interval was under 10 h for several of the techniques used and under 4 h in the case of intracellular injections and electron microscopy. The use of intravascular fixation of the brain inside the skull provides a fixed whole human brain, perfectly fitted to the skull, with negligible deformation compared to conventional techniques. Given this characteristic of ex vivo, in situ fixation, this procedure can probably be considered the most suitable one available for ex vivo MRI scans of the brain. We describe the compatibility of the method proposed for intravascular fixation of the human brain and fixation of the donor's body for anatomical purposes. Thus, body donor programs can provide human brain tissue, while the remainder of the body can also be fixed for anatomical studies. Therefore, this method of human brain fixation through the carotid system optimizes the procurement of human brain tissue, allowing a greater understanding of human neurological diseases, while benefiting anatomy departments by making the remainder of the body available for teaching purposes.
Collapse
Affiliation(s)
- Ricardo Insausti
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ana María Insausti
- Department of Health, School of Medicine, Public University of Navarra, Pamplona, Spain
| | - Mónica Muñoz López
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Isidro Medina Lorenzo
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Maria del Mar Arroyo-Jiménez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Carlos de la Rosa-Prieto
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - José Carlos Delgado-González
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Javier Montón Etxeberria
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Sandra Cebada-Sánchez
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Juan Francisco Raspeño-García
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - María Mercedes Iñiguez de Onzoño
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Francisco Javier Molina Romero
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| | - Ruth Benavides-Piccione
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | | | - Sadhana Ravikumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, and Instituto Cajal, CSIC, Madrid, Spain
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Emilio Artacho-Pérula
- Human Neuroanatomy Laboratory, Neuromax CSIC Associated Unit, Medical Sciences Department, School of Medicine and CRIB, University of Castilla La Mancha, Albacete, Spain
| |
Collapse
|
4
|
Xu Y, Qin G, Tan B, Fan S, An Q, Gao Y, Fan H, Xie H, Wu D, Liu H, Yang G, Fang H, Xiao Z, Zhang J, Zhang H, Shi L, Yang A. Deep Brain Stimulation Electrode Reconstruction: Comparison between Lead-DBS and Surgical Planning System. J Clin Med 2023; 12:jcm12051781. [PMID: 36902568 PMCID: PMC10002993 DOI: 10.3390/jcm12051781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Electrode reconstruction for postoperative deep brain simulation (DBS) can be achieved manually using a surgical planning system such as Surgiplan, or in a semi-automated manner using software such as the Lead-DBS toolbox. However, the accuracy of Lead-DBS has not been thoroughly addressed. METHODS In our study, we compared the DBS reconstruction results of Lead-DBS and Surgiplan. We included 26 patients (21 with Parkinson's disease and 5 with dystonia) who underwent subthalamic nucleus (STN)-DBS, and reconstructed the DBS electrodes using the Lead-DBS toolbox and Surgiplan. The electrode contact coordinates were compared between Lead-DBS and Surgiplan with postoperative CT and MRI. The relative positions of the electrode and STN were also compared between the methods. Finally, the optimal contact during follow-up was mapped onto the Lead-DBS reconstruction results to check for overlap between the contacts and the STN. RESULTS We found significant differences in all axes between Lead-DBS and Surgiplan with postoperative CT, with the mean variance for the X, Y, and Z coordinates being -0.13, -1.16, and 0.59 mm, respectively. Y and Z coordinates showed significant differences between Lead-DBS and Surgiplan with either postoperative CT or MRI. However, no significant difference in the relative distance of the electrode and the STN was found between the methods. All optimal contacts were located in the STN, with 70% of them located within the dorsolateral region of the STN in the Lead-DBS results. CONCLUSIONS Although significant differences in electrode coordinates existed between Lead-DBS and Surgiplan, our results suggest that the coordinate difference was around 1 mm, and Lead-DBS can capture the relative distance between the electrode and the DBS target, suggesting it is reasonably accurate for postoperative DBS reconstruction.
Collapse
Affiliation(s)
- Yichen Xu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guofan Qin
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bojing Tan
- Department of Neurosurgery, Capital Institute of Pediatrics, Beijing 100020, China
| | - Shiying Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qi An
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuan Gao
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Houyou Fan
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hutao Xie
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Delong Wu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Huanguang Liu
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150007, China
| | - Huaying Fang
- Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100089, China
- Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100089, China
| | - Zunyu Xiao
- Molecular Imaging Research Center, Harbin Medical University, Harbin 150076, China
| | - Jianguo Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hua Zhang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Lin Shi
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| | - Anchao Yang
- Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Correspondence: (H.Z.); (L.S.); (A.Y.)
| |
Collapse
|
5
|
Smirnov M, Maldonado IL, Destrieux C. Using ex vivo arterial injection and dissection to assess white matter vascularization. Sci Rep 2023; 13:809. [PMID: 36646713 PMCID: PMC9842749 DOI: 10.1038/s41598-022-26227-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Advances in the techniques for assessing human cerebral white matter have recently contributed to greater attention to structural connectivity. Yet, little is known about the vascularization of most white matter fasciculi and the fascicular composition of the vascular territories. This paper presents an original method to label the arterial supply of macroscopic white matter fasciculi based on a standardized protocol for post-mortem injection of colored material into main cerebral arteries combined with a novel fiber dissection technique. Twelve whole human cerebral hemispheres obtained post-mortem were included. A detailed description of every step, from obtaining the specimen to image acquisition of its dissection, is provided. Injection and dissection were reproducible and manageable without any sophisticated equipment. They successfully showed the arterial supply of the dissected fasciculi. In addition, we discuss the challenges we faced and overcame during the development of the presented method, highlight its originality. Henceforth, this innovative method serves as a tool to provide a precise anatomical description of the vascularization of the main white matter tracts.
Collapse
Affiliation(s)
- Mykyta Smirnov
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | - Igor Lima Maldonado
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Tours, France
| |
Collapse
|
6
|
Azmitia L, Grassi S, Signorelli F, Filograna L, Pascali V, Olivi A, Visocchi M, Oliva A. Post-mortem Imaging of Brain/Spine Injuries: The Importance of a Comprehensive Forensic Approach. ACTA NEUROCHIRURGICA. SUPPLEMENT 2023; 135:27-31. [PMID: 38153445 DOI: 10.1007/978-3-031-36084-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In forensic investigations, the limitations of the traditional purely autoptic approach can be overcome through post-mortem imaging (virtopsy). Virtospy has several applications to the investigation of brain and spinal injuries, whose analysis can be of forensic interest, especially in cases of suspected malpractice. In this scoping review, we briefly describe the main applications of the two most common post-mortem radiological techniques (computed tomography (CT) and magnetic resonance imaging (MRI)) to the forensic investigation of brain and spinal injuries in cases of medical malpractice or traumatic (accidental/homicidal/suicidal) deaths. Although CT represents the traditional approach to post-mortem imaging, MRI is proving to be a valuable tool to investigate brain and spinal injuries and lesions. These post-mortem radiological techniques can also be used to guide the surgeons in simulated surgical procedures on corpses in the context of training programs, thus helping operators to improve technical and non-technical skills and to reduce the risk of avoidable errors.
Collapse
Affiliation(s)
- Luis Azmitia
- Neurosurgery, Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Grassi
- Legal Medicine, Department of Healthcare surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Signorelli
- Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Filograna
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, "Tor Vergata" University of Rome, Rome, Italy
| | - Vincenzo Pascali
- Legal Medicine, Department of Healthcare surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Olivi
- Neurosurgery, Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Antonio Oliva
- Legal Medicine, Department of Healthcare surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
7
|
Lofredi R, Auernig CG, Ewert S, Irmen F, Steiner LA, Scheller U, van Wijk BCM, Oxenford S, Kühn AA, Horn A. Interrater reliability of deep brain stimulation electrode localizations. Neuroimage 2022; 262:119552. [PMID: 35981644 DOI: 10.1016/j.neuroimage.2022.119552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
Lead-DBS is an open-source, semi-automatized and widely applied software tool facilitating precise localization of deep brain stimulation electrodes both in native as well as in standardized stereotactic space. While automatized preprocessing steps within the toolbox have been tested and validated in previous studies, the interrater reliability in manual refinements of electrode localizations using the tool has not been objectified so far. Here, we investigate the variance introduced in this processing step by different raters when localizing electrodes based on postoperative CT or MRI. Furthermore, we compare the performance of novel trainees that received a structured training and more experienced raters with an expert user. We show that all users yield similar results with an average difference in localizations ranging between 0.52-0.75 mm with 0.07-0.12 mm increases in variability when using postoperative MRI and following normalization to standard space. Our findings may pave the way toward formal training for using Lead-DBS and demonstrate its reliability and ease-of-use for imaging research in the field of deep brain stimulation.
Collapse
Affiliation(s)
- Roxanne Lofredi
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Cem-Georg Auernig
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Siobhan Ewert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Irmen
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Leon A Steiner
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Ute Scheller
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Bernadette C M van Wijk
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Neurology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Simon Oxenford
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany; NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany; DZNE, German center for neurodegenerative diseases, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin
| | - Andreas Horn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
8
|
Post mortem brain temperature and its influence on quantitative MRI of the brain. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:375-387. [PMID: 34714448 PMCID: PMC9188516 DOI: 10.1007/s10334-021-00971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
Objective MRI temperature sensitivity presents a major issue in in situ post mortem MRI (PMMRI), as the tissue temperatures differ from living persons due to passive cooling of the deceased. This study aims at computing brain temperature effects on the MRI parameters to correct for temperature in PMMRI, laying the foundation for future projects on post mortem validation of in vivo MRI techniques. Materials and methods Brain MRI parameters were assessed in vivo and in situ post mortem using a 3 T MRI scanner. Post mortem brain temperature was measured in situ transethmoidally. The temperature effect was computed by fitting a linear model to the MRI parameters and the corresponding brain temperature. Results Linear positive temperature correlations were observed for T1, T2* and mean diffusivity in all tissue types. A significant negative correlation was observed for T2 in white matter. Fractional anisotropy revealed significant correlations in all gray matter regions except for the thalamus. Discussion The linear models will allow to correct for temperature in post mortem MRI. Comparing in vivo to post mortem conditions, the mean diffusivity, in contrast to T1 and T2, revealed additional effects besides temperature, such as cessation of perfusion and active diffusion.
Collapse
|
9
|
The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. Neuroimage 2020; 221:117200. [DOI: 10.1016/j.neuroimage.2020.117200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
|
10
|
A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun 2020; 11:3364. [PMID: 32620886 PMCID: PMC7335093 DOI: 10.1038/s41467-020-16734-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple surgical targets for treating obsessive-compulsive disorder with deep brain stimulation (DBS) have been proposed. However, different targets may modulate the same neural network responsible for clinical improvement. We analyzed data from four cohorts of patients (N = 50) that underwent DBS to the anterior limb of the internal capsule (ALIC), the nucleus accumbens or the subthalamic nucleus (STN). The same fiber bundle was associated with optimal clinical response in cohorts targeting either structure. This bundle connected frontal regions to the STN. When informing the tract target based on the first cohort, clinical improvements in the second could be significantly predicted, and vice versa. To further confirm results, clinical improvements in eight patients from a third center and six patients from a fourth center were significantly predicted based on their stimulation overlap with this tract. Our results show that connectivity-derived models may inform clinical improvements across DBS targets, surgeons and centers. The identified tract target is openly available in atlas form. Li et al. analyzed structural connectivity of deep brain stimulation electrodes in 50 patients suffering from obsessive-compulsive disorder operated at four centers. Connectivity to a specific tract within the anterior limb of the internal capsule was associated with optimal treatment response across cohorts, surgeons and centers.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established but growing treatment option for multiple brain disorders. Over the last decade, electrode placement and their effects were increasingly analyzed with modern-day neuroimaging methods like spatial normalization, fibertracking, or resting-state functional MRI. Similarly, specialized basal ganglia MRI sequences were introduced and imaging at high field strengths has become increasingly popular. RECENT FINDINGS To facilitate the process of precise electrode localizations, specialized software pipelines were introduced. By those means, DBS targets could recently be refined and significant relationships between electrode placement and clinical improvement could be shown. Furthermore, by combining electrode reconstructions with network imaging methods, relationships between electrode connectivity and clinical improvement were investigated. This led to a broad series of imaging-based insights about DBS that are reviewed in the present work. SUMMARY The reviewed literature makes a strong case that brain imaging plays an increasingly important role in DBS targeting and programming. Furthermore, brain imaging will likely help to better understand the mechanism of action of DBS.
Collapse
|