1
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
2
|
Deng R, Chang M, Kao JPY, Kanold PO. Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development. Sci Rep 2023; 13:656. [PMID: 36635357 PMCID: PMC9837136 DOI: 10.1038/s41598-023-27536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neurons in the cerebral cortex form excitatory and inhibitory circuits with specific laminar locations. The mechanisms underlying the development of these spatially specific circuits is not fully understood. To test if postsynaptic N-methyl-D-aspartate (NMDA) receptors on excitatory neurons are required for the development of specific circuits to these neurons, we genetically ablated NMDA receptors from a subset of excitatory neurons in the temporal association cortex (TeA) through in utero electroporation and assessed the intracortical circuits connecting to L5 neurons through in vitro whole-cell patch clamp recordings coupled with laser-scanning photostimulation (LSPS). In NMDAR knockout neurons, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated connections were largely intact. In contrast both LSPS and mini-IPSC recordings revealed that γ-aminobutyric acid type A (GABAA) receptor-mediated connections were impaired in NMDAR knockout neurons. These results suggest that postsynaptic NMDA receptors are important for the development of GABAergic circuits.
Collapse
Affiliation(s)
- Rongkang Deng
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, 20742, USA
| | - Minzi Chang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 733 N. Broadway Avenue / Miller 379, Baltimore, MD, 21205, USA.
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Linke AC, Chen B, Olson L, Ibarra C, Fong C, Reynolds S, Apostol M, Kinnear M, Müller RA, Fishman I. Sleep Problems in Preschoolers With Autism Spectrum Disorder Are Associated With Sensory Sensitivities and Thalamocortical Overconnectivity. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:21-31. [PMID: 34343726 PMCID: PMC9826645 DOI: 10.1016/j.bpsc.2021.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Projections between the thalamus and sensory cortices are established early in development and play an important role in regulating sleep as well as in relaying sensory information to the cortex. Atypical thalamocortical functional connectivity frequently observed in children with autism spectrum disorder (ASD) might therefore be linked to sensory and sleep problems common in ASD. METHODS Here, we investigated the relationship between auditory-thalamic functional connectivity measured during natural sleep functional magnetic resonance imaging, sleep problems, and sound sensitivities in 70 toddlers and preschoolers (1.5-5 years old) with ASD compared with a matched group of 46 typically developing children. RESULTS In children with ASD, sleep problems and sensory sensitivities were positively correlated, and increased sleep latency was associated with overconnectivity between the thalamus and auditory cortex in a subsample with high-quality magnetic resonance imaging data (n = 29). In addition, auditory cortex blood oxygen level-dependent signal amplitude was elevated in children with ASD, potentially reflecting reduced sensory gating or a lack of auditory habituation during natural sleep. CONCLUSIONS These findings indicate that atypical thalamocortical functional connectivity can be detected early in development and may play a crucial role in sleep problems and sensory sensitivities in ASD.
Collapse
Affiliation(s)
- Annika Carola Linke
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California.
| | - Bosi Chen
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Lindsay Olson
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Cynthia Ibarra
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Chris Fong
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California
| | - Sarah Reynolds
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Michael Apostol
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Mikaela Kinnear
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California
| | - Ralph-Axel Müller
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| | - Inna Fishman
- Brain Development Imaging Laboratories, Department of Psychology, San Diego State University, San Diego, California; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California; SDSU Center for Autism and Developmental Disorders, San Diego, California
| |
Collapse
|
4
|
Lee JHA, Chen Q, Zhuo M. Synaptic Plasticity in the Pain-Related Cingulate and Insular Cortex. Biomedicines 2022; 10:2745. [PMID: 36359264 PMCID: PMC9687873 DOI: 10.3390/biomedicines10112745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 09/23/2023] Open
Abstract
Cumulative animal and human studies have consistently demonstrated that two major cortical regions in the brain, namely the anterior cingulate cortex (ACC) and insular cortex (IC), play critical roles in pain perception and chronic pain. Neuronal synapses in these cortical regions of adult animals are highly plastic and can undergo long-term potentiation (LTP), a phenomenon that is also reported in brain areas for learning and memory (such as the hippocampus). Genetic and pharmacological studies show that inhibiting such cortical LTP can help to reduce behavioral sensitization caused by injury as well as injury-induced emotional changes. In this review, we will summarize recent progress related to synaptic mechanisms for different forms of cortical LTP and their possible contribution to behavioral pain and emotional changes.
Collapse
Affiliation(s)
- Jung-Hyun Alex Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiyu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
5
|
Clifton NE, Bosworth ML, Haan N, Rees E, Holmans PA, Wilkinson LS, Isles AR, Collins MO, Hall J. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Hum Mol Genet 2022; 31:3095-3106. [PMID: 35531971 PMCID: PMC9476630 DOI: 10.1093/hmg/ddac105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.
Collapse
Affiliation(s)
- Nicholas E Clifton
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Matthew L Bosworth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Niels Haan
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
6
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
Sheikh A, Meng X, Kao JPY, Kanold PO. Neonatal Hypoxia-Ischemia Causes Persistent Intracortical Circuit Changes in Layer 4 of Rat Auditory Cortex. Cereb Cortex 2021; 32:2575-2589. [PMID: 34729599 DOI: 10.1093/cercor/bhab365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections. Thus, early HI might influence L4 and such influence might persist. We investigated functional circuits to L4 neurons in neonatal rat HI models of different severities (mild and moderate) shortly after injury and at adolescence. We used laser-scanning photostimulation in slices of auditory cortex during P5-10 and P18-23. Mild injuries did not initially (P6/P7) alter the convergence of excitatory inputs from L2/3, but hyperconnectivity emerged by P8-10. Inputs from L4 showed initial hypoconnectivity which resolved by P8-10. Moderate injuries resulted in initial hypoconnectivity from both layers which resolved by P8-10 and led to persistent strengthening of connections. Inhibitory inputs to L4 cells showed similar changes. Functional changes were mirrored by reduced dendritic complexity. We also observed a persistent increase in similarity of L4 circuits, suggesting that HI interferes with developmental circuit refinement and diversification. Altogether, our results show that neonatal HI injuries lead to persistent changes in intracortical connections.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Input-Independent Homeostasis of Developing Thalamocortical Activity. eNeuro 2021; 8:ENEURO.0184-21.2021. [PMID: 33947688 PMCID: PMC8143019 DOI: 10.1523/eneuro.0184-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/02/2022] Open
Abstract
The isocortex of all mammals studied to date shows a progressive increase in the amount and continuity of background activity during early development. In humans the transition from a discontinuous (mostly silent, intermittently bursting) cortex to one that is continuously active is complete soon after birth and is a critical prognostic indicator. In the visual cortex of rodents this switch from discontinuous to continuous background activity occurs during the 2 d before eye-opening, driven by activity changes in relay thalamus. The factors that regulate the timing of continuity development, which enables mature visual processing, are unknown. Here, we test the role of the retina, the primary input, in the development of continuous spontaneous activity in the visual cortex of mice using depth electrode recordings from enucleated mice in vivo. Bilateral enucleation at postnatal day (P)6, one week before the onset of continuous activity, acutely silences cortex, yet firing rates and early oscillations return to normal within 2 d and show a normal developmental trajectory through P12. Enucleated animals showed differences in silent period duration and continuity on P13 that resolved on P16, and an increase in low frequency power that did not. Our results show that the timing of cortical activity development is not determined by the major driving input to the system. Rather, even during a period of rapid increase in firing rates and continuity, neural activity in the visual cortex is under homeostatic control that is largely robust to the loss of the primary input.
Collapse
|
9
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
10
|
Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021; 371:371/6527/eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cerebral cortex is an intricate structure that controls human features such as language and cognition. Cortical functions rely on specialized neurons that emerge during development from complex molecular and cellular interactions. Neurodevelopmental disorders occur when one or several of these steps is incorrectly executed. Although a number of causal genes and disease phenotypes have been identified, the sequence of events linking molecular disruption to clinical expression mostly remains obscure. Here, focusing on human malformations of cortical development, we illustrate how complex interactions at the genetic, cellular, and circuit levels together contribute to diversity and variability in disease phenotypes. Using specific examples and an online resource, we propose that a multilevel assessment of disease processes is key to identifying points of vulnerability and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Esther Klingler
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland
| | - Fiona Francis
- INSERM U 1270, F-75005 Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, F-75005 Paris, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, CH-1202 Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | |
Collapse
|
11
|
Goussakov I, Synowiec S, Aksenov DP, Drobyshevsky A. Occlusion of activity dependent synaptic plasticity by late hypoxic long term potentiation after neonatal intermittent hypoxia. Exp Neurol 2020; 337:113575. [PMID: 33358869 DOI: 10.1016/j.expneurol.2020.113575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
To elucidate the mechanisms of memory impairment after chronic neonatal intermittent hypoxia (IH), we employed a mice model of severe IH administered at postnatal days 3 to 7. Since prior studies in this model did not demonstrate increased cell death, our primary hypothesis was that IH causes a functional disruption of synaptic plasticity in hippocampal neurons. In vivo recordings of Schaffer collateral stimulation-induced synaptic responses during and after IH in the CA1 region of the hippocampus revealed pathological late phase hypoxic long term potentiation (hLTP) (154%) that lasted more than four hours and could be reversed by depotentiation with low frequency stimulation (LFS), or abolished by NMDA and PKA inhibitors (MK-801 and CMIQ). Furthermore, late phase hLTP partially occluded normal physiological LTP (pLTP) four hours after IH. Early and late hLTP phases were induced by neuronal depolarization and Ca2+ influx, determined with manganese enhanced fMRI, and had increased both AMPA and NMDA - mediated currents. This was consistent with mechanisms of pLTP in neonates and also consistent with mechanisms of ischemic LTP described in vitro with OGD in adults. A decrease of pLTP was also recorded on hippocampal slices obtained 2 days after IH. This decrease was ameliorated by MK-801 injections prior to each IH session and restored by LFS depotentiation. Occlusion of pLTP and the observed decreased proportion of NMDA-only silent synapses after neonatal hLTP may explain long term memory, behavioral deficits and abnormal synaptogenesis and pruning following neonatal IH.
Collapse
Affiliation(s)
- Ivan Goussakov
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Sylvia Synowiec
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America
| | - Alexander Drobyshevsky
- Department of Pediatrics, NorthShore University HealthSystem Research Institute, Evanston, IL, United States of America.
| |
Collapse
|
12
|
Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 2020; 370:370/6514/eabb2153. [PMID: 33060328 DOI: 10.1126/science.abb2153] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the earliest developmental stages, spontaneous activity synchronizes local and large-scale cortical networks. These networks form the functional template for the establishment of global thalamocortical networks and cortical architecture. The earliest connections are established autonomously. However, activity from the sensory periphery reshapes these circuits as soon as afferents reach the cortex. The early-generated, largely transient neurons of the subplate play a key role in integrating spontaneous and sensory-driven activity. Early pathological conditions-such as hypoxia, inflammation, or exposure to pharmacological compounds-alter spontaneous activity patterns, which subsequently induce disturbances in cortical network activity. This cortical dysfunction may lead to local and global miswiring and, at later stages, can be associated with neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, MRB 379, Baltimore, MD 21205, USA. .,Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Kennedy H, Wianny F, Dehay C. Determinants of primate neurogenesis and the deployment of top-down generative networks in the cortical hierarchy. Curr Opin Neurobiol 2020; 66:69-76. [PMID: 33099180 DOI: 10.1016/j.conb.2020.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 01/12/2023]
Abstract
What I cannot create I do not understand - Richard Feynman 1978 Because primate cortical development exhibits numerous specific features, the mouse is an imperfect model for human cortical development. Expansion of supragranular neurons is an evolutionary feature characterizing the primate cortex. Increased production of supragranular neurons is supported by a germinal zone innovation of the primate cortex: the Outer SubVentricular Zone, which along with supragranular neurons constitute privileged targets of primate brain-specific gene evolution. The resulting cell-type diversity of human supragranular neurons link cell and molecular evolutionary changes in progenitors with the emergence of distinctive architectural features in the primate cortex. We propose that these changes are required for the expansion of the primate cortical hierarchy deploying top-down generative networks with potentially important consequences for the neurobiology of human psychiatric disorders.
Collapse
Affiliation(s)
- Henry Kennedy
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Key Laboratory of Primate Neurobiology, Shanghai 200031, China.
| | - Florence Wianny
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France
| | - Colette Dehay
- University of Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron 69500, France.
| |
Collapse
|
14
|
Family nurture intervention alters relationships between preterm infant EEG delta brush characteristics and term age EEG power. Clin Neurophysiol 2020; 131:1909-1916. [PMID: 32599274 DOI: 10.1016/j.clinph.2020.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Family Nurture Intervention (FNI) facilitates mother/infant emotional connection, improves neurodevelopmental outcomes and increases electroencephalogram (EEG) power at term age. Here we explored whether delta brushes (DB), early EEG bursts that shape brain development, are altered by FNI and mediate later effects of FNI on EEG. METHODS We assessed DB characteristics in EEG data from a randomized controlled trial comparing infants with standard care (SC, n = 31) versus SC + FNI (n = 33) at ~35 and ~40 weeks GA. RESULTS Compared to SC infants, FNI infant DB amplitude increased more from ~35 to ~40 weeks, and FNI infants had longer duration DBs. DB parameters (rate, amplitude, brush frequency) at ~35 weeks were correlated with power at ~40 weeks, but only in SC infants. FNI effects on DB parameters do not mediate FNI effects on EEG power or coherence at term. CONCLUSIONS DBs are related to subsequent brain activity and FNI alters DB parameters. However, FNI's effects on electrocortical activity at term age are not dependent on its earlier effects on DBs. SIGNIFICANCE While early DBs can have important effects on later brain activity in preterm infants, facilitating emotional connection with FNI may allow brain maturation to be less dependent on early bursts.
Collapse
|