1
|
Zakirov B, Charalambous G, Thuret R, Aspalter IM, Van-Vuuren K, Mead T, Harrington K, Regan ER, Herbert SP, Bentley K. Active perception during angiogenesis: filopodia speed up Notch selection of tip cells in silico and in vivo. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190753. [PMID: 33550953 PMCID: PMC7934951 DOI: 10.1098/rstb.2019.0753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
How do cells make efficient collective decisions during tissue morphogenesis? Humans and other organisms use feedback between movement and sensing known as 'sensorimotor coordination' or 'active perception' to inform behaviour, but active perception has not before been investigated at a cellular level within organs. Here we provide the first proof of concept in silico/in vivo study demonstrating that filopodia (actin-rich, dynamic, finger-like cell membrane protrusions) play an unexpected role in speeding up collective endothelial decisions during the time-constrained process of 'tip cell' selection during blood vessel formation (angiogenesis). We first validate simulation predictions in vivo with live imaging of zebrafish intersegmental vessel growth. Further simulation studies then indicate the effect is due to the coupled positive feedback between movement and sensing on filopodia conferring a bistable switch-like property to Notch lateral inhibition, ensuring tip selection is a rapid and robust process. We then employ measures from computational neuroscience to assess whether filopodia function as a primitive (basal) form of active perception and find evidence in support. By viewing cell behaviour through the 'basal cognitive lens' we acquire a fresh perspective on the tip cell selection process, revealing a hidden, yet vital time-keeping role for filopodia. Finally, we discuss a myriad of new and exciting research directions stemming from our conceptual approach to interpreting cell behaviour. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Bahti Zakirov
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Georgios Charalambous
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Raphael Thuret
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Irene M. Aspalter
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Kelvin Van-Vuuren
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
| | - Thomas Mead
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
| | - Kyle Harrington
- Virtual Technology and Design, University of Idaho, Moscow, ID, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Erzsébet Ravasz Regan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biology, The College of Wooster, Wooster, OH, USA
| | - Shane Paul Herbert
- Division of Developmental Biology and Medicine, University of Manchester, Manchester, UK
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick Institute, London, NW1 1AT, UK
- Department of Informatics, King's College London, London, UK
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|