1
|
Fatima G, Ashiquzzaman A, Kim SS, Kim YR, Kwon HS, Chung E. Vascular and glymphatic dysfunction as drivers of cognitive impairment in Alzheimer's disease: Insights from computational approaches. Neurobiol Dis 2025; 208:106877. [PMID: 40107629 DOI: 10.1016/j.nbd.2025.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is driven by complex interactions between vascular dysfunction, glymphatic system impairment, and neuroinflammation. Vascular aging, characterized by arterial stiffness and reduced cerebral blood flow (CBF), disrupts the pulsatile forces necessary for glymphatic clearance, exacerbating amyloid-beta (Aβ) accumulation and cognitive decline. This review synthesizes insights into the mechanistic crosstalk between these systems and explores their contributions to AD pathogenesis. Emerging machine learning (ML) tools, such as DeepLabCut and Motion sequencing (MoSeq), offer innovative solutions for analyzing multimodal data and enhancing diagnostic precision. Integrating ML with imaging and behavioral analyses bridges gaps in understanding vascular-glymphatic dysfunction. Future research must prioritize these interactions to develop early diagnostics and targeted interventions, advancing our understanding of neurovascular health in AD.
Collapse
Affiliation(s)
- Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Akm Ashiquzzaman
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| |
Collapse
|
2
|
Musha J, Zhao Y, Zhao R, Li Y, Sun R, Liu P, Zhan J. A Feasibility Study on 3-D Imaging of Intrahepatic Bile Ducts in Patients with Biliary Atresia Using Airy Beam Excited Two-Photon Microscopy. Appl Biochem Biotechnol 2025; 197:2151-2162. [PMID: 39680275 DOI: 10.1007/s12010-024-05090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/17/2024]
Abstract
The purpose of this study was to utilize a two-photon microscope excitation Airy beam to achieve three-dimensional imaging of intrahepatic bile ducts in BDL mice and patients with biliary atresia (BA). Ten male Balb/c mice aged 6-8 weeks underwent extrahepatic bile duct ligation (BDL), and 10 underwent sham operation as control. After the operation, the mice resulted in symptoms such as jaundice, darkened urine, and weight loss. Taken liver tissues from BDL and control mice and trimmed to 5*5*3 mm3 after 10 days. Sixteen patients with BA were included in this study. Liver transplantation was performed in 12 cases of them; liver hilar and liver margin tissues were taken during the operation. Kasai portoenterostomy (KPE) was performed in 4 cases, and liver margin tissues were taken. Intraoperative liver tissue samples were trimmed to a size of 5*5*5 mm3. The specimens were subjected to tissue fixation, antigen retrieval, antibody incubation, and subsequent tissue hyalinization following the principles of immunofluorescence staining. Subsequently, light-sheet fluorescence microscopy (LSFM) was followed, and intrahepatic bile ducts of the specimen were imaged utilizing Airy beam which was excited with high imaging depth attenuation-compensated two-photon. Deconvolution was applied to image processing to construct a three-dimensional model of intrahepatic bile ducts. Three-dimensional imaging of liver tissue was conducted in both BDL mice and BA patients, and the distribution of intrahepatic bile ducts was visualized. BDL mice exhibited notable widening of intrahepatic bile ducts, accompanied by bile duct hyperplasia. There was no obvious hyperplasia of intrahepatic bile duct in the control group. Significant small bile duct hyperplasia was seen on imaging of the intrahepatic bile ducts in patients with BA. The intrahepatic bile duct was disorganized and hyperplasia especially in patients who performed liver transplantation. The technique of Airy beam three-dimensional reconstruction can effectively image the intrahepatic bile ducts in Balb/c mice and BA patients in three dimensions. This approach contributes to a better understanding of the distribution of intrahepatic bile ducts in BA patients. Moreover, it facilitates the exploration of models that more accurately simulate BA disease by elucidating the distribution of intrahepatic bile ducts in animal models. Understanding the distribution characteristics of intrahepatic bile duct will facilitate the formulation of hilar bile duct microstructure classification, which can guide the operation and evaluate the prognosis better.
Collapse
Affiliation(s)
- Jiayinaxi Musha
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Beichen District, Longyan Road 238, Tianjin, 300134, China
- Urumqi First People's Hospital (Urumqi Children's Hospital), Xinjiang, China
| | - Yilin Zhao
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Beichen District, Longyan Road 238, Tianjin, 300134, China
| | - Rong Zhao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Nankai District, Weijin Road 92, Tianjin, 300072, China
| | - Yuan Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Nankai District, Weijin Road 92, Tianjin, 300072, China
| | - Rongjuan Sun
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Beichen District, Longyan Road 238, Tianjin, 300134, China
| | - Pengfei Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Nankai District, Weijin Road 92, Tianjin, 300072, China.
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Beichen District, Longyan Road 238, Tianjin, 300134, China.
| |
Collapse
|
3
|
Daetwyler S, Mazloom-Farsibaf H, Zhou FY, Segal D, Sapoznik E, Chen B, Westcott JM, Brekken RA, Danuser G, Fiolka R. Imaging of cellular dynamics from a whole organism to subcellular scale with self-driving, multiscale microscopy. Nat Methods 2025; 22:569-578. [PMID: 39939720 DOI: 10.1038/s41592-025-02598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
Most biological processes, from development to pathogenesis, span multiple time and length scales. While light-sheet fluorescence microscopy has become a fast and efficient method for imaging organisms, cells and subcellular dynamics, simultaneous observations across all these scales have remained challenging. Moreover, continuous high-resolution imaging inside living organisms has mostly been limited to a few hours, as regions of interest quickly move out of view due to sample movement and growth. Here, we present a self-driving, multiresolution light-sheet microscope platform controlled by custom Python-based software, to simultaneously observe and quantify subcellular dynamics in the context of entire organisms in vitro and in vivo over hours of imaging. We apply the platform to the study of developmental processes, cancer invasion and metastasis, and we provide quantitative multiscale analysis of immune-cancer cell interactions in zebrafish xenografts.
Collapse
Affiliation(s)
- Stephan Daetwyler
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hanieh Mazloom-Farsibaf
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Felix Y Zhou
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dagan Segal
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bingying Chen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill M Westcott
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rolf A Brekken
- Department of Surgery and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Zhou S, Zhu Q, Eom M, Fang S, Subach OM, Ran C, Alvarado JS, Sunkavalli PS, Dong Y, Wang Y, Hu J, Zhang H, Wang Z, Sun X, Yang T, Mu Y, Yoon YG, Guo ZV, Subach FV, Piatkevich KD. A Sensitive Soma-localized Red Fluorescent Calcium Indicator for Multi-Modality Imaging of Neuronal Populations In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635851. [PMID: 39975286 PMCID: PMC11838422 DOI: 10.1101/2025.01.31.635851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Recent advancements in genetically encoded calcium indicators, particularly those based on green fluorescent proteins, have optimized their performance for monitoring neuronal activities in a variety of model organisms. However, progress in developing red-shifted GECIs, despite their advantages over green indicators, has been slower, resulting in fewer options for end-users. In this study, we explored topological inversion and soma-targeting strategies, which are complementary to conventional mutagenesis, to re-engineer a red genetically encoded calcium indicator, FRCaMP, for enhanced in vivo performance. The resulting sensors, FRCaMPi and soma-targeted FRCaMPi (SomaFRCaMPi), exhibit up to 2-fold higher dynamic range and peak ΔF/F0 per single AP compared to widely used jRGECO1a in neurons in culture and in vivo. Compared to jRGECO1a and FRCaMPi, SomaFRCaMPi reduces erroneous correlation of neuronal activity in the brains of mice and zebrafish by two- to four-fold due to diminished neuropil contamination without compromising the signal-to-noise ratio. Under wide-field imaging in primary somatosensory and visual cortex in mice with high labeling density (80-90%), SomaFRCaMPi exhibits up to 40% higher SNR and decreased artifactual correlation across neurons. Altogether, SomaFRCaMPi improves the accuracy and scale of neuronal activity imaging at single-neuron resolution in densely labeled brain tissues due to a 2-3-fold enhanced automated neuronal segmentation, 50% higher fraction of responsive cells, up to 2-fold higher SNR compared to jRGECO1a. Our findings highlight the potential of SomaFRCaMPi, comparable to the most sensitive soma-targeted GCaMP, for precise spatial recording of neuronal populations using popular imaging modalities in model organisms such as zebrafish and mice.
Collapse
Affiliation(s)
- Shihao Zhou
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- These authors contributed equally to this work
| | - Qiyu Zhu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
- These authors contributed equally to this work
| | - Minho Eom
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
- These authors contributed equally to this work
| | - Shilin Fang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Oksana M. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Chen Ran
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonnathan Singh Alvarado
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Praneel S. Sunkavalli
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yuanping Dong
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yangdong Wang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiewen Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhiyuan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Sun
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tao Yang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Young-Gyu Yoon
- School of Electrical Engineering, KAIST, Daejeon, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
- Department of Semiconductor System Engineering, KAIST, Daejeon, Republic of Korea
| | - Zengcai V. Guo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Boitet M, Achek A, Bouchenaki K, Grailhe R. BrightMice: a low-cost do-it-yourself instrument, designed for in vivo fluorescence mouse imaging. Sci Rep 2024; 14:22685. [PMID: 39349676 PMCID: PMC11442974 DOI: 10.1038/s41598-024-73130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
In vivo fluorescent imaging represents a potent means for real-time probe quantification, facilitating insights into disease pathophysiology and therapeutic responses. Nonetheless, accurate signal quantification remains challenging due to inherent factors like light scattering and tissue absorption. Existing imaging systems, though sophisticated, often entail high costs and are typically restricted to well-funded laboratory settings. This study introduces BrightMice, an innovative in vivo fluorescent imaging system that harnesses 3D printing and consumer-grade digital cameras. Tailored for various fluorophores such as EYFP and E2-crimson, the system showcases both adaptability and effectiveness in detecting in vivo fluorescent signals in several reporter mouse strains. Comparative analyses against commercial instruments confirm BrightMice's sensitivity and underscore its potential to democratize in vivo fluorescence imaging. By providing a cost-effective and accessible solution, BrightMice stands to benefit diverse research environments.
Collapse
Affiliation(s)
- Maylis Boitet
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea
- Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, Republic of Korea
- Core Technology Platforms, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Asma Achek
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | | | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712beon-gil, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
- Division of Bio-Medical Science & Technology, Korea University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, Republic of Korea.
- Smart-MD, Institut Pasteur Korea, Seongnam, Republic of Korea.
| |
Collapse
|
6
|
Glaser A, Chandrashekar J, Vasquez S, Arshadi C, Ouellette N, Jiang X, Baka J, Kovacs G, Woodard M, Seshamani S, Cao K, Clack N, Recknagel A, Grim A, Balaram P, Turschak E, Hooper M, Liddell A, Rohde J, Hellevik A, Takasaki K, Erion Barner L, Logsdon M, Chronopoulos C, de Vries S, Ting J, Perlmutter S, Kalmbach B, Dembrow N, Tasic B, Reid RC, Feng D, Svoboda K. Expansion-assisted selective plane illumination microscopy for nanoscale imaging of centimeter-scale tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544277. [PMID: 37425699 PMCID: PMC10327101 DOI: 10.1101/2023.06.08.544277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent advances in tissue processing, labeling, and fluorescence microscopy are providing unprecedented views of the structure of cells and tissues at sub-diffraction resolutions and near single molecule sensitivity, driving discoveries in diverse fields of biology, including neuroscience. Biological tissue is organized over scales of nanometers to centimeters. Harnessing molecular imaging across intact, three-dimensional samples on this scale requires new types of microscopes with larger fields of view and working distance, as well as higher throughput. We present a new expansion-assisted selective plane illumination microscope (ExA-SPIM) with aberration-free 1×1×3 μm optical resolution over a large field of view (10.6×8.0 mm 2 ) and working distance (35 mm) at speeds up to 946 megavoxels/sec. Combined with new tissue clearing and expansion methods, the microscope allows imaging centimeter-scale samples with 250×250×750 nm optical resolution (4× expansion), including entire mouse brains, with high contrast and without sectioning. We illustrate ExA-SPIM by reconstructing individual neurons across the mouse brain, imaging cortico-spinal neurons in the macaque motor cortex, and visualizing axons in human white matter.
Collapse
|
7
|
Soumier A, Lio G, Demily C. Current and future applications of light-sheet imaging for identifying molecular and developmental processes in autism spectrum disorders. Mol Psychiatry 2024; 29:2274-2284. [PMID: 38443634 DOI: 10.1038/s41380-024-02487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Autism spectrum disorder (ASD) is identified by a set of neurodevelopmental divergences that typically affect the social communication domain. ASD is also characterized by heterogeneous cognitive impairments and is associated with cooccurring physical and medical conditions. As behaviors emerge as the brain matures, it is particularly essential to identify any gaps in neurodevelopmental trajectories during early perinatal life. Here, we introduce the potential of light-sheet imaging for studying developmental biology and cross-scale interactions among genetic, cellular, molecular and macroscale levels of circuitry and connectivity. We first report the core principles of light-sheet imaging and the recent progress in studying brain development in preclinical animal models and human organoids. We also present studies using light-sheet imaging to understand the development and function of other organs, such as the skin and gastrointestinal tract. We also provide information on the potential of light-sheet imaging in preclinical drug development. Finally, we speculate on the translational benefits of light-sheet imaging for studying individual brain-body interactions in advancing ASD research and creating personalized interventions.
Collapse
Affiliation(s)
- Amelie Soumier
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France.
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France.
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France.
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France.
| | - Guillaume Lio
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
| | - Caroline Demily
- Le Vinatier Hospital Center, 95 boulevard Pinel, 69675, Bron cedex, France
- iMIND, Center of Excellence for Autism, 95 boulevard Pinel, 69675, Bron cedex, France
- Institute of Cognitive Science Marc Jeannerod, CNRS, UMR 5229, 67 boulevard Pinel, 69675, Bron cedex, France
- University Claude Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69622, Villeurbanne cedex, France
| |
Collapse
|
8
|
Farmen K, Tofiño-Vian M, Wellfelt K, Olson L, Iovino F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol Dis 2024; 195:106484. [PMID: 38583642 DOI: 10.1016/j.nbd.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis globally, and pneumococcal meningitis is associated with increased risk of long-term neurological sequelae. These include several sensorimotor functions that are controlled by specific brain regions which, during bacterial meningitis, are damaged by a neuroinflammatory response and the deleterious action of bacterial toxins in the brain. However, little is known about the invasion pattern of the pneumococcus into the brain. Using a bacteremia-derived meningitis mouse model, we combined 3D whole brain imaging with brain microdissection to show that all brain regions were equally affected during disease progression, with the presence of pneumococci closely associated to the microvasculature. In the hippocampus, the invasion provoked microglial activation, while the neurogenic niche showed increased proliferation and migration of neuroblasts. Our results indicate that, even before the outbreak of symptoms, the bacterial load throughout the brain is high and causes neuroinflammation and cell death, a pathological scenario which ultimately leads to a failing regeneration of new neurons.
Collapse
Affiliation(s)
- Kristine Farmen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Jiang T, Gong H, Yuan J. Whole-brain Optical Imaging: A Powerful Tool for Precise Brain Mapping at the Mesoscopic Level. Neurosci Bull 2023; 39:1840-1858. [PMID: 37715920 PMCID: PMC10661546 DOI: 10.1007/s12264-023-01112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 09/18/2023] Open
Abstract
The mammalian brain is a highly complex network that consists of millions to billions of densely-interconnected neurons. Precise dissection of neural circuits at the mesoscopic level can provide important structural information for understanding the brain. Optical approaches can achieve submicron lateral resolution and achieve "optical sectioning" by a variety of means, which has the natural advantage of allowing the observation of neural circuits at the mesoscopic level. Automated whole-brain optical imaging methods based on tissue clearing or histological sectioning surpass the limitation of optical imaging depth in biological tissues and can provide delicate structural information in a large volume of tissues. Combined with various fluorescent labeling techniques, whole-brain optical imaging methods have shown great potential in the brain-wide quantitative profiling of cells, circuits, and blood vessels. In this review, we summarize the principles and implementations of various whole-brain optical imaging methods and provide some concepts regarding their future development.
Collapse
Affiliation(s)
- Tao Jiang
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
| | - Hui Gong
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou, 215123, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
10
|
Wang M, Yu X. Experience-dependent structural plasticity of pyramidal neurons in the developing sensory cortices. Curr Opin Neurobiol 2023; 81:102724. [PMID: 37068383 DOI: 10.1016/j.conb.2023.102724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023]
Abstract
Sensory experience regulates the structural and functional wiring of neuronal circuits, during development and throughout adulthood. Here, we review current knowledge of how experience affects structural plasticity of pyramidal neurons in the sensory cortices. We discuss the pros and cons of existing labeling approaches, as well as what structural parameters are most plastic. We further discuss how recent advances in sparse labeling of specific neuronal subtypes, as well as development of techniques that allow fast, high resolution imaging in large fields, would enable future studies to address currently unanswered questions in the field of structural plasticity.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China.
| | - Xiang Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and PKU-IDG/McGovern Institute, Peking University, Beijing 100871, China; Autism Research Center of Peking University Health Science Center, Beijing 100191, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
11
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
12
|
Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, Guang Y, Gong X, He Y, Zhou W, Wang H, Cheng K, Wang Y, Chen X, Xie P, Guo ZV. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry 2022; 27:3807-3820. [PMID: 35388184 DOI: 10.1038/s41380-022-01540-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is viewed as a 'circuitopathy'. The hippocampal-entorhinal network plays a pivotal role in regulation of depression, and its main sensory output, the visual cortex, is a promising target for stimulation therapy of depression. However, whether the entorhinal-visual cortical pathway mediates depression and the potential mechanism remains unknown. Here we report a cortical circuit linking entorhinal cortex layer Va neurons to the medial portion of secondary visual cortex (Ent→V2M) that bidirectionally regulates depression-like behaviors in mice. Analyses of brain-wide projections of Ent Va neurons and two-color retrograde tracing indicated that Ent Va→V2M projection neurons represented a unique population of neurons in Ent Va. Immunostaining of c-Fos revealed that activity in Ent Va neurons was decreased in mice under chronic social defeat stress (CSDS). Both chemogenetic inactivation of Ent→V2M projection neurons and optogenetic inactivation of the projection terminals induced social deficiency, anxiety- and despair-related behaviors in healthy mice. Chemogenetic inactivation of Ent→V2M projection neurons also aggravated these depression-like behaviors in CSDS-resilient mice. Optogenetic activation of Ent→V2M projection terminals rapidly ameliorated depression-like phenotypes. Optical recording using fiber photometry indicated that elevated neural activity in Ent→V2M projection terminals promoted antidepressant-like behaviors. Thus, the Ent→V2M circuit plays a crucial role in regulation of depression-like behaviors, and can function as a potential target for treating major depressive disorder.
Collapse
Affiliation(s)
- Jian Lu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.,IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Zhouzhou Zhang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Xinxin Yin
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yingjun Tang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Runan Ji
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Han Chen
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Yu Guang
- Department of gynecology, The First Affiliated Hospital of Shenzhen University (The Second People's Hospital of Shenzhen) and Dapeng Maternity & Child Healthcare Hospital, 518028, Shenzhen, China
| | - Xue Gong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Wei Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, 400038, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases & Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, 100084, Beijing, China. .,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China.
| |
Collapse
|
13
|
Battistella E, Quintana JF, McConnell G. Application of Light-Sheet Mesoscopy to Image Host-Pathogen Interactions in Intact Organs. Front Cell Infect Microbiol 2022; 12:903957. [PMID: 35774409 PMCID: PMC9237429 DOI: 10.3389/fcimb.2022.903957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is a disease caused by the extracellular parasite Trypanosoma brucei that affects the central nervous system (CNS) during the chronic stage of the infection, inducing neuroinflammation, coma, and death if left untreated. However, little is known about the structural change happening in the brain as result of the infection. So far, infection-induced neuroinflammation has been observed with conventional methods, such as immunohistochemistry, electron microscopy, and 2-photon microscopy only in small portions of the brain, which may not be representative of the disease. In this paper, we have used a newly-developed light-sheet illuminator to image the level of neuroinflammation in chronically infected mice and compared it to naïve controls. This system was developed for imaging in combination with the Mesolens objective lens, providing fast sub-cellular resolution for tens of mm3-large imaging volumes. The mouse brain specimens were cleared using CUBIC+, followed by antibody staining to locate Glial Fibrillary Acid Protein (GFAP) expressing cells, primarily astrocytes and ependymocytes, used here as a proxy for cell reactivity and gliosis. The large capture volume allowed us to detect GFAP+ cells and spatially resolve the response to T. brucei infection. Based on morphometric analyses and spatial distribution of GFAP+ cells, our data demonstrates a significant increase in cell dendrite branching around the lateral ventricle, as well as dorsal and ventral third ventricles, that are negatively correlated with the branch extension in distal sites from the circumventricular spaces. To our knowledge, this is the first report highlighting the potential of light-sheet mesoscopy to characterise the inflammatory responses of the mouse brain to parasitic infection at the cellular level in intact cleared organs, opening new avenues for the development of new mesoscale imaging techniques for the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Eliana Battistella
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - Juan F. Quintana
- Wellcome Centre for Integrative Parasitology (WCIP) University of Glasgow, Glasgow, United Kingdom
- Institute of Biodiversity, Animal Health, and Comparative Medicine (IBAHCM). University of Glasgow, Glasgow, United Kingdom
| | - Gail McConnell
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
14
|
Guo S, Xue J, Liu J, Ye X, Guo Y, Liu D, Zhao X, Xiong F, Han X, Peng H. Smart imaging to empower brain-wide neuroscience at single-cell levels. Brain Inform 2022; 9:10. [PMID: 35543774 PMCID: PMC9095808 DOI: 10.1186/s40708-022-00158-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
A deep understanding of the neuronal connectivity and networks with detailed cell typing across brain regions is necessary to unravel the mechanisms behind the emotional and memorial functions as well as to find the treatment of brain impairment. Brain-wide imaging with single-cell resolution provides unique advantages to access morphological features of a neuron and to investigate the connectivity of neuron networks, which has led to exciting discoveries over the past years based on animal models, such as rodents. Nonetheless, high-throughput systems are in urgent demand to support studies of neural morphologies at larger scale and more detailed level, as well as to enable research on non-human primates (NHP) and human brains. The advances in artificial intelligence (AI) and computational resources bring great opportunity to 'smart' imaging systems, i.e., to automate, speed up, optimize and upgrade the imaging systems with AI and computational strategies. In this light, we review the important computational techniques that can support smart systems in brain-wide imaging at single-cell resolution.
Collapse
Affiliation(s)
- Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Jie Xue
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jian Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiangqiao Ye
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Yichen Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Di Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Feng Xiong
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Xiaofeng Han
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, 210096, Jiangsu, China
| |
Collapse
|
15
|
Wang Y, Yin X, Zhang Z, Li J, Zhao W, Guo ZV. A cortico-basal ganglia-thalamo-cortical channel underlying short-term memory. Neuron 2021; 109:3486-3499.e7. [PMID: 34469773 DOI: 10.1016/j.neuron.2021.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
Persistent activity underlying short-term memory encodes sensory information or instructs specific future movement and, consequently, has a crucial role in cognition. Despite extensive study, how the same set of neurons respond differentially to form selective persistent activity remains unknown. Here, we report that the cortico-basal ganglia-thalamo-cortical (CBTC) circuit supports the formation of selective persistent activity in mice. Optogenetic activation or inactivation of the basal ganglia output nucleus substantia nigra pars reticulata (SNr)-to-thalamus pathway biased future licking choice, without affecting licking execution. This perturbation differentially affected persistent activity in the frontal cortex and selectively modulated neural trajectory that encodes one choice but not the other. Recording showed that SNr neurons had selective persistent activity distributed across SNr, but with a hotspot in the mediolateral region. Optogenetic inactivation of the frontal cortex also differentially affected persistent activity in the SNr. Together, these results reveal a CBTC channel functioning to produce selective persistent activity underlying short-term memory.
Collapse
Affiliation(s)
- Yu Wang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Xinxin Yin
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Zhouzhou Zhang
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; School of Life Sciences, Tsinghua University, Beijing, China 100084
| | - Jiejue Li
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Wenyu Zhao
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084
| | - Zengcai V Guo
- IDG/McGovern Institute for Brain Research, School of Medicine, Tsinghua University, Beijing, China 100084; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China 100084.
| |
Collapse
|
16
|
Chen H, Huang T, Yang Y, Yao X, Huo Y, Wang Y, Zhao W, Ji R, Yang H, Guo ZV. Sparse imaging and reconstruction tomography for high-speed high-resolution whole-brain imaging. CELL REPORTS METHODS 2021; 1:100089. [PMID: 35474896 PMCID: PMC9017159 DOI: 10.1016/j.crmeth.2021.100089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023]
Abstract
Understanding brain functions requires detailed knowledge of long-range connectivity through which different areas communicate. A key step toward illuminating the long-range structures is to image the whole brain at synaptic resolution to trace axonal arbors of individual neurons to their termini. However, high-resolution brain-wide imaging requires continuous imaging for many days to sample over 10 trillion voxels, even in the mouse brain. Here, we have developed a sparse imaging and reconstruction tomography (SMART) system that allows brain-wide imaging of cortical projection neurons at synaptic resolution in about 20 h, an order of magnitude faster than previous methods. Analyses of morphological features reveal that single cortical neurons show remarkable diversity in local and long-range projections, with prefrontal, premotor, and visual neurons having distinct distribution of dendritic and axonal features. The fast imaging system and diverse projection patterns of individual neurons highlight the importance of high-resolution brain-wide imaging in revealing full neuronal morphology.
Collapse
Affiliation(s)
- Han Chen
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Tianyi Huang
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuexin Yang
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xiao Yao
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yan Huo
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wenyu Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Runan Ji
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Hongjiang Yang
- School of Medicine, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zengcai V. Guo
- School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|