1
|
Liu Z, Luo X, Yan-Do R, Wang Y, Xie X, Li Z, Cheng SH, Shi P. Vertebrates on a Chip: Noninvasive Electrical and Optical Mapping of Whole Brain Activity Associated with Pharmacological Treatments. ACS Chem Neurosci 2024; 15:2121-2131. [PMID: 38775291 DOI: 10.1021/acschemneuro.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Mapping brain activities is necessary for understanding brain physiology and discovering new treatments for neurological disorders. Such efforts have greatly benefited from the advancement in technologies for analyzing neural activity with improving temporal or spatial resolution. Here, we constructed a multielectrode array based brain activity mapping (BAM) system capable of stabilizing and orienting zebrafish larvae for recording electroencephalogram (EEG) like local field potential (LFP) signals and brain-wide calcium dynamics in awake zebrafish. Particularly, we designed a zebrafish trap chip that integrates with an eight-by-eight surface electrode array, so that brain electrophysiology can be noninvasively recorded in an agarose-free and anesthetic-free format with a high temporal resolution of 40 μs, matching the capability typically achieved by invasive LFP recording. Benefiting from the specially designed hybrid system, we can also conduct calcium imaging directly on immobilized awake larval zebrafish, which further supplies us with high spatial resolution brain-wide activity data. All of these innovations reconcile the limitations of sole LFP recording or calcium imaging, emphasizing a synergy of combining electrical and optical modalities within one unified device for activity mapping across a whole vertebrate brain with both improved spatial and temporal resolutions. The compatibility with in vivo drug treatment further makes it suitable for pharmacology studies based on multimodal measurement of brain-wide physiology.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xuan Luo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering Hong Kong Science Park, Hong Kong SAR
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering Hong Kong Science Park, Hong Kong SAR
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Kowloon, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong Shenzhen, Guangdong 518057, China
| |
Collapse
|
2
|
Folgueira M, Clarke JDW. Telencephalic eversion in embryos and early larvae of four teleost species. Evol Dev 2024; 26:e12474. [PMID: 38425004 DOI: 10.1111/ede.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.
Collapse
Affiliation(s)
- Mónica Folgueira
- Departamento de Bioloxía, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
3
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
4
|
Chung C, Yang X, Hevner RF, Kennedy K, Vong KI, Liu Y, Patel A, Nedunuri R, Barton ST, Barrows C, Stanley V, Mittal S, Breuss MW, Schlachetzki JCM, Gleeson JG. Cell-type-resolved somatic mosaicism reveals clonal dynamics of the human forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563814. [PMID: 37961480 PMCID: PMC10634852 DOI: 10.1101/2023.10.24.563814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Debate remains around anatomic origins of specific brain cell subtypes and lineage relationships within the human forebrain. Thus, direct observation in the mature human brain is critical for a complete understanding of the structural organization and cellular origins. Here, we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific Mosaic Variant Barcode Analysis. From four hemispheres from two different human neurotypical donors, we identified 287 and 780 mosaic variants (MVs), respectively that were used to deconvolve clonal dynamics. Clonal spread and allelic fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted compared with resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome-transcriptome analysis at both a cell-type-specific and single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of MVs across 17 locations within one parietal lobe reveals restrictions of clonal spread in the anterior-posterior axis precedes that of the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus cell-type resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Robert F. Hevner
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92037, USA
- Department of Pathology, UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | | | - Keng Ioi Vong
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Yang Liu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Arzoo Patel
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Rahul Nedunuri
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Scott T. Barton
- Division of Medical Education, School of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Chelsea Barrows
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Valentina Stanley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Swapnil Mittal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| | - Martin W. Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Aurora, CO, 80045, USA
| | | | - Joseph G. Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, 92123, USA
| |
Collapse
|