1
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|
2
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
3
|
Alqahtani MS, Abbas M, Abdulmuqeet M, Alqahtani AS, Alshahrani MY, Alsabaani A, Ramalingam M. Forecasting the Post-Pandemic Effects of the SARS-CoV-2 Virus Using the Bullwhip Phenomenon Alongside Use of Nanosensors for Disease Containment and Cure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5078. [PMID: 35888544 PMCID: PMC9317545 DOI: 10.3390/ma15145078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
The COVID-19 pandemic has the tendency to affect various organizational paradigm alterations, which civilization hasyet to fully comprehend. Personal to professional, individual to corporate, and across most industries, the spectrum of transformations is vast. Economically, the globe has never been more intertwined, and it has never been subjected to such widespread disruption. While many people have felt and acknowledged the pandemic's short-term repercussions, the resultant paradigm alterations will certainly have long-term consequences with an unknown range and severity. This review paper aims at acknowledging various approaches for the prevention, detection, and diagnosis of the SARS-CoV-2 virus using nanomaterials as a base material. A nanostructure is a material classification based on dimensionality, in proportion to the characteristic diameter and surface area. Nanoparticles, quantum dots, nanowires (NW), carbon nanotubes (CNT), thin films, and nanocomposites are some examples of various dimensions, each acting as a single unit, in terms of transport capacities. Top-down and bottom-up techniques are used to fabricate nanomaterials. The large surface-to-volume ratio of nanomaterials allows one to create extremely sensitive charge or field sensors (electrical sensors, chemical sensors, explosives detection, optical sensors, and gas sensing applications). Nanowires have potential applications in information and communication technologies, low-energy lightning, and medical sensors. Carbon nanotubes have the best environmental stability, electrical characteristics, and surface-to-volume ratio of any nanomaterial, making them ideal for bio-sensing applications. Traditional commercially available techniques have focused on clinical manifestations, as well as molecular and serological detection equipment that can identify the SARS-CoV-2 virus. Scientists are expressing a lot of interest in developing a portable and easy-to-use COVID-19 detection tool. Several unique methodologies and approaches are being investigated as feasible advanced systems capable of meeting the demands. This review article attempts to emphasize the pandemic's aftereffects, utilising the notion of the bullwhip phenomenon's short-term and long-term effects, and it specifies the use of nanomaterials and nanosensors for detection, prevention, diagnosis, and therapy in connection to the SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
- BioImaging Unit, Space Research Centre, Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
- Computers and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Mohammed Abdulmuqeet
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah S. Alqahtani
- Pathology and Clinical Laboratory Medicine Administration (PCLMA), King Fahad Medical City, Riyadh 59046, Saudi Arabia;
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdullah Alsabaani
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Miranda RR, Ferreira NN, Souza EED, Lins PMP, Ferreira LM, Krüger A, Cardoso VMD, Durigon EL, Wrenger C, Zucolotto V. Modulating Fingolimod (FTY720) Anti-SARS-CoV-2 Activity Using a PLGA-Based Drug Delivery System. ACS APPLIED BIO MATERIALS 2022; 5:3371-3383. [PMID: 35732506 PMCID: PMC9236206 DOI: 10.1021/acsabm.2c00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
COVID-19 has resulted in more than 490 million people being infected worldwide, with over 6 million deaths by April 05th, 2022. Even though the development of safe vaccine options is an important step to reduce viral transmission and disease progression, COVID-19 cases will continue to occur, and for those cases, efficient treatment remains to be developed. Here, a drug repurposing strategy using nanotechnology is explored to develop a therapy for COVID-19 treatment. Nanoparticles (NPs) based on PLGA for fingolimod (FTY720) encapsulation show a size of ∼150 nm and high drug entrapment (∼90%). The NP (NP@FTY720) can control FTY720 release in a pH-dependent manner. Cytotoxicity assays using different cell lines show that NP@FTY720 displays less toxicity than the free drug. Flow cytometry and confocal microscopy reveal that NPs are actively internalized mostly through caveolin-mediated endocytosis and macropinocytosis pathways and co-localized with lysosomes. Finally, NP@FTY720 not only exhibits anti-SARS-CoV-2 activity at non-cytotoxic concentrations, but its biological potential for viral infection inhibition is nearly 70 times higher than that of free drug treatment. Based on these findings, the combination of drug repurposing and nanotechnology as NP@FTY720 is presented for the first time and represents a promising frontline in the fight against COVID-19.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Natália Noronha Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Paula Maria Pincela Lins
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Leonardo Miziara
Barboza Ferreira
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valéria Maria de
Oliveira Cardoso
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| | - Edison Luiz Durigon
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology,
Institute of Biomedical Sciences, University of Sao Paulo, Av.
Prof. Lineu Prestes 1374, 05508-000 Sao Paulo, Sao Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, Physics
Institute of São Carlos, São Paulo University,
Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, São
Paulo, Brazil
| |
Collapse
|
5
|
Wilson B, Mukundan Geetha K. Nanomedicine to deliver biological macromolecules for treating COVID-19. Vaccine 2022; 40:3931-3941. [PMID: 35660038 PMCID: PMC9149150 DOI: 10.1016/j.vaccine.2022.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease (COVID-19) was first reported in December 2019, China and later it was found that the causative microorganism is severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As on 3rd June 2021, SARS-CoV-2 has affected 171049741 people worldwide with 3549710 deaths. Nanomedicine such as nanoparticles, liposomes, lipid nanoparticles, virus-like nanoparticles offer tremendous hopes to treat viral infections including COVID-19. Most importantly target specific ligands can be attached on the surface of them and this makes them more target specific and the loaded drug can be delivered to cellular and molecular level. These properties of nanomedicines can be utilized to deliver drugs or vaccines to treat viral diseases including SARS-CoV-2 infection. This review discusses about SARS-CoV-2 and the potential application of nanomedicines for delivering biological macromolecules like vaccines and drugs for treating COVID-19.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
6
|
Dahanayake MH, Athukorala SS, Jayasundera ACA. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review. RSC Adv 2022; 12:16369-16385. [PMID: 35747530 PMCID: PMC9158512 DOI: 10.1039/d2ra01567f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 persists as the most challenging pandemic of the 21st century with a high rate of transmission. The main pathway of SARS-CoV-2 transmission is aerosol-mediated infection transfer through virus-laden droplets that are expelled by infected people, whereas indirect transmission occurs when contact is made with a contaminated surface. This mini review delivers an overview of the current state of knowledge, research directions, and applications by examining the most recent developments in antiviral surface coatings and filters and analyzing their efficiencies. Reusable masks and other personal protective devices with antiviral properties and self-decontamination could be valuable tools in the fight against viral spread. Moreover, antiviral surface coatings that repel pathogens by preventing adhesion or neutralize pathogens with self-sanitizing ability are assumed to be the most desirable for terminating indirect transmission of viruses. Although many nanomaterials have shown high antiviral capacities, additional research is unquestionably required to develop next-generation antiviral agents with unique characteristics to face future viral outbreaks.
Collapse
Affiliation(s)
- Madushani H Dahanayake
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- National Institute of Fundamental Studies Hanthana Kandy Sri Lanka
| | - Sandya S Athukorala
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya Sri Lanka
| | - A C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Peradeniya Sri Lanka
- Division of Mathematics and Science, Missouri Valley College Marshall MO 65340 USA
| |
Collapse
|
7
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
8
|
Hartmann T, Perron R, Razavi M. Utilization of Nanoparticles, Nanodevices, and Nanotechnology in the Treatment Course of Cutaneous Melanoma. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Hartmann
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Rebecca Perron
- College of Medicine University of Central Florida Orlando FL 32827 USA
| | - Mehdi Razavi
- College of Medicine University of Central Florida Orlando FL 32827 USA
- Biionix™ (Bionic Materials, Implants & Interfaces) Cluster Department of Internal Medicine College of Medicine University of Central Florida Orlando FL 32827 USA
- Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA
| |
Collapse
|
9
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: A critical review and prospects. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 46:100544. [PMID: 34778007 PMCID: PMC8577996 DOI: 10.1016/j.colcom.2021.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) around the world has ravaged both global health and economy. This unprecedented situation has thus garnered attention globally. This further necessitated the deployment of an effective strategy for rapid and patient-compliant identification and isolation of patients tested positive for SARS-CoV-2. Following this, several companies and institutions across the globe are striving hard to develop real-time methods, like biosensors for the detection of various viral components including antibodies, antigens, ribonucleic acid (RNA), or the whole virus. This article attempts to review the various, mechanisms, advantages and limitations of the common biosensors currently being employed for detection. Additionally, it also summarizes recent advancements in various walks of fighting COVID-19, including its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Purab Sood
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra 400013, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune - 411038, Maharashtra, India
| |
Collapse
|
10
|
Tuñón-Molina A, Takayama K, Redwan EM, Uversky VN, Andrés J, Serrano-Aroca Á. Protective Face Masks: Current Status and Future Trends. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56725-56751. [PMID: 34797624 DOI: 10.1021/acsami.1c12227] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Management of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has relied in part on the use of personal protective equipment (PPE). Face masks, as a representative example of PPE, have made a particularly significant contribution. However, most commonly used face masks are made of materials lacking inactivation properties against either SARS-CoV-2 or multidrug-resistant bacteria. Therefore, symptomatic and asymptomatic individuals wearing masks can still infect others due to viable microbial loads escaping from the masks. Moreover, microbial contact transmission can occur by touching the mask, and the discarded masks are an increasing source of contaminated biological waste and a serious environmental threat. For this reason, during the current pandemic, many researchers have worked to develop face masks made of advanced materials with intrinsic antimicrobial, self-cleaning, reusable, and/or biodegradable properties, thereby providing extra protection against pathogens in a sustainable manner. To overview this segment of the remarkable efforts against COVID-19, this review describes the different types of commercialized face masks, their main fabrication methods and treatments, and the progress achieved in face mask development.
Collapse
Affiliation(s)
- Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Elrashdy M Redwan
- Faculty of Science, Department of Biological Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Valencia, Spain
| |
Collapse
|
11
|
Bioeconomy during the COVID-19 and perspectives for the post-pandemic world: Example from EU. EFB BIOECONOMY JOURNAL 2021. [PMCID: PMC8683579 DOI: 10.1016/j.bioeco.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Ghasemzad M, Hashemian SMR, Memarnejadian A, Akbarzadeh I, Hossein-Khannazer N, Vosough M. The nano-based theranostics for respiratory complications of COVID-19. Drug Dev Ind Pharm 2021; 47:1353-1361. [PMID: 34666567 DOI: 10.1080/03639045.2021.1994989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Collapse
Affiliation(s)
- Mahsa Ghasemzad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Basic Sciences and Advanced Technologies in biology, Department of Molecular Cell Biology-Genetics, University of Science and Culture, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
14
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|
15
|
Gharpure S, Ankamwar B. Use of nanotechnology in combating coronavirus. 3 Biotech 2021; 11:358. [PMID: 34221822 PMCID: PMC8238387 DOI: 10.1007/s13205-021-02905-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/19/2021] [Indexed: 10/25/2022] Open
Abstract
Recent COVID-19 pandemic situation caused due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affected global health as well as economics. There is global attention on prevention, diagnosis as well as treatment of COVID-19 infection which would help in easing the current situation. The use of nanotechnology and nanomedicine has been considered to be promising due to its excellent potential in managing various medical issues such as viruses which is a major threat. Nanoparticles have shown great potential in various biomedical applications and can prove to be of great use in antiviral therapy, especially over other conventional antiviral agents. This review focusses on the pathophysiology of SARS-CoV-2 and the progression of the COVID-19 disease followed by currently available treatments for the same. Use of nanotechnology has been elaborated by exploiting various nanoparticles like metal and metal oxide nanoparticles, carbon-based nanoparticles, quantum dots, polymeric nanoparticles as well as lipid-based nanoparticles along with its mechanism of action against viruses which can prove to be beneficial in COVID-19 therapeutics. However, it needs to be considered that use of these nanotechnology-based approaches in COVID-19 therapeutics only aids the human immunity in fighting the infection. The main function is performed by the immune system in combatting any infection.
Collapse
Affiliation(s)
- Saee Gharpure
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| | - Balaprasad Ankamwar
- Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune, 411007 India
| |
Collapse
|
16
|
Sadique MA, Yadav S, Ranjan P, Verma S, Salammal ST, Khan MA, Kaushik A, Khan R. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B 2021; 9:4620-4642. [PMID: 34027540 DOI: 10.1039/d1tb00472g] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively. However, their projection with potential sustainable prospects still requires considerable attention and efforts. With this aim, the presented review highlights various severe life-threatening viral infections and the role of multi-functional anti-viral nanostructures with manipulative properties investigated as an efficient precative shielding agent against viral infection progression. The salient features of such various nanostructures, antiviral mechanisms, and high impact multi-dimensional roles are systematically discussed in this review. Additionally, the challenges associated with the projection of alternative approaches also support the demand and significance of this selected scientific topic. The outcomes of this review will certainly be useful to motivate scholars of various expertise who are planning future research in the field of investigating sustainable and affordable high-performance nano-systems of desired antiviral performance to manage not only COVID-19 infection but other targeted viral infections as well.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
| | - Shalu Yadav
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarika Verma
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shabi Thankaraj Salammal
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Akram Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Raju Khan
- Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Ramaiah GB, Tegegne A, Melese B. Functionality of nanomaterials and its technological aspects - Used in preventing, diagnosing and treating COVID-19. MATERIALS TODAY. PROCEEDINGS 2021; 47:2337-2344. [PMID: 33968611 PMCID: PMC8096196 DOI: 10.1016/j.matpr.2021.04.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
COVID-19 (Coronavirus) has severely affected the life of human beings since December 2019. Many difficulties are faced by human beings to prevent the spread of the corona virus. However, this unexpected evolution of COVID-19 has also thrown many challenges to scientists and researchers so as to develop technologies that can be used to combat COVID-19. In the effort to combat COVID-19, many research universities and academic laboratories are also contributing by developing many technologies like Facing masks, hand sanitizers, hand washing machines, etc., to control and prevent the spread of COVID-19 disease. The use of Nano-materials is proving to be very effective in prevention, detection and diagnosis of COVID-19. In this paper many such technologies that are used to combat COVID-19 are also discussed. Some of the technologies like the germ trap technology used in face masks and hoods are also discussed. The use of nano-coatings, nano materials like graphene and carbon nano materials is playing a key role in preventing the spread of the virus. Antimicrobial nano-materials like silver nanoparticles are also effectively contributing to preventing the spread of the virus. Nano bio-sensors and gold nanoparticles are used in RT-PCR (Reverse transcription polymerase chain reaction) testing devices which are used for detection of coronavirus. The use of many nano chemicals and compounds has helped in making vaccines and anti-viral drugs that are today showing a way to safeguard human beings against the attack of this deadly virus.
Collapse
Affiliation(s)
| | - Asmamaw Tegegne
- Ethiopian Technical University (Federal TVET Institute), Addis Ababa, Ethiopia
| | - Bahiru Melese
- Ethiopian Technical University (Federal TVET Institute), Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Varahachalam SP, Lahooti B, Chamaneh M, Bagchi S, Chhibber T, Morris K, Bolanos JF, Kim NY, Kaushik A. Nanomedicine for the SARS-CoV-2: State-of-the-Art and Future Prospects. Int J Nanomedicine 2021; 16:539-560. [PMID: 33519200 PMCID: PMC7837559 DOI: 10.2147/ijn.s283686] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 01/08/2023] Open
Abstract
The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for site-specific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-the-art nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sree Pooja Varahachalam
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Masoumeh Chamaneh
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center (TTUHSC), Amarillo, TX79106, USA
| | - Kevin Morris
- Maharashtra University of Health Sciences (MUHS), Nashik, Maharashtra422004, India
| | - Joe F Bolanos
- Facultad De Ciencias De La Salud “Dr.Luis Edmundo Vasquez” Santa Tecla, Universidad Dr. Jose Matias Delgado, Cd Merliot, El Salvador
| | - Nam-Young Kim
- RFIC Bio Center, Department of Electronics Engineering, Kwangwoon University, Seoul01897, South Korea
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, and Mathematics, Florida Polytechnic University, Lakeland, FL3385, USA
| |
Collapse
|