1
|
Saoud H, Kereselidze E, Eybrard S, Louilot A. MK-801-induced behavioral and dopaminergic responses in the shell part of the nucleus accumbens in adult male rats are disrupted after neonatal blockade of the ventral subiculum. Neurochem Int 2021; 150:105195. [PMID: 34582961 DOI: 10.1016/j.neuint.2021.105195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022]
Abstract
The present study was conducted in the context of animal modeling of schizophrenia. It investigated in adult male rats, after transient neonatal blockade of the ventral subiculum (VSub), the impact of a very specific non-competitive antagonist of NMDA receptors (MK-801) on locomotor activity and dopaminergic (DAergic) responses in the dorsomedial shell part of the nucleus accumbens (Nacc), a striatal subregion described as the common target region for antipsychotics. The functional neonatal inactivation of the VSub was achieved by local microinjection of tetrodotoxin (TTX) at postnatal day 8 (PND8). Control pups were microinjected with the solvent phosphate buffered saline (PBS). Locomotor responses and DAergic variations in the dorsomedial shell part of the Nacc were measured simultaneously using in vivo voltammetry in awake, freely moving male animals after sc administration of MK-801. The following results were obtained: 1) a dose-dependent increase in locomotor activity in PBS and TTX animals, greater in TTX rats/PBS rats; and 2) divergent DAergic responses for PBS and TTX animals. A decrease in DA levels with a return to around basal values was observed in PBS animals. An increase in DA levels was obtained in TTX animals. The present data suggest that neonatal blockade of the VSub results in disruption in NMDA glutamatergic transmission, causing a disturbance in DA release in the dorsomedial shell in adults male rats. In the context of animal modeling of schizophrenia using the same approach it would be interesting to investigate possible changes in postsynaptic NMDA receptors-related proteins in the dorsomedial shell region in the Nacc.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Elora Kereselidze
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
2
|
Sotiropoulos MG, Poulogiannopoulou E, Delis F, Dalla C, Antoniou K, Kokras N. Innovative screening models for the discovery of new schizophrenia drug therapies: an integrated approach. Expert Opin Drug Discov 2021; 16:791-806. [PMID: 33467920 DOI: 10.1080/17460441.2021.1877657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Schizophrenia is a severe psychiatric disorder affecting millions worldwide. However, available treatment options do not fully address the disease. Whereas current antipsychotics may control psychotic symptoms, they seem notoriously ineffective in improving negative and cognitive symptoms or in preventing functional decline. As the etiology of schizophrenia eludes us, the development of valid animal models for screening new drug targets appears to be a strenuous task.Areas covered: In this review, the authors present the key concepts that validate animal models of schizophrenia, as well as the different screening approaches for novel schizophrenia treatments. The models covered are either based on major neurotransmitter systems or neurodevelopmental, immune, and genetic approaches.Expert opinion: Sadly, due to inertia, research focuses on developing 'anti-psychotics', instead of 'anti-schizophrenia' drugs that would tackle the entire syndrome of schizophrenia. Whereas no perfect model may ever exist, combining different experimental designs may enhance validity, as the over-reliance on a single model is inappropriate. Multi-model approaches incorporating vulnerability, the 'two-hit' hypothesis, and endophenotypes offer a promise for developing new strategies for schizophrenia treatment. Forward and reverse translation between preclinical and clinical research will increase the probability of success and limit failures in drug development.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Saoud H, De Beus D, Eybrard S, Louilot A. Postnatal functional inactivation of the ventral subiculum enhances dopaminergic responses in the core part of the nucleus accumbens following ketamine injection in adult rats. Neurochem Int 2020; 137:104736. [PMID: 32283120 DOI: 10.1016/j.neuint.2020.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
For almost two decades schizophrenia has been considered to be a functional disconnection disorder. This functional disconnectivity between several brain regions could have a neurodevelopmental origin. Various approaches suggest the ventral subiculum (SUB) is a particular target region for neurodevelopemental disturbances in schizophrenia. It is also commonly acknowledged that there is a striatal dopaminergic (DA) dysregulation in schizophrenia which may depend on a subiculo-striatal disconnection involving glutamatergic NMDA receptors. The present study was designed to investigate, in adult rats, the effects of the non-competitive NMDA receptor antagonist ketamine on DA responses in the ventral striatum, or, more specifically, the core part of the nucleus accumbens (Nacc), following postnatal functional inactivation of the SUB. Functional inactivation of the left SUB was carried out by local tetrodotoxin (TTX) microinjection at postnatal day 8 (PND8), i.e. at a critical point in the neurodevelopmental period. DA variations were recorded using in vivo voltammetry in freely moving adult rats (11 weeks). Locomotor activity was recorded simultaneously with the extracellular levels of DA in the core part of the Nacc. Data obtained during the present study showed that after administration of ketamine, the two indexes were higher in TTX animals than PBS animals, the suggestion being that animals microinjected with TTX in the left SUB at PND8 present greater reactivity to ketamine than animals microinjected with PBS. These findings could provide new information regarding the involvement of NMDA glutamatergic receptors in the core part of the Nacc in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hana Saoud
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Duco De Beus
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Séverine Eybrard
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France
| | - Alain Louilot
- University of Strasbourg, INSERM U 1114, Faculty of Medicine, FMTS, Strasbourg, France.
| |
Collapse
|
4
|
Braunscheidel KM, Gass JT, Mulholland PJ, Floresco SB, Woodward JJ. Persistent cognitive and morphological alterations induced by repeated exposure of adolescent rats to the abused inhalant toluene. Neurobiol Learn Mem 2017; 144:136-146. [PMID: 28720405 PMCID: PMC5583007 DOI: 10.1016/j.nlm.2017.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Abstract
While thepsychoactive inhalant toluene causes behavioral effects similarto those produced by other drugs of abuse, the persistent behavioral and anatomical abnormalities induced by toluene exposure are not well known. To mimic human "binge-like" inhalant intoxication, adolescent, male Sprague-Dawley rats were exposed to toluene vapor (5700ppm) twice daily for five consecutive days. These rats remained in their home cages until adulthood (P60), when they were trained in operant boxes to respond to a palatable food reward and then challenged with several different cognitive tasks. Rats that experienced chronic exposure to toluene plus abstinence ("CTA") showed enhanced performance in a strategy set-shifting task using a between-session, but not a within-session test design. CTA also blunted operant and classical conditioning without affecting responding during a progressive ratio task. While CTA rats displayed normal latent inhibition, previous exposure to a non-reinforced cue enhanced extinction of classically conditioned approach behavior of these animals compared to air controls. To determine whether CTA alters the structural plasticity of brain areas involved in set-shifting and appetitive behaviors, we quantified basal dendritic spine morphology in DiI-labeled pyramidal neurons in layer 5 of the medial prefrontal cortex (mPFC) and medium spiny neurons in the nucleus accumbens (NAc). There were no changes in dendritic spine density or subtype in the mPFC of CTA rats while NAc spine density was significantly increased due to an enhanced prevalence of long-thin spines. Together, these findings suggest that the persistent effects of CTA on cognition are related to learning and memory consolidation/recall, but not mPFC-dependent behavioral flexibility.
Collapse
Affiliation(s)
- K M Braunscheidel
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - J T Gass
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, USA
| | - P J Mulholland
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, USA
| | - S B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada
| | - J J Woodward
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Giersch A, Mishara AL. Is Schizophrenia a Disorder of Consciousness? Experimental and Phenomenological Support for Anomalous Unconscious Processing. Front Psychol 2017; 8:1659. [PMID: 29033868 PMCID: PMC5625017 DOI: 10.3389/fpsyg.2017.01659] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Decades ago, several authors have proposed that disorders in automatic processing lead to intrusive symptoms or abnormal contents in the consciousness of people with schizophrenia. However, since then, studies have mainly highlighted difficulties in patients' conscious experiencing and processing but rarely explored how unconscious and conscious mechanisms may interact in producing this experience. We report three lines of research, focusing on the processing of spatial frequencies, unpleasant information, and time-event structure that suggest that impairments occur at both the unconscious and conscious level. We argue that focusing on unconscious, physiological and automatic processing of information in patients, while contrasting that processing with conscious processing, is a first required step before understanding how distortions or other impairments emerge at the conscious level. We then indicate that the phenomenological tradition of psychiatry supports a similar claim and provides a theoretical framework helping to understand the relationship between the impairments and clinical symptoms. We base our argument on the presence of disorders in the minimal self in patients with schizophrenia. The minimal self is tacit and non-verbal and refers to the sense of bodily presence. We argue this sense is shaped by unconscious processes, whose alteration may thus affect the feeling of being a unique individual. This justifies a focus on unconscious mechanisms and a distinction from those associated with consciousness.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U1114, Pôle de Psychiatrie, Fédération de Médecine Translationnelle de Strasbourg, Centre Hospitalier Régional Universitaire of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aaron L. Mishara
- Department of Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, CA, United States
| |
Collapse
|
6
|
Tcf4 transgenic female mice display delayed adaptation in an auditory latent inhibition paradigm. Eur Arch Psychiatry Clin Neurosci 2016; 266:505-12. [PMID: 26404636 DOI: 10.1007/s00406-015-0643-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder affecting about 1 % of the human population. Patients show severe deficits in cognitive processing often characterized by an improper filtering of environmental stimuli. Independent genome-wide association studies confirmed a number of risk variants for SZ including several associated with the gene encoding the transcription factor 4 (TCF4). TCF4 is widely expressed in the central nervous system of mice and humans and seems to be important for brain development. Transgenic mice overexpressing murine Tcf4 (Tcf4tg) in the adult brain display cognitive impairments and sensorimotor gating disturbances. To address the question of whether increased Tcf4 gene dosage may affect cognitive flexibility in an auditory associative task, we tested latent inhibition (LI) in female Tcf4tg mice. LI is a widely accepted translational endophenotype of SZ and results from a maladaptive delay in switching a response to a previously unconditioned stimulus when this becomes conditioned. Using an Audiobox, we pre-exposed Tcf4tg mice and their wild-type littermates to either a 3- or a 12-kHz tone before conditioning them to a 12-kHz tone. Tcf4tg animals pre-exposed to a 12-kHz tone showed significantly delayed conditioning when the previously unconditioned tone became associated with an air puff. These results support findings that associate TCF4 dysfunction with cognitive inflexibility and improper filtering of sensory stimuli observed in SZ patients.
Collapse
|
7
|
Gong Q, Dazzan P, Scarpazza C, Kasai K, Hu X, Marques TR, Iwashiro N, Huang X, Murray RM, Koike S, David AS, Yamasue H, Lui S, Mechelli A. A Neuroanatomical Signature for Schizophrenia Across Different Ethnic Groups. Schizophr Bull 2015; 41:1266-75. [PMID: 26264820 PMCID: PMC4601715 DOI: 10.1093/schbul/sbv109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a disabling clinical syndrome found across the world. While the incidence and clinical expression of this illness are strongly influenced by ethnic factors, it is unclear whether patients from different ethnicities show distinct brain deficits. In this multicentre study, we used structural Magnetic Resonance Imaging to investigate neuroanatomy in 126 patients with first episode schizophrenia who came from 4 ethnically distinct cohorts (White Caucasians, African-Caribbeans, Japanese, and Chinese). Each patient was individually matched with a healthy control of the same ethnicity, gender, and age (±1 year). We report a reduction in the gray matter volume of the right anterior insula in patients relative to controls (P < .05 corrected); this reduction was detected in all 4 ethnic groups despite differences in psychopathology, exposure to antipsychotic medication and image acquisition sequence. This finding provides evidence for a neuroanatomical signature of schizophrenia expressed above and beyond ethnic variations in incidence and clinical expression. In light of the existing literature, implicating the right anterior insula in bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety, we speculate that the neuroanatomical deficit reported here may represent a transdiagnostic feature of Axis I disorders.
Collapse
Affiliation(s)
- Qiyong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China;,These authors contributed equally to the article
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK;,These authors contributed equally to the article
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Kyioto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xinyu Hu
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Tiago R. Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;,MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Anthony S. David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK;
| |
Collapse
|
8
|
Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults. Brain Struct Funct 2014; 221:103-14. [PMID: 25319752 PMCID: PMC4667398 DOI: 10.1007/s00429-014-0895-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 09/19/2014] [Indexed: 01/09/2023]
Abstract
Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder.
Collapse
|