1
|
Yi H, Zhang M, Miao J, Mu L, Hu C. Potential mechanisms of Shenmai injection against POCD based on network pharmacology and molecular docking. Int J Neurosci 2024; 134:931-942. [PMID: 36604848 DOI: 10.1080/00207454.2023.2165922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND As the population ages, the number of patients with postoperative cognitive dysfunction increases. This study aims to investigate the mechanisms of Shenmai injection as a therapeutic strategy for postoperative cognitive dysfunction using a network pharmacology approach. METHODS Shenmai injection and its targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Postoperative cognitive dysfunction-associated protein targets were identified using the GeneCards and DisGeNET databases. Subsequently, a protein-protein interaction network was constructed using the String database. For treating postoperative cognitive dysfunction, the core targets of Shenmai injection were identified through topological analysis, followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses performed for annotation. Molecular docking was performed on the screened core targets and components. RESULTS One hundred and eighty-two related targets of Shenmai injection in treating postoperative cognitive dysfunction were identified. Eleven active ingredients in Shenmai injection were detected to have a close connection with postoperative cognitive dysfunction-related targets. Additionally, Gene Ontology analysis revealed 10 biological processes, 10 cellular components and 10 molecular functions. The Kyoto Encyclopedia of Genes and Genomes analysis identified 20 signaling pathways. The docking results indicated five active ingredients from Shenmai injection can fit in the binding pockets of all three candidate targets. CONCLUSIONS Thus, the present work systematically explored the anti-postoperative cognitive dysfunction mechanism of potential targets and signaling pathways of Shenmai injection. These results provide an important reference for subsequent basic research on postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Honggang Yi
- Department of Urology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Mengdie Zhang
- Department of Neurolog, Zhuji People's Hospital, Shaoxing, Zhejiang, China
| | - Jiang Miao
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Lvfan Mu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Congli Hu
- Department of Pharmacy, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Finesso G, Willis E, Tarrant JC, Lanza M, Sprengers J, Verrelle J, Banerjee E, Hermans E, Assenmacher CA, Radaelli E. Spontaneous early-onset neurodegeneration in the brainstem and spinal cord of NSG, NOG, and NXG mice. Vet Pathol 2023; 60:374-383. [PMID: 36727841 PMCID: PMC10150263 DOI: 10.1177/03009858231151403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spectrum of background, incidental, and experimentally induced lesions affecting NSG and NOG mice has been the subject of intense investigation. However, comprehensive studies focusing on the spontaneous neuropathological changes of these immunocompromised strains are lacking. This work describes the development of spontaneous early-onset neurodegeneration affecting both juvenile and adult NSG, NOG, and NXG mice. The study cohort consisted of 367 NSG mice of both sexes (including 33 NSG-SGM3), 61 NOG females (including 31 NOG-EXL), and 4 NXG females. These animals were primarily used for preclinical CAR T-cell testing, generation of humanized immune system chimeras, and/or tumor xenograft transplantation. Histopathology of brain and spinal cord and immunohistochemistry (IHC) for AIF-1, GFAP, CD34, and CD45 were performed. Neurodegenerative changes were observed in 57.6% of the examined mice (affected mice age range was 6-36 weeks). The lesions were characterized by foci of vacuolation with neuronal degeneration/death and gliosis distributed throughout the brainstem and spinal cord. IHC confirmed the development of gliosis, overexpression of CD34, and a neuroinflammatory component comprised of CD45-positive monocyte-derived macrophages. Lesions were significantly more frequent and severe in NOG mice. NSG males were considerably more affected than NSG females. Increased lesion frequency and severity in older animals were also identified. These findings suggest that NSG, NOG, and NXG mice are predisposed to the early development of identical neurodegenerative changes. While the cause of these lesions is currently unclear, potential associations with the genetic mutations shared by NSG, NOG, and NXG mice as well as unidentified viral infections are considered.
Collapse
Affiliation(s)
- Giovanni Finesso
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| | - Elinor Willis
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| | | | | | | | - Jillian Verrelle
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| | - Esha Banerjee
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| | - Els Hermans
- Netherlands Cancer Institute,
Amsterdam, The Netherlands
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| | - Enrico Radaelli
- Comparative Pathology Core, Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania,
Philadelphia, PA, USA
| |
Collapse
|
3
|
Identification of Peripheral Blood miRNA Biomarkers in First-Episode Drug-Free Schizophrenia Patients Using Bioinformatics Strategy. Mol Neurobiol 2022; 59:4730-4746. [DOI: 10.1007/s12035-022-02878-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
|
4
|
Cognitive Deficit in Schizophrenia: From Etiology to Novel Treatments. Int J Mol Sci 2021; 22:ijms22189905. [PMID: 34576069 PMCID: PMC8468549 DOI: 10.3390/ijms22189905] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023] Open
Abstract
Schizophrenia is a major mental illness characterized by positive and negative symptoms, and by cognitive deficit. Although cognitive impairment is disabling for patients, it has been largely neglected in the treatment of schizophrenia. There are several reasons for this lack of treatments for cognitive deficit, but the complexity of its etiology-in which neuroanatomic, biochemical and genetic factors concur-has contributed to the lack of effective treatments. In the last few years, there have been several attempts to develop novel drugs for the treatment of cognitive impairment in schizophrenia. Despite these efforts, little progress has been made. The latest findings point to the importance of developing personalized treatments for schizophrenia which enhance neuroplasticity, and of combining pharmacological treatments with non-pharmacological measures.
Collapse
|
5
|
Chang CY, Luo DZ, Pei JC, Kuo MC, Hsieh YC, Lai WS. Not Just a Bystander: The Emerging Role of Astrocytes and Research Tools in Studying Cognitive Dysfunctions in Schizophrenia. Int J Mol Sci 2021; 22:ijms22105343. [PMID: 34069523 PMCID: PMC8160762 DOI: 10.3390/ijms22105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cognitive dysfunction is one of the core symptoms in schizophrenia, and it is predictive of functional outcomes and therefore useful for treatment targets. Rather than improving cognitive deficits, currently available antipsychotics mainly focus on positive symptoms, targeting dopaminergic/serotoninergic neurons and receptors in the brain. Apart from investigating the neural mechanisms underlying schizophrenia, emerging evidence indicates the importance of glial cells in brain structure development and their involvement in cognitive functions. Although the etiopathology of astrocytes in schizophrenia remains unclear, accumulated evidence reveals that alterations in gene expression and astrocyte products have been reported in schizophrenic patients. To further investigate the role of astrocytes in schizophrenia, we highlighted recent progress in the investigation of the effect of astrocytes on abnormalities in glutamate transmission and impairments in the blood–brain barrier. Recent advances in animal models and behavioral methods were introduced to examine schizophrenia-related cognitive deficits and negative symptoms. We also highlighted several experimental tools that further elucidate the role of astrocytes. Instead of focusing on schizophrenia as a neuron-specific disorder, an additional astrocytic perspective provides novel and promising insight into its causal mechanisms and treatment. The involvement of astrocytes in the pathogenesis of schizophrenia and other brain disorders is worth further investigation.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Ming-Che Kuo
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Department of Neurology, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Yi-Chen Hsieh
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei 10617, Taiwan; (C.-Y.C.); (D.-Z.L.); (J.-C.P.); (Y.-C.H.)
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3112; Fax: +886-2-3362-9909
| |
Collapse
|
6
|
Palumbo S, Paterson C, Yang F, Hood VL, Law AJ. PKBβ/AKT2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol Psychiatry 2021; 26:411-428. [PMID: 33328589 PMCID: PMC7854513 DOI: 10.1038/s41380-020-00964-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase v-AKT homologs (AKTs), are implicated in typical and atypical neurodevelopment. Akt isoforms Akt1, Akt2, and Akt3 have been extensively studied outside the brain where their actions have been found to be complementary, non-overlapping and often divergent. While the neurological functions of Akt1 and Akt3 isoforms have been investigated, the role for Akt2 remains underinvestigated. Neurobehavioral, electrophysiological, morphological and biochemical assessment of Akt2 heterozygous and knockout genetic deletion in mouse, reveals a novel role for Akt2 in axonal development, dendritic patterning and cell-intrinsic and neural circuit physiology of the hippocampus and prefrontal cortex. Akt2 loss-of-function increased anxiety-like phenotypes, impaired fear conditioned learning, social behaviors and discrimination memory. Reduced sensitivity to amphetamine was observed, supporting a role for Akt2 in regulating dopaminergic tone. Biochemical analyses revealed dysregulated brain mTOR and GSK3β signaling, consistent with observed learning and memory impairments. Rescue of cognitive impairments was achieved through pharmacological enhancement of PI3K/AKT signaling and PIK3CD inhibition. Together these data highlight a novel role for Akt2 in neurodevelopment, learning and memory and show that Akt2 is a critical and non-redundant regulator of mTOR activity in brain.
Collapse
Affiliation(s)
- Sara Palumbo
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy (current)
| | - Clare Paterson
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Feng Yang
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Division of Neurodegenerative Diseases and Translational Sciences Tiantan Hospital & Advanced Innovation Center for Human Brain Protection. Capital Medical University, Beijing, China (current)
| | - Veronica L. Hood
- Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045
| | - Amanda J. Law
- Clinical Brain Disorders Branch, National Institute of Mental Health, National Institutes of Health Intramural Program, Bethesda MD 20892.,Department of Psychiatry, University of Colorado, School of Medicine. Aurora, CO 80045.,To whom correspondence should be addressed:
| |
Collapse
|
7
|
Lithium for schizophrenia: supporting evidence from a 12-year, nationwide health insurance database and from Akt1-deficient mouse and cellular models. Sci Rep 2020; 10:647. [PMID: 31959776 PMCID: PMC6971245 DOI: 10.1038/s41598-019-57340-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests AKT1 and DRD2-AKT-GSK3 signaling involvement in schizophrenia. AKT1 activity is also required for lithium, a GSK3 inhibitor, to modulate mood-related behaviors. Notably, GSK3 inhibitor significantly alleviates behavioral deficits in Akt1−/− female mice, whereas typical/atypical antipsychotics have no effect. In agreement with adjunctive therapy with lithium in treating schizophrenia, our data mining indicated that the average utilization rates of lithium in the Taiwan National Health Insurance Research Database from 2002 to 2013 are 10.9% and 6.63% in inpatients and outpatients with schizophrenia, respectively. Given that lithium is commonly used in clinical practice, it is of great interest to evaluate the effect of lithium on alleviating Akt1-related deficits. Taking advantage of Akt1+/− mice to mimic genetic deficiency in patients, behavioral impairments were replicated in female Akt1+/− mice but were alleviated by subchronic lithium treatment for 13 days. Lithium also effectively alleviated the observed reduction in phosphorylated GSK3α/β expression in the brains of Akt1+/− mice. Furthermore, inhibition of Akt expression using an Akt1/2 inhibitor significantly reduced neurite length in P19 cells and primary hippocampal cell cultures, which was also ameliorated by lithium. Collectively, our findings implied the therapeutic potential of lithium and the importance of the AKT1-GSK3 signaling pathway.
Collapse
|
8
|
Pei JC, Hung WL, Lin BX, Shih MH, Lu LY, Luo DZ, Tai HC, Studer V, Min MY, Lai WS. Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. J Psychopharmacol 2019; 33:1288-1302. [PMID: 31294644 DOI: 10.1177/0269881119856558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Compelling animal and clinical studies support the N-methyl-D-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia and suggest promising pharmacological agents to ameliorate negative and cognitive symptoms of schizophrenia, including sarcosine, a glycine transporter-1 inhibitor. AIMS AND METHODS It is imperative to evaluate the therapeutic potential of sarcosine in animal models, which provide indispensable tools for testing drug effects in detail and elucidating the underlying mechanisms. In this study, a series of seven experiments was conducted to investigate the effect of sarcosine in ameliorating behavioral deficits and the underlying mechanism in pharmacological (i.e., MK-801-induced) and genetic (i.e., serine racemase-null mutant (SR-/-) mice) NMDAR hypofunction models. RESULTS In Experiment 1, the acute administration of 500/1000 mg/kg sarcosine (i.p.) had no adverse effects on motor function and serum biochemical responses. In Experiments 2-4, sarcosine significantly alleviated MK-801-induced (0.2 mg/kg) brain abnormalities and behavioral deficits in MK-801-induced and SR-/- mouse models. In Experiment 5, the injection of sarcosine enhanced CSF levels of glycine and serine in rat brain. In Experiments 6-7, we show for the first time that sarcosine facilitated NMDAR-mediated hippocampal field excitatory postsynaptic potentials and influenced the movement of surface NMDARs at extrasynaptic sites. CONCLUSIONS Sarcosine effectively regulated the surface trafficking of NMDARs, NMDAR-evoked electrophysiological activity, brain glycine levels and MK-801-induced abnormalities in the brain, which contributed to the amelioration of behavioral deficits in mouse models of NMDAR hypofunction.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hung
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Bei-Xuan Lin
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Min-Han Shih
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Liang-Yin Lu
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Da-Zhong Luo
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Vincent Studer
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France.,French National Center for Scientific Research (CNRS), Bordeaux, France
| | - Ming-Yuan Min
- Institute of Zoology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Waddington JL, O'Tuathaigh CM. Modelling the neuromotor abnormalities of psychotic illness: Putative mechanisms and systems dysfunction. Schizophr Res 2018; 200:12-19. [PMID: 28867516 DOI: 10.1016/j.schres.2017.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022]
Abstract
Limitations in access to antipsychotic-naïve patients and in the incisiveness of studies that can be conducted on them, together with the inevitability of subsequent antipsychotic treatment, indicate an enduring role for animal models that can inform on the pathobiology of neuromotor abnormalities in schizophrenia and related psychotic illness. This review focusses particularly on genetically modified mouse models that involve genes associated with risk for schizophrenia and with mechanisms implicated in the neuromotor abnormalities evident in psychotic patients, as well as developmental models that seek to mirror the trajectory, phenomenology and putative pathophysiology of psychotic illness. Such abnormalities are inconsistent and subtle in mice mutant for some schizophrenia risk genes but more evident for others. The phenotype of dopaminergic and glutamatergic mutants indicates the involvement of these mechanisms, informs on the roles of specific receptor subtypes, and implicates the interplay of cortical and subcortical processes. Developmental models suggest a criticality in the timing of early adversity for diversity in the relative emergence of psychological symptoms vis-à-vis neuromotor abnormalities in the overall psychosis phenotype. These findings elaborate current concepts of dysfunction in a neuronal network linking the cerebral cortex, basal ganglia, thalamus and cerebellum. Both findings in model systems and clinical evidence converge in indicating that any distinction between 'psychomotor' and 'neuromotor' abnormality is artificial and arbitrary due to a unitary origin in developmentally determined systems/network dysfunction that underlies the lifetime trajectory of psychotic illness.
Collapse
Affiliation(s)
- John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | | |
Collapse
|
11
|
Sungur AÖ, Stemmler L, Wöhr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci 2018. [PMID: 29515378 PMCID: PMC5825895 DOI: 10.3389/fnbeh.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition.
Collapse
Affiliation(s)
- A Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Lea Stemmler
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany.,DFG Research Training Group-Membrane Plasticity in Tissue Development and Remodeling, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
12
|
Liu L, Luo Y, Zhang G, Jin C, Zhou Z, Cheng Z, Yuan G. Correlation of DRD2 mRNA expression levels with deficit syndrome severity in chronic schizophrenia patients receiving clozapine treatment. Oncotarget 2017; 8:86515-86526. [PMID: 29156812 PMCID: PMC5689702 DOI: 10.18632/oncotarget.21230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a complex, severe, chronic psychiatric disorder, and the associated deficit syndrome is widely regarded as an important clinical aspect of schizophrenia. This study analyzed the relationship of deficit syndrome severity with the mRNA levels of members of signaling pathways that associate with the pathophysiology of schizophrenia, including the dopamine D2 receptor (DRD2), protein kinase B (AKT1), and phosphoinositide-3 kinase (PI3KCB), in peripheral blood leukocytes (PBLs) of 20 healthy controls and 19 chronic schizophrenia patients with long-term clozapine treatment. The DRD2 expression levels in chronic schizophrenia group were statistically higher than those in controls (t=2.168, p=0.037). Moreover, in chronic schizophrenia group, correlations were observed between the expression levels of DRD2 and PI3KCB (r=0.771, p<0.001), DRD2 and AKT1 (r=0.592, p=0.008), and PI3KCB and AKT1 (r=0.562, p=0.012) and between the DRD2 mRNA levels and the Proxy for the Deficit Syndrome score (r=0.511, p=0.025). In control group, the correlation between PI3KCB expression levels and DRD2 expression levels was only observed (r=0.782, p<0.001). In conclusion, a correlation was observed between increased deficit syndrome severity and elevated expression levels of DRD2 in PBLs of chronic schizophrenia patients receiving long-term clozapine treatment.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Yin Luo
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Guofu Zhang
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Chunhui Jin
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zhenhe Zhou
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Zaohuo Cheng
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| | - Guozhen Yuan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
- Wuxi Tongren International Rehabilitation Hospital, Nanjing Medical University, Wuxi, China
| |
Collapse
|
13
|
BACE1-Deficient Mice Exhibit Alterations in Immune System Pathways. Mol Neurobiol 2016; 55:709-717. [PMID: 28004339 DOI: 10.1007/s12035-016-0341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/09/2023]
Abstract
BACE1 encodes for the beta-site amyloid precursor protein cleaving enzyme 1 or β-secretase. Genetic deletion of Bace1 leads to behavioral alterations and affects midbrain dopaminergic signaling and memory processes. In order to further understand the role of BACE1 in brain function and behavior, we performed microarray transcriptome profiling and gene pathway analysis in the hippocampus of BACE1-deficient mice compared to wild type. We identified a total of 91 differentially expressed genes (DEGs), mostly enriched in pathways related to the immune and inflammation systems, particularly IL-9 and NF-κB activation pathways. Serum levels of IL-9 were elevated in BACE1-deficient mice. Our network analysis supports an intimate connection between immune response via NF-κB and BACE1 signaling through the NRG1/Akt1 pathway. Our findings warrant future mechanistic studies to determine if BACE1 signaling and the IL-9 pathway interact to alter behavior and brain function. This study opens new avenues in the investigation of hippocampus-related neuroimmunological and neuroinflammation-associated disorders.
Collapse
|
14
|
Altered cytokine profile, pain sensitivity, and stress responsivity in mice with co-disruption of the developmental genes Neuregulin-1×DISC1. Behav Brain Res 2016; 320:113-118. [PMID: 27916686 DOI: 10.1016/j.bbr.2016.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The complex genetic origins of many human disorders suggest that epistatic (gene×gene) interactions may contribute to a significant proportion of their heritability estimates and phenotypic heterogeneity. Simultaneous disruption of the developmental genes and schizophrenia risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) in mice has been shown to produce disease-relevant and domain-specific phenotypic profiles different from that observed following disruption of either gene alone. In the current study, anxiety and stress responsivity phenotypes in male and female mutant mice with simultaneous disruption of DISC1 and NRG1 were examined. NRG1×DISC1 mutant mice were generated and adult mice from each genotype were assessed for pain sensitivity (hot plate and tail flick tests), anxiety (light-dark box), and stress-induced hypothermia. Serum samples were assayed to measure circulating levels of pro-inflammatory cytokines. Mice with the NRG1 mutation, irrespective of DISC1 mutation, spent significantly more time in the light chamber, displayed increased core body temperature following acute stress, and decreased pain sensitivity. Basal serum levels of cytokines IL8, IL1β and IL10 were decreased in NRG1 mutants. Mutation of DISC1, in the absence of epistatic interaction with NRG1, was associated with increased serum levels of IL1β. Epistatic effects were evident for IL6, IL12 and TNFα. NRG1 mutation alters stress and pain responsivity, anxiety, and is associated with changes in basal cytokine levels. Epistasis resulting from synergistic NRG1 and DISC1 gene mutations altered pro-inflammatory cytokine levels relative to the effects of each of these genes individually, highlighting the importance of epistatic mechanisms in immune-related pathology.
Collapse
|
15
|
Chang CY, Chen YW, Wang TW, Lai WS. Akting up in the GABA hypothesis of schizophrenia: Akt1 deficiency modulates GABAergic functions and hippocampus-dependent functions. Sci Rep 2016; 6:33095. [PMID: 27615800 PMCID: PMC5018883 DOI: 10.1038/srep33095] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/19/2016] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence implies that both AKT1 and GABAA receptor (GABAAR) subunit genes are involved in schizophrenia pathogenesis. Activated Akt promotes GABAergic neuron differentiation and increases GABAAR expression on the plasma membrane. To elucidate the role of Akt1 in modulating GABAergic functions and schizophrenia-related cognitive deficits, a set of 6 in vitro and in vivo experiments was conducted. First, an Akt1/2 inhibitor was applied to evaluate its effect on GABAergic neuron-like cell formation from P19 cells. Inhibiting Akt resulted in a reduction in parvalbumin-positive neuron-like cells. In Akt1−/− and wild-type mice, seizures induced using pentylenetetrazol (a GABAAR antagonist) were measured, and GABAAR expression and GABAergic interneuron abundance in the brain were examined. Female Akt1−/− mice, but not male Akt1−/− mice, exhibited less pentylenetetrazol-induced convulsive activity than their corresponding wild-type controls. Reduced parvalbumin-positive interneuron abundance and GABAAR subunit expression, especially in the hippocampus, were also observed in female Akt1−/− mice compared to female wild-type mice. Neuromorphometric analyses revealed significantly reduced neurite complexity in hippocampal pyramidal neurons. Additionally, female Akt1−/− mice displayed increased hippocampal oscillation power and impaired spatial memory compared to female wild-type mice. Our findings suggest that Akt1 deficiency modulates GABAergic interneurons and GABAAR expression, contributing to hippocampus-dependent cognitive functional impairment.
Collapse
Affiliation(s)
- Chia-Yuan Chang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wen-Sung Lai
- Department of Psychology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Abstract
Nearly 60 years ago Seymour Kety proposed that research on genetics and brain pathology, but not on neurochemistry, would ultimately lead to an understanding of the pathophysiology of schizophrenia. This article will demonstrate the prescience of Kety's proposal; advances in our knowledge of brain structure and genetics have shaped our current understanding of the pathophysiology of schizophrenia. Brain-imaging techniques have shown that schizophrenia is associated with cortical atrophy and ventricular enlargement, which progresses for at least a decade after the onset of psychotic symptoms. Cortical atrophy correlates with negative symptoms and cognitive impairment, but not with psychotic symptoms, in schizophrenia. Studies with the Golgi-staining technique that illuminates the entire neuron indicate that cortical atrophy is due to reduced synaptic connectivity on the pyramidal neurons and not due to actual loss of neurons. Results of recent genetic studies indicate that several risk genes for schizophrenia are within two degrees of separation from the N-methy-D-aspartate receptor (NMDAR), a subtype of glutamate receptor that is critical to synapse formation and synaptic plasticity. Inactivation of one of these risk genes that encodes serine racemase, which synthesizes D-serine, an NMDAR co-agonist, reproduces the synaptic pathology of schizophrenia. Thus, widespread loss of cortical synaptic connectivity appears to be the primary pathology in schizophrenia that is driven by multiple risk genes that adversely affect synaptogenesis and synapse maintenance, as hypothesized by Kety.
Collapse
|
17
|
Niel C, Sinoquet C, Dina C, Rocheleau G. A survey about methods dedicated to epistasis detection. Front Genet 2015; 6:285. [PMID: 26442103 PMCID: PMC4564769 DOI: 10.3389/fgene.2015.00285] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022] Open
Abstract
During the past decade, findings of genome-wide association studies (GWAS) improved our knowledge and understanding of disease genetics. To date, thousands of SNPs have been associated with diseases and other complex traits. Statistical analysis typically looks for association between a phenotype and a SNP taken individually via single-locus tests. However, geneticists admit this is an oversimplified approach to tackle the complexity of underlying biological mechanisms. Interaction between SNPs, namely epistasis, must be considered. Unfortunately, epistasis detection gives rise to analytic challenges since analyzing every SNP combination is at present impractical at a genome-wide scale. In this review, we will present the main strategies recently proposed to detect epistatic interactions, along with their operating principle. Some of these methods are exhaustive, such as multifactor dimensionality reduction, likelihood ratio-based tests or receiver operating characteristic curve analysis; some are non-exhaustive, such as machine learning techniques (random forests, Bayesian networks) or combinatorial optimization approaches (ant colony optimization, computational evolution system).
Collapse
Affiliation(s)
- Clément Niel
- Computer Science Institute of Nantes-Atlantic (Lina), Centre National de la Recherche Scientifique UMR 6241, Ecole Polytechnique de l'Université de NantesNantes, France
| | - Christine Sinoquet
- Computer Science Institute of Nantes-Atlantic (Lina), Centre National de la Recherche Scientifique UMR 6241, University of NantesNantes, France
| | - Christian Dina
- Institut du Thorax, Institut National de la Santé et de la Recherche Médicale UMR 1087, Centre National de la Recherche Scientifique UMR 6291, University of NantesNantes, France
| | - Ghislain Rocheleau
- European Genomic Institute for Diabetes FR3508, Centre National de la Recherche Scientifique UMR 8199, Lille 2 UniversityLille, France
| |
Collapse
|