1
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Markopoulos A, Inserra A, De Gregorio D, Gobbi G. Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Front Pharmacol 2022; 12:749068. [PMID: 35177979 PMCID: PMC8846292 DOI: 10.3389/fphar.2021.749068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
Recent clinical and preclinical evidence points towards empathogenic and prosocial effects elicited by psychedelic compounds, notably the serotonin 5-HT2A agonists lysergic acid diethylamide (LSD), psilocybin, N,N-Dimethyltryptamine (DMT), and their derivatives. These findings suggest a therapeutic potential of psychedelic compounds for some of the behavioural traits associated with autism spectrum disorder (ASD), a neurodevelopmental condition characterized by atypical social behaviour. In this review, we highlight evidence suggesting that psychedelics may potentially ameliorate some of the behavioural atypicalities of ASD, including reduced social behaviour and highly co-occurring anxiety and depression. Next, we discuss dysregulated neurobiological systems in ASD and how they may underlie or potentially limit the therapeutic effects of psychedelics. These phenomena include: 1) synaptic function, 2) serotonergic signaling, 3) prefrontal cortex activity, and 4) thalamocortical signaling. Lastly, we discuss clinical studies from the 1960s and 70s that assessed the use of psychedelics in the treatment of children with ASD. We highlight the positive behavioural outcomes of these studies, including enhanced mood and social behaviour, as well as the adverse effects of these trials, including increases in aggressive behaviour and dissociative and psychotic states. Despite preliminary evidence, further studies are needed to determine whether the benefits of psychedelic treatment in ASD outweigh the risks associated with the use of these compounds in this population, and if the 5-HT2A receptor may represent a target for social-behavioural disorders.
Collapse
Affiliation(s)
- Athanasios Markopoulos
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.,McGill University Health Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Chan JZ, Fernandes MF, Hashemi A, Grewal RS, Mardian EB, Bradley RM, Duncan RE. Age-associated increase in anxiety-like behavior in Lpaatδ/Agpat4 knockout mice. CURRENT RESEARCH IN BEHAVIORAL SCIENCES 2021. [DOI: 10.1016/j.crbeha.2021.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
4
|
MicroRNA Regulates Early-Life Stress–Induced Depressive Behavior via Serotonin Signaling in a Sex-Dependent Manner in the Prefrontal Cortex of Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 1:180-189. [PMID: 36325302 PMCID: PMC9616342 DOI: 10.1016/j.bpsgos.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 01/01/2023] Open
Abstract
Background The underlying neurobiology of early-life stress (ELS)-induced major depressive disorder is not clearly understood. Methods In this study, we used maternal separation (MS) as a rodent model of ELS and tested whether microRNAs (miRNAs) target serotonin genes to regulate ELS-induced depression-like behavior and whether this effect is sex dependent. We also examined whether environmental enrichment prevents susceptibility to depression- and anxiety-like behavior following MS and whether enrichment effects are mediated through serotonin genes and their corresponding miRNAs. Results MS decreased sucrose preference, which was reversed by enrichment. Males also exhibited greater changes in forced swim climbing and escape latency tests only following enrichment. Slc6a4 and Htr1a were upregulated in the frontal cortex following MS. In male MS rats, enrichment slightly reversed Htr1a expression to levels similar to control rats. miR-200a-3p and miR-322-5p, which target SLC6A4, were decreased by MS, but not significantly. An HTR1A-targeting miRNA, miR-320-5p, was also downregulated by MS and showed slight reversal by enrichment in male animals. miR-320-5p targeting of Htr1a was validated in vitro using SHSY neuroblastoma cell lines. Conclusions Altogether, this study implicates miRNA interaction with the serotonin pathway in ELS-induced susceptibility to depression-related reward deficits. Furthermore, because of its recovery by enrichment in males, miR-320 may represent a viable sex-specific target for reward-related deficits in major depressive disorder.
Collapse
|
5
|
Natale S, Esteban Masferrer M, Deivasigamani S, Gross CT. A role for cerebral cortex in the suppression of innate defensive behaviour. Eur J Neurosci 2021; 54:6044-6059. [PMID: 34405470 DOI: 10.1111/ejn.15426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
The cerebral cortex is widely accepted to be involved in the control of cognition and the processing of learned information. However, data suggest that it may also have a role in the regulation of innate responses because rodents, cats or primates with surgical removal of cortical regions show excessive aggression and rage elicited by threatening stimuli. Nevertheless, the imprecision and chronic nature of these lesions leave open the possibility that compensatory processes may underlie some of these phenotypes. In the present study we applied a precise, rapid and reversible inhibition approach to examine the contribution of the cerebral cortex to defensive behaviours elicited by a variety of innately aversive stimuli in laboratory mice. Pharmacological treatment of mice carrying the pharmacogenetic inhibitory receptor hM4D selectively in neocortex, archicortex and related dorsal telencephalon-derived structures resulted in the rapid inhibition of cerebral cortex neural activity. Cortical inhibition was associated with a selective increase in defensive behaviours elicited by an aggressive conspecific, a novel prey and a physically stressful stimulus. These findings are consistent with a role for cortex in the acute inhibition of innate defensive behaviours.
Collapse
Affiliation(s)
- Silvia Natale
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatologic Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Esteban Masferrer
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| | | | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Monterotondo, Italy
| |
Collapse
|
6
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
7
|
Beyeler A, Ju A, Chagraoui A, Cuvelle L, Teixeira M, Di Giovanni G, De Deurwaerdère P. Multiple facets of serotonergic modulation. PROGRESS IN BRAIN RESEARCH 2021; 261:3-39. [PMID: 33785133 DOI: 10.1016/bs.pbr.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The serotonergic system of the central nervous system (CNS) has been implicated in a broad range of physiological functions and behaviors, such as cognition, mood, social interaction, sexual behavior, feeding behavior, sleep-wake cycle and thermoregulation. Serotonin (5-hydroxytryptamine, 5-HT) establishes a plethora of interactions with neurochemical systems in the CNS via its numerous 5-HT receptors and autoreceptors. The facets of this control are multiple if we consider the molecular actors playing a role in the autoregulation of 5-HT neuron activity including the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B, 5-HT7 receptors as well as the serotonin transporter. Moreover, extrinsic loops involving other neurotransmitters giving the other 5-HT receptors the possibility to impact 5-HT neuron activity. Grasping the complexity of these interactions is essential for the development of a variety of therapeutic strategies for cognitive defects and mood disorders. Presently we can illustrate the plurality of the mechanisms and only conceive that these 5-HT controls are likely not uniform in terms of regional and neuronal distribution. Our understanding of the specific expression patterns of these receptors on specific circuits and neuronal populations are progressing and will expand our comprehension of the function and interaction of these receptors with other chemical systems. Thus, the development of new approaches profiling the expression of 5-HT receptors and autoreceptors should reveal additional facets of the 5-HT controls of neurochemical systems in the CNS.
Collapse
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France.
| | - Anes Ju
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Lise Cuvelle
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Maxime Teixeira
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | - Philippe De Deurwaerdère
- Centre National de La Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| |
Collapse
|
8
|
Bruschetta G, D'Ascola A, Medica P, Ferlazzo AM. Physical Exercise Affects Serotoninergic System in Horse Leukocytes. J Equine Vet Sci 2020; 88:102969. [PMID: 32303327 DOI: 10.1016/j.jevs.2020.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine [5-HT]) may induce metabolic effects in different cell types, including leukocytes. In horses, 5-HT is involved in physiological and behavioral functions. Physical exercise is known to increase the amounts of 5-HT both in brain and periphery, but so far, the signal mechanism in response to exercise is not known. The aim of the study was to investigate the effect of a racehorse intensive training session on plasma 5-HT levels, serotonin transporter (SERT), 5HT1A, 5-HT2A, 5-HT1B, 5-HT7 receptor, interleukin-1 beta, and tumor necrosis factor-alpha expression in horse peripheral blood mononuclear cells (PBMC). In particular, the research was carried out on 12 trained horses performing daily training. Plasma 5-HT levels were analyzed in platelet-poor plasma fraction by enzyme-linked immunosorbent assay at T0, T1, and T2 (pretraining, 30 minutes post-training, and 2 hours post-training session), respectively. Peripheral blood mononuclear cells were isolated to perform real-time polymerase chain reaction for the evaluation of SERT, 5-HT receptor, and cytokine mRNA levels. The results showed significantly increased levels of plasma 5-HT, 5HT1A, and 5-HT2A and significantly decreased levels of SERT, 5-HT1B, 5-HT7, and both cytokine mRNAs in PBMC at T1, compared with T0 and T2. The results were confirmed by in vitro experiment. Training may induce a lower degree of 5-HT storage and, therefore, a higher plasma 5-HT concentrations. Leukocyte 5-HT receptor mRNAs seem strongly influenced by the exercise. Observed changes suggest a transient neuroendocrinological response to the exercise. A better understanding of the influence of physical exercise on serotoninergic system could have potential application for the implementation of training protocols in racing horses.
Collapse
Affiliation(s)
- Giuseppe Bruschetta
- Department of Veterinary Sciences, Biochemistry Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Physiology Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Alida Maria Ferlazzo
- Department of Veterinary Sciences, Biochemistry Unit, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy.
| |
Collapse
|
9
|
Yi L, Sun H, Zhang H, Chen Y, Zhou L, Xuan L, Zhan T, Jiang Y, Xu S. Down-regulation of HTR1A-modulated ACC activation contributes to stress-induced visceral hyperalgesia in rats. Neurogastroenterol Motil 2019; 31:e13620. [PMID: 31121088 DOI: 10.1111/nmo.13620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Long-term stress was suggested to cause visceral hypersensitivity and promote functional gastrointestinal disorders (FGIDs). Some brain regions such as the anterior cingulate cortex (ACC) may play an important role for generating visceral hypersensitivity; however, its molecular mechanisms are not clear. This study aimed to explore the role of 5-HT1A receptors (HTR1As) in activating ACC and corresponding mechanism, in stress-induced visceral hyperalgesia rats. METHODS The VH rat model was established by chronic water avoidance stress (WAS), and the visceral sensitivity was measured by electromyogram. Rat's anxiety-like behaviors were evaluated by the open field test (OFT) and elevated plus maze (EPM). To overexpress or down-regulate HTR1A expression, HTR1A-specific lentivirus expressing the green fluorescent protein was administered into the ACC. Protein expression levels were observed by Western blot. RESULTS The protein expression of HTR1A in bilateral ACC in WAS group was significantly lower than that in normal control (NC) and Sham-WAS groups, while the levels of c-fos in the ACC of WAS rats were significantly higher. Down-regulation of HTR1As could induce VH in control rats with the increased expression of c-fos, p-ERK, and p-Akt in ACC, while up-regulation of HTR1As in the ACC could partly inhibit ACC sensitization and stress-induced visceral hyperalgesia. CONCLUSIONS & INFERENCES Down-regulation of HTR1As modulates ACC activation probably through activating ERK and Akt pathways, thus contributes to the formation of stress-induced visceral hyperalgesia.
Collapse
Affiliation(s)
- Lisha Yi
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huihui Sun
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiqin Zhang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Zhou
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqian Xuan
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhan
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanxi Jiang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuchang Xu
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Negro S, Sánchez-Guerrero MJ, Bartolomé E, Solé M, Gómez MD, Membrillo A, Molina A, Valera M. Evidence for the effect of serotoninergic and dopaminergic gene variants on stress levels in horses participating in dressage and harness racing. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eye temperature assessed with infrared thermography is an adequate tool for stress level assessment in sport horses’ competitions having a moderate heritability. Serotonin and dopamine signal transduction-linked gene variants have been associated with anxiety-related traits in several species. In this study we examined the association between 10 gene variants in BDNF, COMT, HTR1A, TPH2 and SLC6A4 genes (and the haplotypes at SLC6A4 gene) with stress level (measured with eye temperature and heart rate) in 270 animals, 135 Spanish Trotter Horses (STH) participating in trotting races and 135 ‘Pura Raza Español’ (PRE) horses in dressage. Association analyses were performed using a unified mixed model (counting for population structure and individual relatedness) for the whole population and for each horse breed. The g.43865600G > A intronic gene variant located 11.0 kb downstream from the transcription start site of SLC6A4 gene was associated with an increase in eye temperature before competition with a relative contribution of this gene variant of 38.8% (P = 0.001), 31.8% just after (P = 0.001) and 29.8% 2 h after the competition (P = 0.003). In STH, the g.43865600G > A gene variant showed the same association with eye temperature before (P = 0.001, contribution 27.2%), just after (P = 0.0003, 29.0%) and after the competition (P = 0.002, 17.5%); and the c.*111G > A gene variant located at the 3′UTR region of COMT gene was associated with eye temperature 2 h after the competition (P = 0.001, 22.3%). These results showed that SLC6A4 and COMT gene variants are associated with stress level measured as eye temperature increase during competitions, and may be promising tools for genetic testing against resistance at high stress levels in trotter horses.
Collapse
|
11
|
Abstract
Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.
Collapse
Affiliation(s)
- RL Carhart-Harris
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - DJ Nutt
- Psychedelic Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 2017; 151:35-56. [DOI: 10.1016/j.pneurobio.2016.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|
13
|
Ramon-Marquez T, Medina-Castillo AL, Fernandez-Gutierrez A, Fernandez-Sanchez JF. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence. Biosens Bioelectron 2016; 82:217-23. [PMID: 27085954 DOI: 10.1016/j.bios.2016.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods.
Collapse
Affiliation(s)
- Teresa Ramon-Marquez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain
| | - Antonio L Medina-Castillo
- NanoMyP®, Nanomateriales y Polimeros S.L., Spin-Off Company of the UGR, BIC Building, Avd. Innovacion 1, E-18016 Granada, Spain.
| | | | - Jorge F Fernandez-Sanchez
- Department of Analytical Chemistry, University of Granada, Avd. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
14
|
Hori Y, Tozaki T, Nambo Y, Sato F, Ishimaru M, Inoue-Murayama M, Fujita K. Evidence for the effect of serotonin receptor 1A gene (HTR1A
) polymorphism on tractability in Thoroughbred horses. Anim Genet 2015; 47:62-7. [DOI: 10.1111/age.12384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Y. Hori
- Department of Psychology; Graduate School of Letters; Kyoto University; Yoshida-honmachi Sakyo Kyoto 606-8501 Japan
- Japan Society for the Promotion of Science; Kojimachi Business Center Building; 5-3-1 Kojimachi Chiyoda-ku Tokyo 102-0083 Japan
| | - T. Tozaki
- Genetic Analysis Department; Laboratory of Racing Chemistry; 1731-2 Tsurutamachi Utsunomiya Tochigi 320-0851 Japan
| | - Y. Nambo
- Department of Clinical Veterinary Science; Obihiro University of Agriculture and Veterinary Medicine; 2-11 Inada-cho Obihiro Hokkaido 080-8555 Japan
| | - F. Sato
- Hidaka Training and Research Center; Japan Racing Association; 535-13 Nishicha Urakawa Hokkaido 057-0171 Japan
| | - M. Ishimaru
- Hidaka Training and Research Center; Japan Racing Association; 535-13 Nishicha Urakawa Hokkaido 057-0171 Japan
| | - M. Inoue-Murayama
- Wildlife Research Center; Kyoto University; 2-24 Tanaka-Sekiden-cho Sakyo Kyoto 606-8203 Japan
- Wildlife Genome Collaborative Research Group; National Institute for Environmental Studies; 16-2 Onogawa Tsukuba Ibaraki 305-8506 Japan
| | - K. Fujita
- Department of Psychology; Graduate School of Letters; Kyoto University; Yoshida-honmachi Sakyo Kyoto 606-8501 Japan
| |
Collapse
|