1
|
Slomp M, Koekkoek LL, Mutersbaugh M, Linville I, Luquet SH, la Fleur SE. Free-choice high-fat diet consumption reduces lateral hypothalamic GABAergic activity, without disturbing neural response to sucrose drinking in mice. Front Neurosci 2023; 17:1219569. [PMID: 37600007 PMCID: PMC10434857 DOI: 10.3389/fnins.2023.1219569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Nutrition can influence the brain and affect its regulation of food intake, especially that of high-palatable foods. We hypothesize that fat and sugar have interacting effects on the brain, and the lateral hypothalamus (LH) is a prime candidate to be involved in this interaction. The LH is a heterogeneous area, crucial for regulating consummatory behaviors, and integrating homeostatic and hedonic needs. GABAergic LH neurons stimulate feeding when activated, and are responsive to consummatory behavior while encoding sucrose palatability. Previously, we have shown that glutamatergic LH neurons reduce their activity in response to sugar drinking and that this response is disturbed by a free-choice high-fat diet (fcHFD). Whether GABAergic LH neurons, and their response to sugar, is affected by a fcHFD is yet unknown. Using head-fixed two-photon microscopy, we analyzed activity changes in LHVgat neuronal activity in chow or fcHFD-fed mice in response to water or sucrose drinking. A fcHFD decreased overall LHVgat neuronal activity, without disrupting the sucrose-induced increase. When focusing on the response per unique neuron, a vast majority of neurons respond inconsistently over time. Thus, a fcHFD dampens overall LH GABAergic activity, while it does not disturb the response to sucrose. The inconsistent responding over time suggests that it is not one specific subpopulation of LH GABAergic neurons that is driving these behaviors, but rather a result of the integrative properties of a complex neural network. Further research should focus on determining how this dampening of LH GABAergic activity contributes to hyperphagia and the development of obesity.
Collapse
Affiliation(s)
- Margo Slomp
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| | - Laura L. Koekkoek
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| | - Michael Mutersbaugh
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Ian Linville
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Serge H. Luquet
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Susanne E. la Fleur
- Endocrinology Laboratory, Department of Laboratory Medicine, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, Netherlands
- Metabolism and Reward Group, Royal Netherlands Academy of Arts and Sciences, Netherlands Institute of Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
2
|
Kuebler IRK, Jolton JA, Hermreck C, Hubbard NA, Wakabayashi KT. Contrasting dose-dependent effects of acute intravenous methamphetamine on lateral hypothalamic extracellular glucose dynamics in male and female rats. J Neurophysiol 2022; 128:819-836. [PMID: 36043803 PMCID: PMC9529272 DOI: 10.1152/jn.00257.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Glucose is the brain's primary energetic resource. The brain's use of glucose is dynamic, balancing delivery from the neurovasculature with local metabolism. Although glucose metabolism is known to differ in humans with and without methamphetamine use disorder (MUD), it is unknown how central glucose regulation changes with acute methamphetamine experience. Here, we determined how intravenous methamphetamine regulates extracellular glucose levels in a brain region implicated in MUD-like behavior, the lateral hypothalamus (LH). We measured extracellular LH glucose in awake adult male and female drug-naive Wistar rats using enzyme-linked amperometric glucose biosensors. Changes in LH glucose were monitored during a single session after: 1) natural nondrug stimuli (novel object presentation and a tail-touch), 2) increasing cumulative doses of intravenous methamphetamine (0.025, 0.05, 0.1, and 0.2 mg/kg), and 3) an injection of 60 mg of glucose. We found second-scale fluctuations in LH glucose in response to natural stimuli that differed by both stimulus type and sex. Although rapid, second-scale changes in LH glucose during methamphetamine injections were variable, slow, minute-scale changes following most injections were robust and resulted in a reduction in LH glucose levels. Dose and sex differences at this timescale indicated that female rats may be more sensitive to the impact of methamphetamine on central glucose regulation. These findings suggest that the effects of MUD on healthy brain function may be linked to how methamphetamine alters extracellular glucose regulation in the LH and point to possible mechanisms by which methamphetamine influences central glucose metabolism more broadly.NEW & NOTEWORTHY Enzyme-linked glucose biosensors were used to monitor lateral hypothalamic (LH) extracellular fluctuations during nondrug stimuli and intravenous methamphetamine injections in drug-naive awake male and female rats. Second-scale glucose changes occurred after nondrug stimuli, differing by modality and sex. Robust minute-scale decreases followed most methamphetamine injections. Sex differences at the minute-scale indicate female central glucose regulation is more sensitive to methamphetamine effects. We discuss likely mechanisms underlying these fluctuations, and their implications in methamphetamine use disorder.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chase Hermreck
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nicholas A Hubbard
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
3
|
Curay CM, Irwin MR, Kiyatkin EA. Rapid fluctuations in brain oxygenation during glucose-drinking behavior in trained rats. J Neurophysiol 2022; 127:384-392. [PMID: 35044849 PMCID: PMC8799397 DOI: 10.1152/jn.00527.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Proper inflow of oxygen into brain tissue is essential for maintaining normal neural functions. Although oxygen levels in the brain's extracellular space depend upon a balance between its delivery from arterial blood and its metabolic consumption, the use of high-speed electrochemical detection revealed rapid increases in brain oxygen levels elicited by various salient sensory stimuli. These stimuli also increase intrabrain heat production, an index of metabolic neural activation, but these changes are slower and more prolonged than changes in oxygen levels. Therefore, under physiological conditions, the oxygen inflow into brain tissue exceeds its loss due to consumption, thus preventing any metabolic deficit. Here, we used oxygen sensors coupled with amperometry to examine the pattern of real-time oxygen fluctuations in the nucleus accumbens during glucose-drinking behavior in trained rats. Following the exposure to a glucose-containing cup, oxygen levels rapidly increased, peaked when the rat initiated drinking, and relatively decreased during consumption. Similar oxygen changes but more episodic drinking occurred when Stevia, a calorie-free sweet substance, was substituted for glucose. When water was substituted for glucose, rats tested the water but refused to consume all of it. Although the basic pattern of oxygen changes during this water test was similar to that with glucose drinking, the increases were larger. Finally, oxygen increases were significantly larger when rats were exposed to concealed glucose and made multiple unsuccessful attempts to obtain and consume it. Based on these data, we discuss the mechanisms underlying behavior-related brain oxygen fluctuations and their functional significance.NEW & NOTEWORTHY Oxygen sensors coupled with high-speed amperometry were used to examine brain oxygen fluctuations during glucose-drinking behavior in trained rats. Oxygen levels rapidly increased following presentation of a glucose-contained cup, peaking at the initiation of glucose drinking, and relatively decreasing during drinking. Oxygen increases were larger when rats were exposed to concealed glucose and made multiple attempts to obtain it. We discuss the mechanisms underlying behavior-related brain oxygen fluctuations and their functional significance.
Collapse
Affiliation(s)
- Carlos M. Curay
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland
| | - Matthew R. Irwin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland
| | - Eugene A. Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, Baltimore, Maryland
| |
Collapse
|
4
|
Wakabayashi KT, Greeman EA, Barrett ST, Bevins RA. The Sugars in Alcohol Cocktails Matter. ACS Chem Neurosci 2021; 12:3284-3287. [PMID: 34428024 PMCID: PMC8447180 DOI: 10.1021/acschemneuro.1c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
While sugar consumption and alcohol drinking have traditionally been studied by different basic science fields, most commercially available flavored alcoholic beverages are sweetened with some kind of sugar. The prevailing view is that these sugars potentiate drinking by making the alcohol taste better, particularly for adolescents, overlooking that some central nervous system circuits implicated in alcohol drinking are also sensitive to brain penetrant sugars like glucose. In this Viewpoint, we highlight the need for basic researchers to carefully consider how the sugars mixed with alcoholic beverages may impact the neurochemical and biological mechanisms influencing alcohol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Ken T. Wakabayashi
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| | - Esther A. Greeman
- Department of Chemistry, Oakwood University, Huntsville, Alabama 35896, United States
| | - Scott T. Barrett
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0308, United States
| |
Collapse
|
5
|
Koekkoek LL, Unmehopa UA, Eggels L, Kool T, Lamuadni K, Diepenbroek C, Mul JD, Serlie MJ, la Fleur SE. A free-choice high-fat diet modulates the effects of a sucrose bolus on the expression of genes involved in glucose handling in the hypothalamus and nucleus accumbens. Physiol Behav 2020; 222:112936. [PMID: 32417644 DOI: 10.1016/j.physbeh.2020.112936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/27/2022]
Abstract
The consumption of saturated fat and sucrose can have synergistic effects on the brain that do not occur when either nutrient is consumed by itself. In this study we hypothesize that saturated fat intake modulates glucose handling in the hypothalamus and nucleus accumbens, both brain areas highly involved in the control of food intake. To study this, male Wistar rats were given a free-choice high fat diet (fcHFD) or a control diet for two weeks. During the last seven days rats were given a daily bolus of either a 30% sucrose solution or water. Rats were sacrificed on day eight, 30 minutes after the onset of drinking. mRNA and protein levels of genes involved in glucose handling were assessed in the hypothalamus and nucleus accumbens. We found increased Glut3 and Glut4 mRNA in the hypothalamus of fcHFD-fed rats without an additional effect of the sucrose bolus. In the nucleus accumbens, the sucrose bolus increased Glut3 mRNA and decreased Glut4 mRNA independent of prior diet exposure. The ATP-sensitive potassium channel subunit Kir6.1 in the nucleus accumbens tended to be affected by the synergistic effects of a fcHFD and a sucrose bolus. These data suggest that acute glucose handling in the hypothalamus and nucleus accumbens may be affected by prior high fat exposure.
Collapse
Affiliation(s)
- L L Koekkoek
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - U A Unmehopa
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands
| | - L Eggels
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - T Kool
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - K Lamuadni
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands
| | - C Diepenbroek
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands
| | - J D Mul
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands; Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M J Serlie
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - S E la Fleur
- Amsterdam University Medical Center, Location AMC, University of Amsterdam, Laboratory of Endocrinology, Dept. Clinical Chemistry, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam University Medical Center, Location AMC, University of Amsterdam, Dept Endocrinology and Metabolism, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Meibergdreef 9, K2-283, 1105 AZ Amsterdam-Zuidoost, Amsterdam, Netherlands.; Metabolism and Reward Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
7
|
Kiyatkin EA. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019; 151:219-226. [PMID: 30735692 DOI: 10.1016/j.neuropharm.2019.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Opioid drugs are important tools to alleviate pain of different origins, but they have strong addictive potential and their abuse at higher doses often results in serious health complications. Respiratory depression that leads to brain hypoxia is perhaps the most dangerous symptom of acute intoxication with opioids, and it could result in lethality. The development of substrate-specific sensors coupled with amperometry made it possible to directly evaluate physiological and drug-induced fluctuations in brain oxygen levels in awake, freely-moving rats. The goal of this review paper is to consider changes in brain oxygen levels induced by several opioid drugs (heroin, fentanyl, oxycodone, morphine). While some of these drugs are widely used in clinical practice, they all are abused, often at doses exceeding the clinical range and often resulting in serious health complications. First, we consider some basic knowledge regarding brain oxygen, its physiological fluctuations, and mechanisms involved in regulating its entry into brain tissue. Then, we present and discuss data on brain oxygen changes induced by each opioid drug within a wide range of doses, from low, behaviorally relevant, to high, likely to be self-administered by drug users. These data allowed us to compare the effects of these drugs on brain oxygen in terms of their potency, time-course, and their potential danger when used at high doses via rapid-onset administration routes. While most data discussed in this work were obtained in rats, we believe that these data have clear human relevance in addressing the alarming rise in lethality associated with the opioid abuse.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institute of Health, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Kiyatkin EA. Central and Peripheral Mechanisms Underlying Physiological and Drug-Induced Fluctuations in Brain Oxygen in Freely-Moving Rats. Front Integr Neurosci 2018; 12:44. [PMID: 30333733 PMCID: PMC6176053 DOI: 10.3389/fnint.2018.00044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023] Open
Abstract
The goal of this work is to consider physiological fluctuations in brain oxygen levels and its changes induced by opioid drugs. This review article presents, as a comprehensive story, the most important findings obtained in our laboratory by using high-speed amperometry with oxygen sensors in awake, freely moving rats; most of these findings were separately published elsewhere. First, we show that oxygen levels in the nucleus accumbens (NAc) phasically increase following exposure to natural arousing stimuli. Since accumbal neurons are excited by arousing stimuli and NAc oxygen levels increase following glutamate (GLU) microinjections in the NAc, local neural activation with subsequent cerebral vasodilation appears to mediate the rapid oxygen increases induced by arousing stimuli. While it is established that intra-cerebral entry of oxygen depends on brain metabolism, physiological increases in NAc oxygen occurred more rapidly than increases in metabolic activity as assessed by intra-brain heat production. Therefore, due to neural activation and the subsequent rise in local cerebral blood flow (CBF), the brain receives more oxygen in advance of its metabolic requirement, thus preventing potential metabolic deficits. In contrast to arousing stimuli, three opioid drugs tested (heroin, fentanyl and oxycodone) decrease oxygen levels. As confirmed by our recordings in the subcutaneous space, a densely vascularized location with no metabolic activity of its own, these decreases result from respiratory depression with subsequent fall in blood oxygen levels. While respiratory depression was evident for all tested drugs, heroin was ~6-fold more potent than oxycodone, and fentanyl was 10-20-fold more potent than heroin. Changes in brain oxygen induced by respiratory depression appear to be independent of local vascular and blood flow responses, which are triggered, via neuro-vascular coupling, by the neuronal effects of opioid drugs.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Department of Health and Human Services (DHHS), Baltimore, MD, United States
| |
Collapse
|
9
|
Solis E, Afzal A, Kiyatkin EA. Changes in brain oxygen and glucose induced by oxycodone: Relationships with brain temperature and peripheral vascular tone. Neuropharmacology 2018; 133:481-490. [PMID: 29476778 PMCID: PMC5858998 DOI: 10.1016/j.neuropharm.2018.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Abstract
Oxycodone is a semi-synthetic opioid drug that is used to alleviate acute and chronic pain. However, oxycodone is often abused and, when taken at high doses, can induce powerful CNS depression that manifests in respiratory abnormalities, hypotension, coma, and death. Here, we employed several techniques to examine the effects of intravenous oxycodone at a wide range of doses on various metabolism-related parameters in awake, freely-moving rats. High-speed amperometry was used to assess how oxycodone affects oxygen and glucose levels in the nucleus accumbens (NAc). These measurements were supplemented by recordings of locomotor activity and temperature in the NAc, temporal muscle, and skin. At low doses, which are known to maintain self-administration behavior (0.15-0.3 mg/kg), oxycodone transiently decreased locomotor activity, induced modest brain and body hyperthermia, and monotonically increased NAc oxygen and glucose levels. While locomotor inhibition became stronger with higher oxycodone doses (0.6-1.2 mg/kg), NAc oxygen and glucose transiently decreased and subsequently increased. High-dose oxycodone induced similar biphasic down-up changes in brain and body temperature, with the initial decreases followed by increases. While cerebral vasodilation induced by neural activation appears to be the underlying mechanism for the correlative increases in brain oxygen and glucose levels, respiratory depression and the subsequent drop in blood oxygen likely mediate the brain hypoxia induced by large-dose oxycodone injections. The initial inhibitory effects induced by large-dose oxycodone injections could be attributed to rapid and profound CNS depression-the most dangerous health complication linked to opioid overdose in humans.
Collapse
Affiliation(s)
- Ernesto Solis
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Anum Afzal
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
10
|
Solis E, Cameron-Burr KT, Kiyatkin EA. Rapid Physiological Fluctuations in Nucleus Accumbens Oxygen Levels Induced by Arousing Stimuli: Relationships with Changes in Brain Glucose and Metabolic Neural Activation. Front Integr Neurosci 2017; 11:9. [PMID: 28484378 PMCID: PMC5401908 DOI: 10.3389/fnint.2017.00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Proper entry of oxygen from arterial blood into the brain is essential for maintaining brain metabolism under normal conditions and during functional neural activation. However, little is known about physiological fluctuations in brain oxygen and their underlying mechanisms. To address this issue, we employed high-speed amperometry with platinum oxygen sensors in freely moving male rats. Recordings were conducted in the nucleus accumbens (NAc), a critical structure for sensorimotor integration. Rats were exposed to arousing stimuli of different nature (brief auditory tone, a 1-min novel object presentation, a 3-min social interaction with a conspecific, and a 3-min tail-pinch). We found that all arousing stimuli increased NAc oxygen levels. Increases were rapid (4–10-s onset latencies), modest in magnitude (1–3 μM or 5%–15% over baseline) and duration (5–20 min), and generally correlated with the arousing potential of each stimulus. Two strategies were used to determine the mechanisms underlying the observed increases in NAc oxygen levels. First, we showed that NAc oxygen levels phasically increase following intra-NAc microinjections of glutamate (GLU) that excite accumbal neurons. Therefore, local neural activation with subsequent local vasodilation is involved in mediating physiological increases in NAc oxygen induced by arousing stimuli. Second, by employing oxygen monitoring in the subcutaneous space, a highly-vascularized area with no metabolic activity, we determined that physiological increases in NAc oxygen also depend on the rise in blood oxygen levels caused by respiratory activation. Due to the co-existence of different mechanisms governing oxygen entry into brain tissue, NAc oxygen responses differ from fluctuations in NAc glucose, which, within a normal behavioral continuum, are regulated exclusively by neuro-vascular coupling due to glucose’s highly stable levels in the blood. Finally, we discuss the relationships between physiological fluctuations in NAc oxygen, glucose and metabolic brain activation assessed by intra-brain heat production.
Collapse
Affiliation(s)
- Ernesto Solis
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| | - Keaton T Cameron-Burr
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| |
Collapse
|
11
|
Solis E, Bola RA, Fasulo BJ, Kiyatkin EA. Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation. ACS Chem Neurosci 2017; 8:265-271. [PMID: 27736094 DOI: 10.1021/acschemneuro.6b00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Collapse
Affiliation(s)
- Ernesto Solis
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - R. Aaron Bola
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Bradley J. Fasulo
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
12
|
Wakabayashi KT, Spekterman L, Kiyatkin EA. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain. Eur J Neurosci 2016; 43:1422-30. [PMID: 26613356 PMCID: PMC4884167 DOI: 10.1111/ejn.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.
Collapse
Affiliation(s)
- Ken T. Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Laurence Spekterman
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
MCH receptor deletion does not impair glucose-conditioned flavor preferences in mice. Physiol Behav 2016; 163:239-244. [PMID: 27195455 DOI: 10.1016/j.physbeh.2016.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/06/2016] [Accepted: 05/14/2016] [Indexed: 11/22/2022]
Abstract
The post-oral actions of glucose stimulate intake and condition flavor preferences in rodents. Hypothalamic melanin-concentrating hormone (MCH) neurons are implicated in sugar reward, and this study investigated their involvement in glucose preference conditioning in mice. In Exp. 1 MCH receptor 1 knockout (KO) and C57BL/6 wildtype (WT) mice learned to prefer 8% glucose over an initially more-preferred non-nutritive 0.1% sucralose+saccharin (S+S) solution. In contrast, the KO and WT mice preferred S+S to 8% fructose, which is consistent with this sugar's weak post-oral reinforcing action. In Exp. 2 KO and WT mice were trained to drink a flavored solution (CS+) paired with intragastric (IG) infusion of 16% glucose and a different flavored solution (CS-) paired with IG water. Both groups drank more CS+ than CS- in training and preferred the CS+ to CS- in a 2-bottle test. These results indicate that MCH receptor signaling is not required for flavor preferences conditioned by the post-oral actions of glucose. This contrasts with other findings implicating MCH signaling in other types of sugar reward processing.
Collapse
|
14
|
Iordanidou P, Burdakov D. Brain glucose feedback predicts food choice (Commentary on Wakabayashi et al.). Eur J Neurosci 2016; 43:1420-1. [PMID: 26855235 DOI: 10.1111/ejn.13207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Denis Burdakov
- Mill Hill Laboratories, The Francis Crick Institute, London, NW7 1AA, UK
| |
Collapse
|
15
|
Bola RA, Kiyatkin EA. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation. Front Physiol 2016; 7:39. [PMID: 26913008 PMCID: PMC4753326 DOI: 10.3389/fphys.2016.00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels.
Collapse
Affiliation(s)
- R Aaron Bola
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
16
|
Wakabayashi KT, Ren SE, Kiyatkin EA. Methylenedioxypyrovalerone (MDPV) mimics cocaine in its physiological and behavioral effects but induces distinct changes in NAc glucose. Front Neurosci 2015; 9:324. [PMID: 26441499 PMCID: PMC4584974 DOI: 10.3389/fnins.2015.00324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
Methylenedioxypyrovalerone (MDPV) is generally considered to be a more potent cocaine-like psychostimulant, as it shares a similar pharmacological profile with cocaine and induces similar physiological and locomotor responses. Recently, we showed that intravenous cocaine induces rapid rise in nucleus accumbens (NAc) glucose and established its relation to neural activation triggered by the peripheral drug actions. This study was conducted to find out whether MDPV, at a behaviorally equivalent dose, shares a similar pattern of NAc glucose dynamics. Using enzyme-based glucose sensors coupled with amperometery in freely moving rats, we found that MDPV tonically decreases NAc glucose levels, a response that is opposite to what we previously observed with cocaine. By analyzing Skin-Muscle temperature differentials, a valid measure of skin vascular tone, we found that MDPV induces vasoconstriction; a similar effect at the level of cerebral vessels could be responsible for the MDPV-induced decrease in NAc glucose. While cocaine also induced comparable, if not slightly stronger peripheral vasoconstriction, this effect was overpowered by local neural activity-induced vasodilation, resulting in rapid surge in NAc glucose. These results imply that cocaine-users may be more susceptible to addiction than MDPV-users due to the presence of an interoceptive signal (i.e., sensory cue), which may result in earlier and more direct reward detection. Additionally, while health complications arising from acute cocaine use are typically cardiovascular related, MDPV may be more dangerous to the brain due to uncompensated cerebral vasoconstriction.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Suelynn E Ren
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|