1
|
Koga M, Satoh Y, Kashitani M, Nakagawa R, Sato M, Asai F, Ishizuka T, Kinoshita M, Saitoh D, Nagamine M, Toda H, Yoshino A. Augmentation of psychiatric symptom onset vulnerability in male mice due to mild traumatic brain injury. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111153. [PMID: 39332579 DOI: 10.1016/j.pnpbp.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Mild traumatic brain injury (mTBI) can induce psychiatric symptoms, including anxiety, depression, and diminished interest. These symptoms can manifest shortly after injury or exhibit delayed onset months or years later, often worsening in severity. Therefore, early intervention and effective treatment are crucial. However, mTBI lacks clear diagnostic markers, making the underlying pathophysiological mechanisms elusive. Additionally, there is a dearth of suitable animal models and a limited understanding of the biochemical changes in the brain that contribute to post-mTBI psychological symptoms. In this study, we hypothesized that mTBI can trigger brain vulnerability mechanisms, which eventually lead to symptom manifestation in response to subsequent stressors. Using a mouse model, we induced very mild blast-induced mTBI without overt trauma or behavioral changes and subsequently subjected the mice to psychological stress. We analyzed the behavioral alterations and gene expression changes in the brain, focusing on microglial and astrocytic markers involved in the immune system and immune responses. The mice exposed to both blast and defeat stress exhibited significantly lower preference scores in the social interaction test than the mice subjected to blast exposure alone, defeat stress alone, or the control condition. Gene expression analysis revealed a distinct set of genes associated with blast exposure during the development of psychiatric symptoms and genes associated with social defeat stress. The results revealed that neither blast exposure nor defeat stress alone significantly affected mouse social behavior; however, their combined influence resulted in noticeable aberrations in social interactions and/or interest. The findings of the present study provide critical insights into the complex interplay between mTBI and psychological stress. Additionally, they provide a novel mouse model for future research aimed at elucidating the pathophysiological mechanisms underlying the psychiatric symptoms associated with mTBI. Ultimately, this knowledge may enhance early intervention and therapeutic strategies for individuals with mTBI-related psychiatric disorders.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan.
| | - Yasushi Satoh
- Department of Biochemistry, The National Defense Medical College, Saitama, Japan
| | - Masashi Kashitani
- Department of Aerospace Engineering, National Defense Academy, Kanagawa, Japan
| | - Ryuichi Nakagawa
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Mayumi Sato
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Fumiho Asai
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, The National Defense Medical College, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Masanori Nagamine
- Division of Behavioral Science, National Defense Medical College Research Institute, The National Defense Medical College, Saitama, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| | - Aihide Yoshino
- Department of Psychiatry, The National Defense Medical College, Saitama, Japan
| |
Collapse
|
2
|
Harada H, Mori M, Murata Y, Kohno Y, Terada K, Ohe K, Enjoji M. Divergent effects of chronic continuous and intermittent social defeat stress on emotional behaviors: Impact on phosphorylated CREB and BDNF protein levels in the rat hippocampus. Neurosci Lett 2024; 835:137851. [PMID: 38838971 DOI: 10.1016/j.neulet.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.
Collapse
Affiliation(s)
- Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuri Kohno
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Tsuda S, Golam M, Hou J, Wang KKW, Thompson FJ, Bose P. Reduction of epinephrine in the lumbar spinal cord following repetitive blast-induced traumatic brain injury in rats. Neural Regen Res 2024; 19:1548-1552. [PMID: 38051898 PMCID: PMC10883495 DOI: 10.4103/1673-5374.385838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/05/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
Traumatic brain injury-induced unfavorable outcomes in human patients have independently been associated with dysregulated levels of monoamines, especially epinephrine, although few preclinical studies have examined the epinephrine level in the central nervous system after traumatic brain injury. Epinephrine has been shown to regulate the activities of spinal motoneurons as well as increase the heart rate, blood pressure, and blood flow to the hindlimb muscles. Therefore, the purpose of the present study was to determine the impact of repeated blast-induced traumatic brain injury on the epinephrine levels in several function-specific central nervous system regions in rats. Following three repeated blast injuries at three-day intervals, the hippocampus, motor cortex, locus coeruleus, vestibular nuclei, and lumbar spinal cord were harvested at post-injury day eight and processed for epinephrine assays using a high-sensitive electrochemical detector coupled with high-performance liquid chromatography. Our results showed that the epinephrine levels were significantly decreased in the lumbar spinal cord tissues of blast-induced traumatic brain injury animals compared to the levels detected in age- and sex-matched sham controls. In other function-specific central nervous system regions, although the epinephrine levels were slightly altered following blast-induced traumatic brain injury, they were not statistically significant. These results suggest that blast injury-induced significant downregulation of epinephrine in the lumbar spinal cord could negatively impact the motor and cardiovascular function. This is the first report to show altered epinephrine levels in the spinal cord following repetitive mild blast-induced traumatic brain injury.
Collapse
Affiliation(s)
- Shigeharu Tsuda
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mustafa Golam
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiamei Hou
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL, USA
| | - Floyd J Thompson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Prodip Bose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
5
|
Fleischer AW, Fox LC, Davies DR, Vinzant NJ, Scholl JL, Forster GL. Sub-region expression of brain-derived neurotrophic factor in the dorsal hippocampus and amygdala is Affected by mild traumatic brain injury and stress in male rats. Heliyon 2024; 10:e23339. [PMID: 38169784 PMCID: PMC10758828 DOI: 10.1016/j.heliyon.2023.e23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The US population suffers 1.5 million head injuries annually, of which mild traumatic brain injuries (mTBI) comprise 75%. Many individuals subsequently experience long-lasting negative symptoms, including anxiety. Previous rat-based work in our laboratory has shown that mTBI changes neuronal counts in the hippocampus and amygdala, regions associated with anxiety. Specifically, mTBI increased neuronal death in the dorsal CA1 sub-region of the hippocampus, but attenuated it in the medial (MeA) and the basolateral nuclei of the amygdala nine days following injury, which was associated with greater anxiety. We have also shown that glucocorticoid receptor (GR) antagonism prior to concomitant stress and mTBI extinguishes anxiety-like behaviors. Using immunohistochemistry, this study examines the expression of brain-derived neurotrophic factor (BDNF) following social defeat and mTBI, and whether this is affected by prior glucocorticoid receptor antagonism as a potential mechanism behind these anxiety and neuronal differences. Here, stress and mTBI upregulate BDNF in the MeA, and both GR and mineralocorticoid receptor antagonism downregulate BDNF in the dorsal hippocampal CA1 and dentate gyrus, as well as the central nucleus of the amygdala. These findings suggest BDNF plays a role in the mechanism underlying neuronal changes following mTBI in amygdalar and hippocampal subregions, and may participate in stress elicited changes to neural plasticity in these regions. Taken together, these results suggest an essential role for BDNF in the development of anxiety behaviors following concurrent stress and mTBI.
Collapse
Affiliation(s)
- Aaron W. Fleischer
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 East Hartford Ave., Milwaukee, WI, USA
| | - Laura C. Fox
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Daniel R. Davies
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Mayo Clinic School of Graduate Education, Rochester, MN, USA
| | - Nathan J. Vinzant
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jamie L. Scholl
- Center for Brain and Behavior Research, 414 East Clark St, Vermillion, SD, USA
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Gina L. Forster
- Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
6
|
Smith KA, Raskin MR, Donovan MH, Raghunath V, Mansoorshahi S, Telch MJ, Shumake J, Noble-Haeusslein LJ, Monfils MH. Examining the long-term effects of traumatic brain injury on fear extinction in male rats. Front Behav Neurosci 2023; 17:1206073. [PMID: 37397129 PMCID: PMC10313105 DOI: 10.3389/fnbeh.2023.1206073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
There is a strong association between traumatic brain injuries (TBIs) and the development of psychiatric disorders, including post-traumatic stress disorder (PTSD). Exposure-based therapy is a first-line intervention for individuals who suffer from PTSD and other anxiety-related disorders; however, up to 50% of individuals with PTSD do not respond well to this approach. Fear extinction, a core mechanism underlying exposure-based therapy, is a procedure in which a repeated presentation of a conditioned stimulus in the absence of an unconditioned stimulus leads to a decrease in fear expression, and is a useful tool to better understand exposure-based therapy. Identifying predictors of extinction would be useful in developing alternative treatments for the non-responders. We recently found that CO2 reactivity predicts extinction phenotypes in rats, likely through the activation of orexin receptors in the lateral hypothalamus. While studies have reported mixed results in extinction of fear after TBI, none have examined the long-term durability of this phenotype in the more chronically injured brain. Here we tested the hypothesis that TBI results in a long-term deficit in fear extinction, and that CO2 reactivity would be predictive of this extinction phenotype. Isoflurane-anesthetized adult male rats received TBI (n = 59) (produced by a controlled cortical impactor) or sham surgery (n = 29). One month post-injury or sham surgery, rats underwent a CO2 or air challenge, followed by fear conditioning, extinction, and fear expression testing. TBI rats exposed to CO2 (TBI-CO2) showed no difference during extinction or fear expression relative to shams exposed to CO2 (sham-CO2). However, TBI-CO2 rats, showed significantly better fear expression than TBI rats exposed to air (TBI-air). In contrast to previous findings, we observed no relationship between CO2 reactivity and post-extinction fear expression in either the sham or TBI rats. However, compared to the previously observed naïve sample, we observed more variability in post-extinction fear expression but a very similar distribution of CO2 reactivity in the current sample. Isoflurane anesthesia may lead to interoceptive threat habituation, possibly via action on orexin receptors in the lateral hypothalamus, and may interact with CO2 exposure, resulting in enhanced extinction. Future work will directly test this possibility.
Collapse
Affiliation(s)
- K. A. Smith
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - M. R. Raskin
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - M. H. Donovan
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - V. Raghunath
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - S. Mansoorshahi
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - M. J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute of Mental Health Research, The University of Texas at Austin, Austin, TX, United States
| | - J. Shumake
- Institute of Mental Health Research, The University of Texas at Austin, Austin, TX, United States
| | - L. J. Noble-Haeusslein
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - M. H. Monfils
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
- Institute of Mental Health Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
7
|
Fox LC, Scholl JL, Watt MJ, Forster GL. GABA A Receptor and Serotonin Transporter Expression Changes Dissociate Following Mild Traumatic Brain Injury: Influence of Sex and Estrus Cycle Phase in Rats. Neuroscience 2023; 514:38-55. [PMID: 36736883 DOI: 10.1016/j.neuroscience.2023.01.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
Mild traumatic brain injuries (mild TBIs) can affect both males and females, but females are more likely to report long-term psychological complications, including changes in mood and generalized anxiety. Additionally, reproductive cycle phase has been shown to affect mild TBI symptom expression within females. These variances may result from sex differences in mild TBI-induced alterations to neurotransmission in brain regions that influence mood and emotion, possibly mediated by sex steroids. The hippocampus and amygdala are implicated in stress responses and anxiety, and within these regions, gamma-aminobutyric acid (GABA) and serotonin modulate output and behavioral expression. Metabolites of progesterone can allosterically enhance GABAergic signaling, and sex steroids are suggested to regulate the expression of the serotonin transporter (SERT). To determine how mild TBI might alter GABA receptor and SERT expression in males and females, immunocytochemistry was used to quantify expression of the alpha-1 subunit of the GABAA receptor (α1-GABAA), SERT, and a neuronal marker (NeuN) in the brains of adult male and naturally-cycling female rats, both with and without mild TBI, 17 days after injury. Mild TBI altered the expression of α1-GABAA in the amygdala and hippocampus in both sexes, but the direction of change observed depended on sex and reproductive cycle phase. In contrast, mild TBI had little effect on SERT expression. However, SERT expression differed between sexes and varied with the cycle phase. These findings demonstrate that regulation of neurotransmission following mild TBI differs between males and females, with implications for behavioral outcomes and the efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Laura C Fox
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA.
| | - Jamie L Scholl
- Center for Brain and Behavior Research, Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, 414 East Clark St, Vermillion, SD, USA.
| | - Michael J Watt
- Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Gina L Forster
- Center for Brain and Behavior Research, Department of Anatomy, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
8
|
Hoffman AN, Watson S, Chavda N, Lam J, Hovda DA, Giza CC, Fanselow MS. Increased Fear Generalization and Amygdala AMPA Receptor Proteins in Chronic Traumatic Brain Injury. J Neurotrauma 2022; 39:1561-1574. [PMID: 35722903 PMCID: PMC9689770 DOI: 10.1089/neu.2022.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairments and emotional lability are common long-term consequences of traumatic brain injury (TBI). How TBI affects interactions between sensory, cognitive, and emotional systems may reveal mechanisms that underlie chronic mental health comorbidities. Previously, we reported changes in auditory-emotional network activity and enhanced fear learning early after TBI. In the current study, we asked whether TBI has long-term effects on fear learning and responses to novel stimuli. Four weeks following lateral fluid percussion injury (FPI) or sham surgery, adult male rats were fear conditioned to either white noise-shock or tone-shock pairing, or shock-only control and subsequently were tested for freezing to context and to the trained or novel auditory cues in a new context. FPI groups showed greater freezing to their trained auditory cue, indicating long-term TBI enhanced fear. Interestingly, FPI-Noise Shock animals displayed robust fear to the novel, untrained tone compared with Sham-Noise Shock across both experiments. Shock Only groups did not differ in freezing to either auditory stimulus. These findings suggest that TBI precipitates maladaptive associative fear generalization rather than non-associative sensitization. Basolateral amygdala (BLA) α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAr) subunits GluA1 and GluA2 levels were analyzed and the FPI-Noise Shock group had increased GluA1 (but not GluA2) levels that correlated with the level of tone fear generalization. This study illustrates a unique chronic TBI phenotype with both a cognitive impairment and increased fear and possibly altered synaptic transmission in the amygdala long after TBI, where stimulus generalization may underlie maladaptive fear and hyperarousal.
Collapse
Affiliation(s)
- Ann N. Hoffman
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Sonya Watson
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Nishtha Chavda
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jamie Lam
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - David A. Hovda
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- Department of Neurosurgery, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, California, USA
- Steve Tisch BrainSPORT Program, University of California, Los Angeles, Los Angeles, California, USA
- Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael S. Fanselow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
- Staglin Center for Brain and Behavioral Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Zheng L, Pang Q, Xu H, Guo H, Liu R, Wang T. The Neurobiological Links between Stress and Traumatic Brain Injury: A Review of Research to Date. Int J Mol Sci 2022; 23:ijms23179519. [PMID: 36076917 PMCID: PMC9455169 DOI: 10.3390/ijms23179519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Neurological dysfunctions commonly occur after mild or moderate traumatic brain injury (TBI). Although most TBI patients recover from such a dysfunction in a short period of time, some present with persistent neurological deficits. Stress is a potential factor that is involved in recovery from neurological dysfunction after TBI. However, there has been limited research on the effects and mechanisms of stress on neurological dysfunctions due to TBI. In this review, we first investigate the effects of TBI and stress on neurological dysfunctions and different brain regions, such as the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We then explore the neurobiological links and mechanisms between stress and TBI. Finally, we summarize the findings related to stress biomarkers and probe the possible diagnostic and therapeutic significance of stress combined with mild or moderate TBI.
Collapse
Affiliation(s)
- Lexin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qiuyu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai 200063, China
- Correspondence:
| |
Collapse
|
10
|
Urrutia-Ruiz C, Rombach D, Cursano S, Gerlach-Arbeiter S, Schoen M, Bockmann J, Demestre M, Boeckers TM. Deletion of the Autism-Associated Protein SHANK3 Abolishes Structural Synaptic Plasticity after Brain Trauma. Int J Mol Sci 2022; 23:ijms23116081. [PMID: 35682760 PMCID: PMC9181590 DOI: 10.3390/ijms23116081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by repetitive behaviors and impairments of sociability and communication. About 1% of ASD cases are caused by mutations of SHANK3, a major scaffolding protein of the postsynaptic density. We studied the role of SHANK3 in plastic changes of excitatory synapses within the central nervous system by employing mild traumatic brain injury (mTBI) in WT and Shank3 knockout mice. In WT mice, mTBI triggered ipsi- and contralateral loss of hippocampal dendritic spines and excitatory synapses with a partial recovery over time. In contrast, no significant synaptic alterations were detected in Shank3∆11−/− mice, which showed fewer dendritic spines and excitatory synapses at baseline. In line, mTBI induced the upregulation of synaptic plasticity-related proteins Arc and p-cofilin only in WT mice. Interestingly, microglia proliferation was observed in WT mice after mTBI but not in Shank3∆11−/− mice. Finally, we detected TBI-induced increased fear memory at the behavioral level, whereas in Shank3∆11−/− animals, the already-enhanced fear memory levels increased only slightly after mTBI. Our data show the lack of structural synaptic plasticity in Shank3 knockout mice that might explain at least in part the rigidity of behaviors, problems in adjusting to new situations and cognitive deficits seen in ASDs.
Collapse
Affiliation(s)
- Carolina Urrutia-Ruiz
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Daniel Rombach
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Silvia Cursano
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Susanne Gerlach-Arbeiter
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Michael Schoen
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Maria Demestre
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Albert Einstein Allee 11, 89081 Ulm, Germany; (C.U.-R.); (D.R.); (S.C.); (S.G.-A.); (M.S.); (J.B.); (M.D.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Translational Biochemistry, 89081 Ulm, Germany
- Correspondence: ; Tel.: +49-731-5002-3220
| |
Collapse
|
11
|
Vonder Haar C, Wampler SK, Bhatia HS, Ozga JE, Toegel C, Lake AD, Iames CW, Cabral CE, Martens KM. Repeat Closed-Head Injury in Male Rats Impairs Attention but Causes Heterogeneous Outcomes in Multiple Measures of Impulsivity and Glial Pathology. Front Behav Neurosci 2022; 16:809249. [PMID: 35359588 PMCID: PMC8963781 DOI: 10.3389/fnbeh.2022.809249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023] Open
Abstract
Repetitive mild traumatic brain injury, or concussion, can lead to the development of long-term psychiatric impairments. However, modeling these deficits is challenging in animal models and necessitates sophisticated behavioral approaches. The current set of studies were designed to evaluate whether a rubberized versus metal impact tip would cause functional deficits, the number of injuries required to generate such deficits, and whether different psychiatric domains would be affected. Across two studies, male rats were trained in either the 5-choice serial reaction time task (5CSRT; Experiment 1) to assess attention and motor impulsivity or concurrently on the 5CSRT and the delay discounting task (Experiment 2) to also assess choice impulsivity. After behavior was stable, brain injuries were delivered with the Closed-head Injury Model of Engineered Rotational Acceleration (CHIMERA) either once per week or twice per week (Experiment 1) or just once per week (Experiment 2). Astrocyte and microglia pathology was also assayed in relevant regions of interest. CHIMERA injury caused attentional deficits across both experiments, but only increased motor impulsivity in Experiment 1. Surprisingly, choice impulsivity was actually reduced on the Delay Discounting Task after repeat injuries. However, subsequent analyses suggested potential visual issues which could alter interpretation of these and attentional data. Subtle changes in glial pathology immediately after the injury (Experiment 1) were attenuated after 4 weeks recovery (Experiment 2). Given the heterogenous findings between experiments, additional research is needed to determine the root causes of psychiatric disturbances which may arise as a results of repeated brain injuries.
Collapse
Affiliation(s)
- Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Sarah K. Wampler
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Henna S. Bhatia
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Jenny E. Ozga
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Cory Toegel
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Anastasios D. Lake
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Christopher W. Iames
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Caitlyn E. Cabral
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
| | - Kris M. Martens
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, United States
- Injury and Recovery Laboratory, Department of Psychology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Kris M. Martens,
| |
Collapse
|
12
|
Catale C, Bisicchia E, Carola V, Viscomi MT. Early life stress exposure worsens adult remote microglia activation, neuronal death, and functional recovery after focal brain injury. Brain Behav Immun 2021; 94:89-103. [PMID: 33677027 DOI: 10.1016/j.bbi.2021.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023] Open
Abstract
Trauma to the central nervous system (CNS) is a devastating condition resulting in severe functional impairments that strongly vary among patients. Patients' features, such as age, social and cultural environment, and pre-existing psychiatric conditions may be particularly relevant for determining prognosis after CNS trauma. Although several studies demonstrated the impact of adult psycho-social stress exposure on functional recovery after CNS damage, no data exist regarding the long-term effects of the exposure to such experience at an early age. Here, we assessed whether early life stress (ELS) hampers the neuroinflammatory milieuand the functional recovery after focal brain injury in adulthood by using a murine model of ELS exposure combined with hemicerebellectomy (HCb), a model of remote damage. We found that ELS permanently altered microglia responses such that, once experienced HCb, they produced an exaggerated remote inflammatory response - consistent with a primed phenotype - associated with increased cell death and worse functional recovery. Notably, prevention of microglia/macrophages activation by GW2580 treatment during ELS exposure significantly reduced microglia responses, cell death and improved functional recovery. Conversely, GW2580 treatment administered in adulthood after HCb was ineffective in reducing inflammation and cell death or improving functional recovery. Our findings highlight that ELS impacts the immune system maturation producing permanent changes, and that it is a relevant factor modulating the response to a CNS damage. Further studies are needed to clarify the mechanisms underlying the interaction between ELS and brain injury with the aim of developing targeted treatments to improve functional recovery after CNS damage.
Collapse
Affiliation(s)
- Clarissa Catale
- Department of Psychology, Ph.D. Program in "Behavioral Neuroscience", Sapienza University of Rome, Rome, Italy
| | | | - Valeria Carola
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome, Rome, Italy.
| | - Maria Teresa Viscomi
- Department of Life Science and Public Health, Section of Histology and Embryology, University "Cattolica Del S. Cuore", Rome, Italy.
| |
Collapse
|
13
|
Sanchez CM, Titus DJ, Wilson NM, Freund JE, Atkins CM. Early Life Stress Exacerbates Outcome after Traumatic Brain Injury. J Neurotrauma 2021; 38:555-565. [PMID: 32862765 PMCID: PMC8020564 DOI: 10.1089/neu.2020.7267] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.
Collapse
Affiliation(s)
- Chantal M. Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David J. Titus
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nicole M. Wilson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julie E. Freund
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Coleen M. Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
14
|
Blaze J, Choi I, Wang Z, Umali M, Mendelev N, Tschiffely AE, Ahlers ST, Elder GA, Ge Y, Haghighi F. Blast-Related Mild TBI Alters Anxiety-Like Behavior and Transcriptional Signatures in the Rat Amygdala. Front Behav Neurosci 2020; 14:160. [PMID: 33192359 PMCID: PMC7604767 DOI: 10.3389/fnbeh.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
The short and long-term neurological and psychological consequences of traumatic brain injury (TBI), and especially mild TBI (mTBI) are of immense interest to the Veteran community. mTBI is a common and detrimental result of combat exposure and results in various deleterious outcomes, including mood and anxiety disorders, cognitive deficits, and post-traumatic stress disorder (PTSD). In the current study, we aimed to further define the behavioral and molecular effects of blast-related mTBI using a well-established (3 × 75 kPa, one per day on three consecutive days) repeated blast overpressure (rBOP) model in rats. We exposed adult male rats to the rBOP procedure and conducted behavioral tests for anxiety and fear conditioning at 1-1.5 months (sub-acute) or 12-13 months (chronic) following blast exposure. We also used next-generation sequencing to measure transcriptome-wide gene expression in the amygdala of sham and blast-exposed animals at the sub-acute and chronic time points. Results showed that blast-exposed animals exhibited an anxiety-like phenotype at the sub-acute timepoint but this phenotype was diminished by the chronic time point. Conversely, gene expression analysis at both sub-acute and chronic timepoints demonstrated a large treatment by timepoint interaction such that the most differentially expressed genes were present in the blast-exposed animals at the chronic time point, which also corresponded to a Bdnf-centric gene network. Overall, the current study identified changes in the amygdalar transcriptome and anxiety-related phenotypic outcomes dependent on both blast exposure and aging, which may play a role in the long-term pathological consequences of mTBI.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Inbae Choi
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Umali
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia Mendelev
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna E Tschiffely
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Neurology Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, Chyung A, Chiasseu M, Strittmatter SM. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun 2020; 8:96. [PMID: 32611392 PMCID: PMC7329553 DOI: 10.1186/s40478-020-00976-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulation of misfolded phosphorylated Tau (Tauopathy) can be triggered by mutations or by trauma, and is associated with synapse loss, gliosis, neurodegeneration and memory deficits. Fyn kinase physically associates with Tau and regulates subcellular distribution. Here, we assessed whether pharmacological Fyn inhibition alters Tauopathy. In P301S transgenic mice, chronic Fyn inhibition prevented deficits in spatial memory and passive avoidance learning. The behavioral improvement was coupled with reduced accumulation of phospho-Tau in the hippocampus, with reductions in glial activation and with recovery of presynaptic markers. We extended this analysis to a trauma model in which very mild repetitive closed head injury was paired with chronic variable stress over 2 weeks to produce persistent memory deficits and Tau accumulation. In this model, Fyn inhibition beginning 24 h after the trauma ended rescued memory performance and reduced phospho-Tau accumulation. Thus, inhibition of Fyn kinase may have therapeutic benefit in clinical Tauopathies.
Collapse
|
16
|
Diaz-Chávez A, Lajud N, Roque A, Cheng JP, Meléndez-Herrera E, Valdéz-Alarcón JJ, Bondi CO, Kline AE. Early life stress increases vulnerability to the sequelae of pediatric mild traumatic brain injury. Exp Neurol 2020; 329:113318. [PMID: 32305419 DOI: 10.1016/j.expneurol.2020.113318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is a risk factor for many psychopathologies that happen later in life. Although stress can occur in cases of child abuse, studies on non-accidental brain injuries in pediatric populations do not consider the possible increase in vulnerability caused by ELS. Hence, we sought to determine whether ELS increases the effects of pediatric mild traumatic brain injury (mTBI) on cognition, hippocampal inflammation, and plasticity. Male rats were subjected to maternal separation for 180 min per day (MS180) or used as controls (CONT) during the first 21 post-natal (P) days. At P21 the rats were anesthetized with isoflurane and subjected to a mild controlled cortical impact or sham injury. At P32 the rats were injected with the cell proliferation marker bromodeoxyuridine (BrdU, 500 mg/kg), then evaluated for spatial learning and memory in a water maze (P35-40) and sacrificed for quantification of Ki67+, BrdU+ and Iba1+ (P42). Neither MS180 nor mTBI impacted cognitive outcome when provided alone but their combination (MS180 + mTBI) decreased spatial learning and memory relative to Sham controls (p < .01). mTBI increased microglial activation and affected BrdU+ cell survival in the ipsilateral hippocampus without affecting proliferation rates. However, only MS180 + mTBI increased microglial activation in the area adjacent to the injury and the contralateral CA1 hippocampal subfield, and decreased cell proliferation in the ipsilateral neurogenic niche. Overall, the data show that ELS increases the vulnerability to the sequelae of pediatric mTBI and may be mediated by increased neuroinflammation.
Collapse
Affiliation(s)
- Arturo Diaz-Chávez
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
17
|
Calcineurin signaling as a target for the treatment of alcohol abuse and neuroinflammatory disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019. [PMID: 31601401 DOI: 10.1016/bs.pmbts.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Converging lines of evidence point to a significant role of neuroinflammation in a host of psychiatric conditions, including alcohol use disorder, TBI, and PTSD. A complex interaction of both peripheral and central signaling underlies processes involved in neuroinflammation. Calcineurin is a molecule that sits at the nexus of these processes and has been clearly linked to a number of psychiatric disorders including alcohol use disorder (AUD). Like its role in regulating peripheral immune cells, calcineurin (CN) plays an integral role in processes regulating neuroimmune function and neuroinflammatory processes. Targeting CN or elements of its signaling pathways at critical points may aid in the functional recovery from neuroinflammatory related disorders. In this review we will highlight the role of neuroinflammation and calcineurin signaling in AUD, TBI and stress-induced disorders and discuss recent findings demonstrating a therapeutic effect of immunosuppressant-induced calcineurin inhibition in a pre-clinical model of binge alcohol drinking.
Collapse
|
18
|
Lee B, Shim I, Lee H, Hahm DH. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats. Anim Cells Syst (Seoul) 2018; 22:305-316. [PMID: 30460112 PMCID: PMC6171448 DOI: 10.1080/19768354.2018.1517825] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation is considered a major factor in several neuropsychiatric disorders. Gypenosides (GPS) have pharmacological properties with multiple beneficial effects including antiinflammatory, antioxidative, and protective properties. The present study was performed to examine whether GPS shows anxiolytic-like effects in a model of chronic inflammation induced by injection of lipopolysaccharide (LPS) into the rat hippocampus. The effects of GPS on inflammatory factors in the hippocampus and the downstream mechanisms of these effects were also examined. Introduction of LPS into the lateral ventricle caused inflammatory reactions and anxiety-like symptoms in the rats. Daily treatment with GPS (25, 50, and 100 mg/kg) for 21 consecutive days significantly increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. Moreover, GPS administration significantly reduced the freezing response to contextual fear conditioning, and significantly decreased the levels of proinflammatory mediators, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and nuclear factor-kappaB (NF-κB), levels in the brain. Furthermore, GPS reduced LPS-induced elevated levels of Toll-like receptor 4 (TLR4) mRNA and inhibition of brain-derived neurotrophic factor (BDNF) mRNA levels. Taken together, these results suggest that GPS may have anxiolytic-like effects and may have novel therapeutic potential for anxiety-like behaviors caused by neuroinflammation. GPS may be useful for developing an agents for the treatment of neuropsychiatric disorders, such as anxiety, due to its antiinflammatory activities and the modulation of NF-κB/iNOS/TLR4/BDNF.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Lee B, Shim I, Lee H, Hahm DH. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:525-538. [PMID: 30181699 PMCID: PMC6115350 DOI: 10.4196/kjpp.2018.22.5.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
20
|
Lee B, Lee H. Systemic Administration of Curcumin Affect Anxiety-Related Behaviors in a Rat Model of Posttraumatic Stress Disorder via Activation of Serotonergic Systems. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:9041309. [PMID: 30018659 PMCID: PMC6029466 DOI: 10.1155/2018/9041309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-induced psychiatric disease characterized by impaired hyperarousal, fear extermination, depression, anxiety, and amnesic symptoms that may include the release of monoamines in the dread circuit. Curcumin (CUR), a major diarylheptanoid and polyphenolic component of Curcuma longa, reportedly possesses several pharmacological features, including antidiabetic, antiatherosclerotic, anticancer, and neuropsychiatric actions. But the anxiolytic-like effects of CUR and its mechanism of action in PTSD are unclear. The current research measured some anxiety-related behavioral responses to examine the effects of CUR on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) dysfunction. Rats received CUR (20, 50, or 100 mg/kg, i.p., once daily) for 14 days after SPS exposure. Administration of CUR significantly increased the number of central zone crossings in the open field test and reduced grooming behavior in the elevated plus maze (EPM) test and increased the number of open-arm visits on the EPM test. CUR administration significantly reduced freezing response to contextual fear conditioning. CUR recovered neurochemical abnormalities and SPS-induced decreased 5-HT tissue levels in the hippocampus, amygdala, and striatum. These results suggested that CUR has anxiolytic-like effects on biochemical and behavioral symptoms associated with anxiety. Thus, CUR may be a useful agent to alleviate or treat psychiatric disorders similar to those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Carbamoylated erythropoietin modulates cognitive outcomes of social defeat and differentially regulates gene expression in the dorsal and ventral hippocampus. Transl Psychiatry 2018; 8:113. [PMID: 29884778 PMCID: PMC5993867 DOI: 10.1038/s41398-018-0168-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Cognitive deficits are widespread in psychiatric disorders and frequently as debilitating as the affective component. Widely prescribed antidepressants for treating depressive disorders have limited efficacy in normalizing cognitive function. Erythropoietin (Epo) has been shown to improve cognitive function in schizophrenia and treatment resistant depressed patients. However, the potent elevation of red blood cell counts by Epo can cause hematological complications in non-anemic patients. We investigated a chemically engineered, posttranslational modification of Epo, carbamoylation, which renders it non-erythropoietic. We conducted mass-spectrometry-based peptide mapping of carbamoylated Epo (Cepo) and tested its ability to improve cognitive function after social defeat stress. Gene expression analysis in discrete brain regions was performed to obtain mechanistic insight of Cepo action. Cepo reversed stress-induced spatial working memory deficits while affecting long-term (24 h) novel object recognition in these rats. Contextual fear conditioning following defeat was enhanced by Cepo, but attenuated in controls. However, Cepo improved fear extinction in all rats compared to vehicle treatment. Cepo induced differential gene expression of BDNF, VGF, Arc, TH. and neuritin in the mPFC and discrete hippocampal subfields, with strongest induction in the dorsal hippocampus. Analysis of gene-brain region-behavior interactions showed that Cepo-induced neurotrophic mechanisms influence cognitive function. Carbamoylated erythropoietin can be developed as a therapeutic neurotrophic agent to treat cognitive dysfunction in neuropsychiatric diseases. Due to its distinct mechanism of action, it is unlikely to cross react with the activity of currently prescribed small molecule drugs and can be used as an add-on biologic drug.
Collapse
|
22
|
Kosari-Nasab M, Shokouhi G, Ghorbanihaghjo A, Abbasi MM, Salari AA. Anxiolytic- and antidepressant-like effects of Silymarin compared to diazepam and fluoxetine in a mouse model of mild traumatic brain injury. Toxicol Appl Pharmacol 2018; 338:159-173. [DOI: 10.1016/j.taap.2017.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/31/2022]
|
23
|
Sagarkar S, Mahajan S, Choudhary AG, Borkar CD, Kokare DM, Sakharkar AJ. Traumatic stress-induced persistent changes in DNA methylation regulate neuropeptide Y expression in rat jejunum. Neurogastroenterol Motil 2017; 29. [PMID: 28418087 DOI: 10.1111/nmo.13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Stress-induced chronic neuropsychiatric conditions such as anxiety are often co-morbid with gastrointestinal malfunctions. While we find enduring anxiety-like symptoms following minimal traumatic brain injury (MTBI) in rats, gastrointestinal consequences of MTBI remain elusive. METHODS In this study, we examined the effects of MTBI on a major gut peptide, neuropeptide Y (NPY) and gut motility. DNA methylation was studied as a possible epigenetic mechanism operative in the regulation of NPY expression in the gut. KEY RESULTS Minimal traumatic brain injury reduced the gut motility 48 hours and 30 days after trauma. The expression of DNA methyltransferase isoforms (DNMT1, DNMT3a, and DNMT3b) was altered in the jejunum 48 hours and 30 days after MTBI. However, the mRNA levels of growth arrest and DNA damage 45 (GADD45) isoforms, GADD45a, and GADD45b, which are believed to be involved in active DNA demethylation, initially decreased at 48 hours but subsequently increased after 30 days of trauma. Similarly, DNA hypomethylation at the NPY promoter region in the jejunum was correlated with the increase in NPY mRNA and protein levels 30 days post-trauma. On the other hand, DNA hypomethylation at 48 hours was associated with a decline in NPY expression. Treatment with 5-azacytidine (5-AzaC), a DNMT inhibitor, retarded DNA methylation and restored the NPY mRNA levels in the jejunum of MTBI-induced rats. CONCLUSIONS & INFERENCES These results suggest that DNA demethylation could be operative as an epigenetic mechanism in the long-term regulation of NPY gene expression to alter the gut motility during traumatic stress.
Collapse
Affiliation(s)
- S Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - S Mahajan
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - A G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - C D Borkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - D M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj, Nagpur University, Nagpur, India
| | - A J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
24
|
Glenn DE, Acheson DT, Geyer MA, Nievergelt CM, Baker DG, Risbrough VB. Fear learning alterations after traumatic brain injury and their role in development of posttraumatic stress symptoms. Depress Anxiety 2017; 34:723-733. [PMID: 28489272 DOI: 10.1002/da.22642] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 04/02/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND It is unknown how traumatic brain injury (TBI) increases risk for posttraumatic stress disorder (PTSD). One potential mechanism is via alteration of fear-learning processes that could affect responses to trauma memories and cues. We utilized a prospective, longitudinal design to determine if TBI is associated with altered fear learning and extinction, and if fear processing mediates effects of TBI on PTSD symptom change. METHODS Eight hundred fifty two active-duty Marines and Navy Corpsmen were assessed before and after deployment. Assessments included TBI history, PTSD symptoms, combat trauma and deployment stress, and a fear-potentiated startle task of fear acquisition and extinction. Startle response and self-reported expectancy and anxiety served as measures of fear conditioning, and PTSD symptoms were measured with the Clinician-Administered PTSD Scale. RESULTS Individuals endorsing "multiple hit" exposure (both deployment TBI and a prior TBI) showed the strongest fear acquisition and highest fear expression compared to groups without multiple hits. Extinction did not differ across groups. Endorsing a deployment TBI was associated with higher anxiety to the fear cue compared to those without deployment TBI. The association of deployment TBI with increased postdeployment PTSD symptoms was mediated by postdeployment fear expression when recent prior-TBI exposure was included as a moderator. TBI associations with increased response to threat cues and PTSD symptoms remained when controlling for deployment trauma and postdeployment PTSD diagnosis. CONCLUSIONS Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms.
Collapse
Affiliation(s)
- Daniel E Glenn
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| | - Dean T Acheson
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, CA, USA.,Research Service, VA San Diego Healthcare System, CA, USA
| | - Caroline M Nievergelt
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| | - Dewleen G Baker
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| | -
- Center of Excellence for Stress and Mental Health, San Diego Veterans Affairs Health Services, CA, USA.,Department of Psychiatry, University of California San Diego, CA, USA
| |
Collapse
|
25
|
Ogier M, Belmeguenai A, Lieutaud T, Georges B, Bouvard S, Carré E, Canini F, Bezin L. Cognitive Deficits and Inflammatory Response Resulting from Mild-to-Moderate Traumatic Brain Injury in Rats Are Exacerbated by Repeated Pre-Exposure to an Innate Stress Stimulus. J Neurotrauma 2017; 34:1645-1657. [PMID: 27901414 DOI: 10.1089/neu.2016.4741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is common in both military and civilian populations, and often results in neurobehavioral sequelae that impair quality of life in both patients and their families. Although individuals who are chronically exposed to stress are more likely to experience TBI, it is still unknown whether pre-injury stress influences the outcome after TBI. The present study tested whether behavioral and cognitive long-term outcome after TBI in rats is affected by prior exposure to an innate stress stimulus. Young adult male Sprague-Dawley rats were exposed to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) or to water (WAT); exposure was repeated eight times at irregular intervals over a 2-week period. Rats were subsequently subjected to either mild-to-moderate bilateral brain injury (lateral fluid percussion [LFP]) or sham surgery (Sham). Four experimental groups were studied: Sham-WAT, Sham-TMT, LFP-WAT and LFP-TMT. Compared with Sham-WAT rats, LFP-WAT rats exhibited transient locomotor hyperactivity without signs of anxiety, minor spatial learning acquisition and hippocampal long-term potentiation deficits, and lower baseline activity of the hypothalamic-pituitary-adrenal axis with slightly stronger reactivity to restraint stress. Exposure to TMT had only negligible effects on Sham rats, whereas it exacerbated all deficits in LFP rats except for locomotor hyperactivity. Early brain inflammatory response (8 h post-trauma) was aggravated in rats pre-exposed to TMT, suggesting that increased brain inflammation may sustain functional deficits in these rats. Hence, these data suggest that pre-exposure to stressful conditions can aggravate long-term deficits induced by TBI, leading to severe stress response deficits, possibly due to dysregulated inflammatory response.
Collapse
Affiliation(s)
- Michaël Ogier
- 1 Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France .,2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| | - Amor Belmeguenai
- 2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| | - Thomas Lieutaud
- 2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| | - Béatrice Georges
- 2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| | - Sandrine Bouvard
- 2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| | - Emilie Carré
- 1 Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France
| | - Frédéric Canini
- 1 Institut de Recherche Biomédicale des Armées , Brétigny-sur-Orge, France .,4 Ecole du Val de Grâce , Paris, France
| | - Laurent Bezin
- 2 Université Claude Bernard Lyon 1 , Bron, France .,3 Institute for Epilepsy , IDÉE, Bron, France
| |
Collapse
|
26
|
McNeal N, Anderson EM, Moenk D, Trahanas D, Matuszewich L, Grippo AJ. Social isolation alters central nervous system monoamine content in prairie voles following acute restraint. Soc Neurosci 2017; 13:173-183. [PMID: 28008793 DOI: 10.1080/17470919.2016.1276473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal models have shown that social isolation and other forms of social stress lead to depressive- and anxiety-relevant behaviors, as well as neuroendocrine and physiological dysfunction. The goal of this study was to investigate the effects of prior social isolation on neurotransmitter content following acute restraint in prairie voles. Animals were either paired with a same-sex sibling or isolated for 4 weeks. Plasma adrenal hormones and ex vivo tissue concentrations of monoamine neurotransmitters and their metabolites were measured following an acute restraint stressor in all animals. Isolated prairie voles displayed significantly increased circulating adrenocorticotropic hormone levels, as well as elevated serotonin and dopamine levels in the hypothalamus, and potentially decreased levels of serotonin in the frontal cortex. However, no group differences in monoamine levels were observed in the hippocampus or raphe. The results suggest that social stress may bias monoamine neurotransmission and stress hormone function to subsequent acute stressors, such as restraint. These findings improve our understanding of the neurobiological mechanisms underlying the consequences of social stress.
Collapse
Affiliation(s)
- Neal McNeal
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Eden M Anderson
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Deirdre Moenk
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Diane Trahanas
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Leslie Matuszewich
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|