1
|
Shi L, Tan Y, Zheng W, Cao G, Zhou H, Li P, Cui J, Song Y, Feng L, Li H, Shan W, Zhang B, Yi W. CTRP3 alleviates mitochondrial dysfunction and oxidative stress injury in pathological cardiac hypertrophy by activating UPRmt via the SIRT1/ATF5 axis. Cell Death Discov 2024; 10:53. [PMID: 38278820 PMCID: PMC10817931 DOI: 10.1038/s41420-024-01813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Disruption of mitochondrial protein homeostasis plays a key role in pathological cardiac hypertrophy; however, the mechanism of maintaining mitochondrial homeostasis in pathological cardiac hypertrophy remains unclear. In this study, we investigated the regulatory mechanisms of mitochondrial protein homeostasis in pathological cardiac hypertrophy. Wildtype (WT) mice, knockout mice, and mice transfected with lentivirus overexpressing mouse C1q-tumor necrosis factor-related protein-3 (CTRP3) underwent transverse aortic constriction or sham surgery. After 4 weeks, cardiac function, mitochondrial function, and oxidative stress injury were examined. For mechanistic studies, neonatal rat cardiomyocytes were treated with small interfering RNA or overexpression plasmids for the relevant genes. CTRP3 overexpression attenuated transverse aortic constriction (TAC) induced pathological cardiac hypertrophy, mitochondrial dysfunction, and oxidative stress injury compared to that in WT mice. TAC or Ang II resulted in compensatory activation of UPRmt, but this was not sufficient to counteract pathologic cardiac hypertrophy. CTRP3 overexpression further induced activation of UPRmt during pathologic cardiac hypertrophy and thereby alleviated pathologic cardiac hypertrophy, whereas CTRP3 knockout or knockdown inhibited UPRmt. ATF5 was a key regulatory molecule of UPRmt, as ATF5 knockout prevented the cardioprotective effect of CTRP3 in TAC mice. In vitro, SIRT1 was identified as a possible downstream CTRP3 effector molecule, and SIRT1 knockout blocked the cardioprotective effects of CTRP3. Our results also suggest that ATF5 may be regulated by SIRT1. Our study demonstrates that CTRP3 activates UPRmt via the SIRT1/ATF5 axis under pathological myocardial hypertrophy, thus attenuating mitochondrial dysfunction and oxidative stress injury.
Collapse
Affiliation(s)
- Lei Shi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanzhen Tan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenying Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guojie Cao
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haitao Zhou
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Panpan Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Li
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenju Shan
- Department of General Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bing Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Haq FU, Shoaib M, Ali Shah SW, Hussain H, Zahoor M, Ullah R, Bari A, Alotaibi A, Hayat MF. Antidepressant Activities of Synthesized Benzodiazepine Analogues in Mice. Brain Sci 2023; 13:brainsci13030523. [PMID: 36979333 PMCID: PMC10046342 DOI: 10.3390/brainsci13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Depression is a serious psychological disorder which negatively affects human feelings and actions. The use of antidepressants is the therapy of choice while treating depression. However, such drugs are associated with severe side effects. There is a need for efficient and harmless drugs. In this connection, the present study was designed to synthesize several substituted benzodiazepine derivatives and explore their antidepressant potentials in an animal model. The chalcone backbone was initially synthesized, which was then converted into several substituted benzodiazepine derivatives designated as 1-6. The synthesized compounds were identified using spectroscopic techniques. The experimental animals (mice) after acclimatation were subjected to forced swim test (FST) and tail suspension test (TST) after oral administration of the synthesized compounds to evaluate their antidepressant potentials. At the completion of the mentioned test, the animals were sacrificed to determine GABA level in their brain hippocampus. The chloro-substituent compound (2) significantly reduced the immobility time (80.81 ± 1.14 s; p < 0.001 at 1.25 mg/kg body weight and 75.68 ± 3.73 s with p < 0.001 at 2.5 mg/kg body weight dose), whereas nitro-substituent compound (5) reduced the immobility time to 118.95 ± 1.31 and 106.69 ± 3.62 s (p < 0.001), respectively, at the tested doses (FST). For control groups, the recorded immobility time recorded was 177.24 ± 1.82 s. The standard drug diazepam significantly reduced immobility time to 70.13 ± 4.12 s while imipramine reduced it to 65.45 ± 2.81 s (p < 0.001). Similarly, in the TST, the compound 2 reduced immobility time to 74.93 ± 1.14 s (p < 0.001) and 70.38 ± 1.43 s (p < 0.001), while compound 5 reduced it to 88.23 ± 1.89 s (p < 0.001) and 91.31 ± 1.73 s (p < 0.001) at the tested doses, respectively, as compared to the control group immobility time (166.13 ± 2.18 s). The compounds 1, 3, 4, and 6 showed weak antidepressant responses as compared to compounds 2 and 5. The compounds 2 and 5 also significantly enhanced the GABA level in the brain's hippocampus of experimental animals, indicating the possible involvement of GABAergic mechanism in alleviating the depression which is evident from the significant increase in mRNA levels for the α subunit of the GABAA receptors in the prefrontal cortex of mice as well. From the results, it can be concluded that compound 2 and 5 could be used as alternative drugs of depression. However, further exploration in this connection is needed in other animal models in order to confirm the observed results in this study.
Collapse
Affiliation(s)
- Faizan Ul Haq
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Haya Hussain
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Faisal Hayat
- North West Institute of Health and Sciences, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
4
|
Targeting Transcription Factors ATF5, CEBPB and CEBPD with Cell-Penetrating Peptides to Treat Brain and Other Cancers. Cells 2023; 12:cells12040581. [PMID: 36831248 PMCID: PMC9954556 DOI: 10.3390/cells12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Developing novel therapeutics often follows three steps: target identification, design of strategies to suppress target activity and drug development to implement the strategies. In this review, we recount the evidence identifying the basic leucine zipper transcription factors ATF5, CEBPB, and CEBPD as targets for brain and other malignancies. We describe strategies that exploit the structures of the three factors to create inhibitory dominant-negative (DN) mutant forms that selectively suppress growth and survival of cancer cells. We then discuss and compare four peptides (CP-DN-ATF5, Dpep, Bpep and ST101) in which DN sequences are joined with cell-penetrating domains to create drugs that pass through tissue barriers and into cells. The peptide drugs show both efficacy and safety in suppressing growth and in the survival of brain and other cancers in vivo, and ST101 is currently in clinical trials for solid tumors, including GBM. We further consider known mechanisms by which the peptides act and how these have been exploited in rationally designed combination therapies. We additionally discuss lacunae in our knowledge about the peptides that merit further research. Finally, we suggest both short- and long-term directions for creating new generations of drugs targeting ATF5, CEBPB, CEBPD, and other transcription factors for treating brain and other malignancies.
Collapse
|
5
|
Ueno H, Takahashi Y, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Comprehensive behavioral study of C57BL/6.KOR-ApoE shl mice. Transl Neurosci 2023; 14:20220284. [PMID: 37396111 PMCID: PMC10314129 DOI: 10.1515/tnsci-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Apolipoprotein E (ApoE) is associated with Alzheimer's disease (AD) and cognitive dysfunction in elderly individuals. There have been extensive studies on behavioral abnormalities in ApoE-deficient (Apoeshl) mice, which have been described as AD mouse models. Spontaneously hyperlipidemic mice were discovered in 1999 as ApoE-deficient mice due to ApoE gene mutations. However, behavioral abnormalities in commercially available Apoeshl mice remain unclear. Accordingly, we aimed to investigate the behavioral abnormalities of Apoeshl mice. Results Apoeshl mice showed decreased motor skill learning and increased anxiety-like behavior toward heights. Apoeshl mice did not show abnormal behavior in the Y-maze test, open-field test, light/dark transition test, and passive avoidance test. Conclusion Our findings suggest the utility of Apoeshl mice in investigating the function of ApoE in the central nervous system.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Tetsuji Miyazaki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
6
|
Chronic Inhibition of Aggressive Behavior Induces Behavioral Change in Mice. Behav Neurol 2022; 2022:7630779. [PMID: 36619803 PMCID: PMC9815925 DOI: 10.1155/2022/7630779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Suppression of anger is more common than its expression among Asian individuals. Emotional suppression is considered an unhealthy emotional regulation. Most studies on emotional suppression have concluded that suppression adversely affects social outcomes, with approximately 5% of the world's population suffering from emotional disorders. However, anger suppression has not received academic attention, and details of the effects of chronic anger suppression on the central nervous system remain unclear. In this study, we performed the resident-intruder test to investigate the effect of chronic suppression of aggressive behavior in mice using a behavioral test battery and to clarify whether suppression of this aggressive behavior is stressful for mice. Mice chronically inhibited aggressive behavior and lost weight. Mice with inhibited aggressive behavior showed a reduced percentage of immobility time during the tail suspension test as well as no changes in activity, anxiety-like behavior, muscle strength, or temperature sensitivity. This study provides scientific evidence for the effects of chronic aggressive behavior inhibition on the body and central nervous system.
Collapse
|
7
|
The prevention of home-cage grid climbing affects muscle strength in mice. Sci Rep 2022; 12:15263. [PMID: 36088409 PMCID: PMC9464241 DOI: 10.1038/s41598-022-19713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExperimenters and treatment methods are the major contributors to data variability in behavioral neuroscience. However, home cage characteristics are likely associated with data variability. Mice housed in breeding cages spontaneously exhibit behavioral patterns such as biting into the wire grid and climbing on the grid lid. We aimed to clarify the effect of covering the stainless steel wire grid lid in commonly used home cage with Plexiglas to prevent climbing on muscle strength in mice. Furthermore, we investigated the effects of climbing prevention on activity and anxiety-like behavior, and the impact of climbing prevention during the postnatal development period and adulthood on muscle strength. Muscle strength, anxiety-like behavior, and locomotor activity were assessed by a battery of tests (wire hang, suspension, grip strength, rotarod, elevated-plus maze, and open field tests). Mice prevented from climbing the wire grid during postnatal development displayed lower muscle strength than those able to climb. Moreover, mice prevented from climbing for 3 weeks following maturity had weakened muscles. The muscle strength was decreased with 3 weeks of climbing prevention in even 1-year-old mice. In summary, the stainless steel wire grid in the home cage contributed to the development and maintenance of muscle strength in mice.
Collapse
|
8
|
Paerhati P, Liu J, Jin Z, Jakoš T, Zhu S, Qian L, Zhu J, Yuan Y. Advancements in Activating Transcription Factor 5 Function in Regulating Cell Stress and Survival. Int J Mol Sci 2022; 23:ijms23137129. [PMID: 35806136 PMCID: PMC9266924 DOI: 10.3390/ijms23137129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Collapse
Affiliation(s)
- Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Shunyin Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Lan Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
- Correspondence:
| |
Collapse
|
9
|
Ueno H, Takahashi Y, Murakami S, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effect of simultaneous testing of two mice in the tail suspension test and forced swim test. Sci Rep 2022; 12:9224. [PMID: 35654971 PMCID: PMC9163059 DOI: 10.1038/s41598-022-12986-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
In mouse studies, the results of behavioural experiments are greatly affected by differences in the experimental environment and handling methods. The Porsolt forced swim test and tail suspension test are widely used to evaluate predictive models of depression-like behaviour in mice. It has not been clarified how the results of these tests are affected by testing single or multiple mice simultaneously. Therefore, this study evaluated the differences between testing two mice simultaneously or separately. To investigate the effect of testing multiple mice simultaneously, the Porsolt forced swim test and tail suspension test were performed in three patterns: (1) testing with an opaque partition between two mice, (2) testing without a partition between two mice, and (3) testing a single mouse. In the Porsolt forced swim test, the mice tested simultaneously without a partition demonstrated increased immobility time as compared to mice tested alone. No difference in immobility time was observed between the three groups in the tail suspension test. Our results showed that the environment of behavioural experiments investigating depression-like behaviour in mice can cause a difference in depression-like behaviour. The results of this experiment indicated that it is necessary to describe the method used for behavioural testing in detail.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
10
|
Clemastine Rescues Chemotherapy-Induced Cognitive Impairment by Improving White Matter Integrity. Neuroscience 2022; 484:66-79. [PMID: 35007691 DOI: 10.1016/j.neuroscience.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
With the improvement of cancer treatment techniques, increasing attention has been given to chemotherapy-induced cognitive impairment through white matter injury. Clemastine fumarate has been shown to enhance white matter integrity in cuprizone- or hypoxia-induced demyelination mouse models. However, whether clemastine can be beneficial for reversing chemotherapy-induced cognitive impairment remains unexplored. In this study, the mice received oral administration of clemastine after chemotherapy. The open-field test and Morris water maze test were used to evaluate their anxiety, locomotor activity and cognitive function. Luxol Fast Blue staining and transmission electron microscopy were used to detect the morphological damage to the myelin. Demyelination and damage to the mature oligodendrocytes and axons were observed by immunofluorescence and western blotting. Clemastine significantly improved their cognitive function and ameliorated white matter injury in the chemotherapy-treated mice. Clemastine enhanced myelination, promoted oligodendrocyte precursor cell differentiation and increased the neurofilament 200 protein levels in the corpus callosum and hippocampus. We concluded that clemastine rescues cognitive function damage caused by chemotherapy through improving white matter integrity. Remyelination, oligodendrocyte differentiation and the increase of neurofilament protein promoted by clemastine are potential strategies for reversing the cognitive dysfunction caused by chemotherapy.
Collapse
|
11
|
Chakraborti A, Graham C, Chehade S, Vashi B, Umfress A, Kurup P, Vickers B, Chen HA, Telange R, Berryhill T, Van Der Pol W, Powell M, Barnes S, Morrow C, Smith DL, Mukhtar MS, Watts S, Kennedy G, Bibb J. High Fructose Corn Syrup-Moderate Fat Diet Potentiates Anxio-Depressive Behavior and Alters Ventral Striatal Neuronal Signaling. Front Neurosci 2021; 15:669410. [PMID: 34121997 PMCID: PMC8187874 DOI: 10.3389/fnins.2021.669410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The neurobiological mechanisms that mediate psychiatric comorbidities associated with metabolic disorders such as obesity, metabolic syndrome and diabetes remain obscure. High fructose corn syrup (HFCS) is widely used in beverages and is often included in food products with moderate or high fat content that have been linked to many serious health issues including diabetes and obesity. However, the impact of such foods on the brain has not been fully characterized. Here, we evaluated the effects of long-term consumption of a HFCS-Moderate Fat diet (HFCS-MFD) on behavior, neuronal signal transduction, gut microbiota, and serum metabolomic profile in mice to better understand how its consumption and resulting obesity and metabolic alterations relate to behavioral dysfunction. Mice fed HFCS-MFD for 16 weeks displayed enhanced anxiogenesis, increased behavioral despair, and impaired social interactions. Furthermore, the HFCS-MFD induced gut microbiota dysbiosis and lowered serum levels of serotonin and its tryptophan-based precursors. Importantly, the HFCS-MFD altered neuronal signaling in the ventral striatum including reduced inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β), increased expression of ΔFosB, increased Cdk5-dependent phosphorylation of DARPP-32, and reduced PKA-dependent phosphorylation of the GluR1 subunit of the AMPA receptor. These findings suggest that HFCS-MFD-induced changes in the gut microbiota and neuroactive metabolites may contribute to maladaptive alterations in ventral striatal function that underlie neurobehavioral impairment. While future studies are essential to further evaluate the interplay between these factors in obesity and metabolic syndrome-associated behavioral comorbidities, these data underscore the important role of peripheral-CNS interactions in diet-induced behavioral and brain function. This study also highlights the clinical need to address neurobehavioral comorbidities associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ayanabha Chakraborti
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher Graham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sophie Chehade
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijal Vashi
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alan Umfress
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pradeep Kurup
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Benjamin Vickers
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - H. Alexander Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rahul Telange
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Taylor Berryhill
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - William Van Der Pol
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mickie Powell
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama at Birmingham Medical Center, Birmingham, AL, United States
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gregory Kennedy
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Umemura M, Kaneko Y, Tanabe R, Takahashi Y. ATF5 deficiency causes abnormal cortical development. Sci Rep 2021; 11:7295. [PMID: 33790322 PMCID: PMC8012588 DOI: 10.1038/s41598-021-86442-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural flexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 deficiency also affected the basal processes of radial glial cells, which serve as a scaffold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 deficiency affects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours.
Collapse
Affiliation(s)
- Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yasuyuki Kaneko
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ryoko Tanabe
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
13
|
Expression patterns of activating transcription factor 5 (atf5a and atf5b) in zebrafish. Gene Expr Patterns 2020; 37:119126. [PMID: 32663618 DOI: 10.1016/j.gep.2020.119126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The Activating Transcription Factor 5 (ATF5) is a basic leucine-zipper (bZIP) transcription factor (TF) with proposed stress-protective, anti-apoptotic and oncogenic roles which were all established in cell systems. In whole animals, Atf5 function seems highly context dependent. Atf5 is strongly expressed in the rodent nose and mice knockout (KO) pups have defective olfactory sensory neurons (OSNs), smaller olfactory bulbs (OB), while adults are smell deficient. It was therefore proposed that Atf5 plays an important role in maturation and maintenance of OSNs. Atf5 expression was also described in murine liver and bones where it appears to promote differentiation of progenitor cells. By contrast in the rodent brain, Atf5 was first described as uniquely expressed in neuroprogenitors and thus, proposed to drive their proliferation and inhibit their differentiation. However, it was later also found in mature neurons stressing the need for additional work in whole animals. ATF5 is well conserved with two paralogs, atf5a and atf5b in zebrafish. Here, we present the expression patterns for both from 6 h (hpf) to 5day post-fertilization (dpf). We found early expression for both genes, and from 1dpf onwards overlapping expression patterns in the inner ear and the developing liver. In the brain, at 24hpf both atf5a and atf5b were expressed in the forebrain, midbrain, and hindbrain. However, from 2dpf and onwards we only detected atf5a expression namely in the olfactory bulbs, the mesencephalon, and the metencephalon. We further evidenced additional differential expression for atf5a in the sensory neurons of the olfactory organs, and for atf5b in the neuromasts, that form the superficial sensory organ called the lateral line (LL). Our results establish the basis for future functional analyses in this lower vertebrate.
Collapse
|
14
|
Ueno H, Takahashi Y, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, Okamoto M, Ishihara T. Effects of repetitive gentle handling of male C57BL/6NCrl mice on comparative behavioural test results. Sci Rep 2020; 10:3509. [PMID: 32103098 PMCID: PMC7044437 DOI: 10.1038/s41598-020-60530-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023] Open
Abstract
Mice are the most commonly used laboratory animals for studying diseases, behaviour, and pharmacology. Behavioural experiment battery aids in evaluating abnormal behaviour in mice. During behavioural experiments, mice frequently experience human contact. However, the effects of repeated handling on mice behaviour remains unclear. To minimise mice stress, methods of moving mice using transparent tunnels or cups have been recommended but are impractical in behavioural tests. To investigate these effects, we used a behavioural test battery to assess differences between mice accustomed to the experimenter’s handling versus control mice. Repeatedly handled mice gained slightly more weight than control mice. In behavioural tests, repeatedly handled mice showed improved spatial cognition in the Y-maze test and reduced anxiety-like behaviour in the elevated plus-maze test. However, there was no change in anxiety-like behaviour in the light/dark transition test or open-field test. Grip strength, rotarod, sociability, tail suspension, Porsolt forced swim, and passive avoidance tests revealed no significant differences between repeatedly handled and control mice. Our findings demonstrated that mice repeatedly handled by the experimenter before behavioural tests showed reduced anxiety about high altitudes and improved spatial cognition, suggesting that repeated contact can affect the results of some behavioural tests.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan.
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
15
|
Fluoxetine Attenuated Anxiety-Like Behaviors in Streptozotocin-Induced Diabetic Mice by Mitigating the Inflammation. Mediators Inflamm 2019; 2019:4315038. [PMID: 31396018 PMCID: PMC6664488 DOI: 10.1155/2019/4315038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022] Open
Abstract
Patients with diabetes mellitus (DM) showed an increased risk of anxiety. High anxiety levels are also shown to increase stress of diabetic patients, which may contribute to poor clinical outcomes. The mechanisms underlying the development of anxiety disorders in diabetic patients remain unknown. As a result, there are no available treatments yet. Here, we tested the hypothesis that glial cells in the hippocampal area of DM mice might be responsible for their anxiety-like behaviors. Furthermore, we postulated that treatment with antidepressant, fluoxetine, could reduce anxiety behaviors and prevent the dysregulation of glial cells (oligodendrocyte and astrocyte) in DM mice. Diabetic mice were administered a single injection of streptozotocin (STZ), followed by treatment with fluoxetine. Mice were then tested on Y maze, open field, dark and light transition, and elevated plus maze tests to measure the status of anxiety and cognition. After completing these behavioral tests, mice were sacrificed and western blot was used to detect the oligodendrocyte and astrocyte maker proteins in hippocampal tissues. Emphasis was directed towards adult oligodendrocyte precursor cells (OPCs) and their marker protein to measure their proliferation and differentiation. We found that fluoxetine could effectively mitigate the level of anxiety and attenuate the cognitive dysfunction in diabetic mice. Meanwhile, fluoxetine inhibited astrocyte activation in mice exposed to STZ, prevented the loss of myelin basic protein (MBP), and affected the function of OPCs in these diabetic mice. The results suggested that the changes of these glial cells in the brains of diabetic mice might be related to the high anxiety levels and cognitive deficit in DM mice. Fluoxetine could ameliorate the high anxiety level and prevent cognitive deficit via inhibiting astrocyte activation and repairing the oligodendrocyte damage.
Collapse
|
16
|
Hattori S, Okumura Y, Takao K, Yamaguchi Y, Miyakawa T. Open source code for behavior analysis in rodents. Neuropsychopharmacol Rep 2019; 39:67-69. [PMID: 30659767 PMCID: PMC7292282 DOI: 10.1002/npr2.12047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022] Open
Abstract
Aim We have conducted a series of behavioral tests, which cover a broad range of behavioral domains, on various strains of genetically engineered mice. For the behavioral screening, we have been using Image J plugins that we developed for most of the tests in the battery. Our behavioral analysis system with the plugins enables systematic and automated image analysis of behavior. The plugins are freely available on the “Mouse Phenotype Database” website (http://www.mouse-phenotype.org/software.html). Here, we release the source code of the plugins in a Git repository with the aim of promoting their use and expanding their functionality. Methods We published the source code of the Image J plugins for behavioral analysis at Git repository (https://github.com/neuroinformatics). The source code for light/dark transition, elevated plus maze, open filed, T‐maze, and fear conditioning tests was made publicly available in the repository. Conclusions The source code of the plugins for the behavioral tests as well as the pre‐compiled binaries can be freely obtained. The open source code could promote the development and modification of the plugins for additional behavioral indices in these tests and for other behavioral tests. We developed the Image J plugins for behavioral analysis, and the pre‐compiled plugins are freely available on the website of “Mouse Phenotype Database.” Here, we released the source code of the plugins in the Git repository.
![]()
Collapse
Affiliation(s)
- Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoshihiro Okumura
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Keizo Takao
- Division of Animal Resources and Development, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yoko Yamaguchi
- Neuroinformatics Unit, Integrative Computational Brain Science Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
17
|
Fujii K, Koshidaka Y, Adachi M, Takao K. Effects of chronic fentanyl administration on behavioral characteristics of mice. Neuropsychopharmacol Rep 2018; 39:17-35. [PMID: 30506634 PMCID: PMC7292323 DOI: 10.1002/npr2.12040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 01/16/2023] Open
Abstract
Background Fentanyl, a synthetic opioid categorized as a narcotic analgesic, has a 100‐ to 200‐fold stronger effect than most opioids, such as morphine. Fatal accidents due to chronic use and abuse of fentanyl are a worldwide social problem. One reason for the abuse of fentanyl is its psychostimulant effects that could induce behavioral changes. The effects of chronic fentanyl administration on behavior, however, are unclear. Methods Adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d i.p.), and various behaviors were assessed using a behavioral test battery. Results Mice chronically administered a high dose of fentanyl (0.3 mg/kg/d) exhibited decreased anxiety‐like behavior as assessed by the open field and elevated plus maze tests. On the other hand, interruption of fentanyl administration led to increased anxiety‐like behavior as observed in the light and dark transition test. The hot plate test revealed that chronic administration of fentanyl reduced pain sensitivity. High‐dose chronic fentanyl administration reduced the locomotor stimulatory effects of cocaine. The results, however, failed to reach the threshold for study‐wide statistical significance. Conclusion Chronic fentanyl administration induces some behavioral changes in mice. Although further studies are needed to clarify the underlying mechanisms of the behavioral effects of chronic fentanyl administration, our findings suggest that fentanyl is safe under properly controlled conditions. To investigate the effects of long‐term fentanyl use on brain function, adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d ip) and analyzed in a behavioral test battery. Chronic fentanyl administration reduced anxiety‐like behavior, pain sensitivity, and the locomotor stimulatory effects of cocaine in mice. The results, however, failed to reach the threshold for study‐wide statistical significance.![]()
Collapse
Affiliation(s)
- Kazuki Fujii
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Katano T, Takao K, Abe M, Yamazaki M, Watanabe M, Miyakawa T, Sakimura K, Ito S. Distribution of Caskin1 protein and phenotypic characterization of its knockout mice using a comprehensive behavioral test battery. Mol Brain 2018; 11:63. [PMID: 30359304 PMCID: PMC6202847 DOI: 10.1186/s13041-018-0407-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK)-interacting protein 1 (Caskin1) is a direct binding partner of the synaptic adaptor protein CASK. Because Caskin1 forms homo-multimers and binds not only CASK but also other neuronal proteins in vitro, it is anticipated to have neural functions; but its exact role in mammals remains unclear. Previously, we showed that the concentration of Caskin1 in the spinal dorsal horn increases under chronic pain. To characterize this protein, we generated Caskin1-knockout (Caskin1-KO) mice and specific anti-Caskin1 antibodies. Biochemical and immunohistochemical analyses demonstrated that Caskin1 was broadly distributed in the whole brain and spinal cord, and that it primarily localized at synapses. To elucidate the neural function of Caskin1 in vivo, we subjected Caskin1-KO mice to comprehensive behavioral analysis. The mutant mice exhibited differences in gait, enhanced nociception, and anxiety-like behavior relative to their wild-type littermates. In addition, the knockouts exhibited strong freezing responses, with or without a cue tone, in contextual and cued-fear conditioning tests as well as low memory retention in the Barnes Maze test. Taken together, these results suggest that Caskin1 contributes to a wide spectrum of behavioral phenotypes, including gait, nociception, memory, and stress response, in broad regions of the central nervous system.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| | - Keizo Takao
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194 Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
- Department of Neurology, University of California, San Francisco, 94158 USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638 Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, National Institute of Physiological Sciences NINS, Okazaki, Aichi 444-8585 Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192 Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata, 573-1010 Japan
| |
Collapse
|