1
|
Peng W, Wang B, Jiang W, Wan Y, Li R, Jin S. Effects of voluntary chronic intermittent access to ethanol on the behavioral performance in adult C57BL/6 J mice. Behav Brain Res 2024; 474:115183. [PMID: 39117149 DOI: 10.1016/j.bbr.2024.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Chronic alcohol drinking increases the risk of alcohol use disorders, causing various neurological disorders. However, the impact of different ethanol levels on a spectrum of behaviors during chronic drinking remains unclear. In this study, we established an intermittent access to ethanol in a two-bottle choice (IA2BC) procedure to explore the dose-dependent effects of ethanol on the behavioral performance of C57BL/6 J mice. METHODS Adult male C57BL/6 J mice were provided voluntary access to different ethanol concentrations (0 %, 5 %, 10 %, and 20 % ethanol) under a 12-week IA2BC paradigm. A battery of behavioral tests was administered to assess alterations in pain threshold, anxiety-like behaviors, locomotor activity, motor coordination, and cognition. Ethanol consumption and preference were monitored during each session. Moreover, the liver, heart, and lung tissues were examined using pathological microscopy. RESULTS The average (standard deviation) ethanol consumption of mice under the IA2BC paradigm increased dose-dependently to 5.1 (0.2), 8.7 (0.7), and 15.9 (0.8) g/kg/24 h with 5 %, 10 %, and 20 % ethanol, respectively. However, there is no significant difference in ethanol preference among all the ethanol groups. Chronic ethanol drinking caused hyperalgesia, cognitive impairment, and motor incoordination, but caused no changes in body temperature, locomotor activity, or anxiety-like behaviors. Minor histopathological alterations in the liver were detected; however, no major abnormal pathology was observed in the heart or lungs. CONCLUSION These findings clarify the link between ethanol dosage and behavioral changes in mice over a 12-week IA2BC paradigm, thereby bridging the knowledge gap regarding the effects of chronic ethanol drinking on neurological disorders.
Collapse
Affiliation(s)
- Wenyi Peng
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wanguo Jiang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Yang Wan
- Department of Hematology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Rui Li
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
2
|
Çon N, Mercan S, Küçüköner A, Çalişkan N. Adolescent intermittent ethanol use in male rats do not change cerebellar cell numbers but initiate astroglial reaction. Int J Dev Neurosci 2024; 84:177-189. [PMID: 38327108 DOI: 10.1002/jdn.10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Alcohol consumption during adolescence causes negative structural changes in the cerebellum and can lead to cognitive and motor skill disorders. Unfortunately, the age at which individuals begin drinking alcohol has decreased in recent years, which has drawn attention to the effects of alcohol on neurological changes during preadolescence. In this study, we investigated the effects of adolescent intermittent ethanol (AIE) exposure on the cellular composition of the cerebellum in male rats, particularly when alcohol consumption begins early. The male rats received eight doses of intermittent intraperitoneal injection of 25% (v/v) ethanol (3 g/kg) or saline from postnatal days (PND) 25 to PND 38. In rats, 28-42 days old corresponds to 10-18 years old in humans. Two hours after the last injection, the cells, neurons, and non-neuronal cells in the cerebellum were immunocytochemically labeled and the total numbers of related cells were calculated using the Isotropic Fractionator method. We found that AIE exposure does not change the cell numbers of the cerebellum in the short term, but it does activate astrocytes in the white matter of the cerebellum. These findings suggest that alcohol use during adolescence impairs the innate immune system and negatively affects brain plasticity.
Collapse
Affiliation(s)
- Nurhan Çon
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Sevcan Mercan
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Asuman Küçüköner
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| | - Nüket Çalişkan
- Department of Medical Services and Techniques, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
3
|
de Oliveira IG, Queiroz LY, da Silva CCS, Cartágenes SC, Fernandes LMP, de Souza-Junior FJC, Bittencourt LO, Lima RR, Martins MD, Schmidt TR, Fontes-Junior EA, Maia CDSF. Ethanol binge drinking exposure during adolescence displays long-lasting motor dysfunction related to cerebellar neurostructural damage even after long-term withdrawal in female Wistar rats. Biomed Pharmacother 2024; 173:116316. [PMID: 38394853 DOI: 10.1016/j.biopha.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Ethanol is one of the psychoactive substances most used by young individuals, usually in an intermittent and episodic manner, also called binge drinking. In the adolescent period, brain structures undergo neuromaturation, which increases the vulnerability to psychotropic substances. Our previous studies have revealed that ethanol binge drinking during adolescence elicits neurobehavioral alterations associated with brain damage. Thus, we explored the persistence of motor function impairment and cerebellum damage in the context of ethanol withdrawal periods (emerging adulthood and adult life) in adolescent female rats. Female Wistar rats (35 days old) received orally 4 cycles of ethanol (3.0 g/kg/day) or distilled water in 3 days on-4 days off paradigm (35th until 58th day of life). Motor behavioral tests (open field, grip strength, beam walking, and rotarod tests) and histological assays (Purkinje's cell density and NeuN-positive cells) were assessed on the 1-, 30-, and 60-days of binge alcohol exposure withdrawal. Our findings demonstrate that the adolescent binge drinking exposure paradigm induced cerebellar cell loss in all stages evaluated, measured through the reduction of Purkinje's cell density and granular layer neurons. The cerebellar tissue alterations were accompanied by behavioral impairments. In the early withdrawal, the reduction of spontaneous movement, incoordination, and unbalance was seen. However, the grip strength reduction was found at long-term withdrawal (60 days of abstinence). The cerebellum morphological changes and the motor alterations persisted until adulthood. These data suggest that binge drinking exposure during adolescence causes motor function impairment associated with cerebellum damage, even following a prolonged withdrawal, in adult life.
Collapse
Affiliation(s)
- Igor Gonçalves de Oliveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Letícia Yoshitome Queiroz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Carla Cristiane Soares da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Sabrina Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | | | - Fábio José Coelho de Souza-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | | | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Enéas Andrade Fontes-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil.
| |
Collapse
|
4
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent intermittent ethanol exposure alters adult exploratory and affective behaviors, and cerebellar Grin2b expression in C57BL/6J mice. Drug Alcohol Depend 2023; 253:111026. [PMID: 38006668 PMCID: PMC10990063 DOI: 10.1016/j.drugalcdep.2023.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/17/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein (FMR1), glutamate receptors (Grin2a, Grin2b and Grm5) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2b (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2b expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE.
Collapse
Affiliation(s)
- Kati Healey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Renee C Waters
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
| | - Sherilynn G Knight
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Gabriela M Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States; University of North Carolina at Chapel Hill School of Medicine, NC 27516, United States
| | - Brooke N Jones
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Mariah J Shobande
- Department of Chemical, Biological and Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Jaela G Melton
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 323 Foster St., Durham, NC 27701, United States
| | - Antoniette M Maldonado-Devincci
- Department of Psychology, Hairston College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, United States.
| |
Collapse
|
5
|
Adekomi DA, Olajide OJ, Adewale OO, Okesina AA, Fatoki JO, Falana BA, Adeniyi TD, Adegoke AA, Ojo WA, Alabi SO. D-ribose-L-cysteine exhibits neuroprotective activity through inhibition of oxido-behavioral dysfunctions and modulated activities of neurotransmitters in the cerebellum of Juvenile mice exposed to ethanol. Drug Chem Toxicol 2023; 46:746-756. [PMID: 35723231 DOI: 10.1080/01480545.2022.2088783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/03/2022]
Abstract
Alcohol exposure to the cerebellum has been known to trigger cerebellar dysfunctions through several mechanisms. This present study was designed to evaluate the repealing effect of D-ribose-L-cysteine (DRLC) on alcohol-induced cerebellar dysfunctions in juvenile BALB/c mice. The animals were randomly divided into 4 groups (n = 10 per group). Mice were given oral administration of normal saline (control), DRLC (100 mg/kg, p.o), ethanol (0.2 mL of 10% w/v), or DRLC (100 mg/kg, p.o) + ethanol (0.2 mL of 10% w/v). On day 29 of the study (i.e., 24 h after the administration of the last respective doses), neurochemical quantification of the respective levels of serotonin and dopamine, lipid peroxidation, total antioxidant, superoxide dismutase, and glutathione peroxidase in the cerebellar tissues of the mice were analyzed. Compared with the saline-treated group, the studied neurochemical indices were modulated across the various experimental groups. The administration of ethanol significantly modulates the levels of monoamine neurotransmitters (serotonin and dopamine) as well as contents of total antioxidants, activities of superoxide dismutase, and glutathione peroxidase, with a concurrently increased level of lipid peroxidase in the cerebellar tissue of the mice. DRLC significantly reverses these effects in the DRLC + ethanol co-treated group. Combined exposure to DRLC + ethanol counteracts the deleterious effect of ethanol in the cerebellum of juvenile BALB/c mice via monoamine neurotransmitter, lipid peroxidation, total antioxidant status, superoxide dismutase, and glutathione peroxidase action pathways. Therefore, DRLC could be a pharmacologic or therapeutic agent in attenuating the deleterious effects of alcohol on the cerebellum.
Collapse
Affiliation(s)
- Damilare Adedayo Adekomi
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Olamide Janet Olajide
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Omowumi Oyeronke Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | | | - John Olabode Fatoki
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Osun State University, Osogbo, Nigeria
| | - Benedict Abiola Falana
- Department of Anatomy, Neuroscience and Cell Biology Unit, Osun State University, Osogbo, Nigeria
| | - Temidayo Daniel Adeniyi
- Department of Medical Laboratory Science, Faculty of Allied Health Science, University of Medical Sciences, Ondo State, Nigeria
| | | | - Waliu Adetunji Ojo
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | |
Collapse
|
6
|
Healey K, Waters RC, Knight SG, Wandling GM, Hall NI, Jones BN, Shobande MJ, Melton JG, Pandey SC, Scott Swartzwelder H, Maldonado-Devincci AM. Adolescent Intermittent Ethanol Exposure Alters Adult Exploratory and Affective Behaviors, and Cerebellar Grin2B Expression in C57BL/6J Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528396. [PMID: 36824954 PMCID: PMC9949091 DOI: 10.1101/2023.02.13.528396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Binge drinking is one of the most common patterns (more than 90%) of alcohol consumption by young people. During adolescence, the brain undergoes maturational changes that influence behavioral control and affective behaviors, such as cerebellar brain volume and function in adulthood. We investigated long-term impacts of adolescent binge ethanol exposure on affective and exploratory behaviors and cerebellar gene expression in adult male and female mice. Further, the cerebellum is increasingly recognized as a brain region integrating a multitude of behaviors that span from the traditional primary sensory-motor to affective functions, such as anxiety and stress reactivity. Therefore, we investigated the persistent effects of adolescent intermittent ethanol (AIE) on exploratory and affective behaviors and began to elucidate the role of the cerebellum in these behaviors through excitatory signaling gene expression. We exposed C57BL/6J mice to AIE or air (control) vapor inhalation from postnatal day 28-42. After prolonged abstinence (>34 days), in young adulthood (PND 77+) we assessed behavior in the open field, light/dark, tail suspension, and forced swim stress tests to determine changes in affective behaviors including anxiety-like, depressive-like, and stress reactivity behavior. Excitatory signaling gene mRNA levels of fragile X messenger ribonucleoprotein ( FMR1) , glutamate receptors ( Grin2a , Grin2B and Grm5 ) and excitatory synaptic markers (PSD-95 and Eaat1) were measured in the cerebellum of adult control and AIE-exposed mice. AIE-exposed mice showed decreased exploratory behaviors in the open field test (OFT) where both sexes show reduced ambulation, however only females exhibited a reduction in rearing. Additionally, in the OFT, AIE-exposed females also exhibited increased anxiety-like behavior (entries to center zone). In the forced swim stress test, AIE-exposed male mice, but not females, spent less time immobile compared to their same-sex controls, indicative of sex-specific changes in stress reactivity. Male and female AIE-exposed mice showed increased Grin2B (Glutamate Ionotropic Receptor NMDA Type Subunit 2B) mRNA levels in the cerebellum compared to their same-sex controls. Together, these data show that adolescent binge-like ethanol exposure altered both exploratory and affective behaviors in a sex-specific manner and modified cerebellar Grin2B expression in adult mice. This indicates the cerebellum may serve as an important brain region that is susceptible to long-term molecular changes after AIE. Highlights Adolescent intermittent ethanol (AIE) exposure decreased exploratory behavior in adult male and female mice.In females, but not males, AIE increased anxiety-like behavior.In males, but not females, AIE reduced stress reactivity in adulthood.These findings indicate sex differences in the enduring effects of AIE on exploratory and affective behaviors. Cerebellar Grin2B mRNA levels were increased in adulthood in both male and female AIE-exposed mice. These findings add to the small, but growing literature on behavioral AIE effects in mice, and establish cerebellar excitatory synaptic gene expression as an enduring effect of adolescent ethanol exposure.
Collapse
|
7
|
Mendes PFS, Baia-da-Silva DC, Melo WWP, Bittencourt LO, Souza-Rodrigues RD, Fernandes LMP, Maia CDSF, Lima RR. Neurotoxicology of alcohol: a bibliometric and science mapping analysis. Front Pharmacol 2023; 14:1209616. [PMID: 37593178 PMCID: PMC10427875 DOI: 10.3389/fphar.2023.1209616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
Alcohol consumption is common in many societies and has increased considerably, resulting in many socioeconomic and public health problems. In this sense, studies have been carried out in order to understand the mechanisms involved in alcohol consumption and related harmful effects. This study aimed to identify and map the knowledge and to perform bibliometric analysis of the neurotoxicology of alcohol based on the 100 most cited articles. A search was carried out in the Web of Science Core Collection database and information was extracted regarding the journal, authors, keywords, year of publication, number of citations, country and continent of the corresponding author. For each selected manuscript, the study design, alcohol exposure model, dose, period of exposure, and effect on the central nervous system and research hotspots were mapped. The journal with the highest number of publications was Alcoholism: Clinical and Experimental Research (n = 11 papers), the author who contributed the most was Crews FT (n = 8 papers), the studies had a total of 288 keywords and 75% of the publications were from the United States of America. The experimental studies evaluated the effects of prenatal and postnatal exposure and were conducted in rats and mice using doses ranging from 2.5 to 14 g/kg/day, with administration by subcutaneous, intraperitoneal, intragastric, or inhalation route or with free access through drinking bottles. Among the studies mapped, the oldest one (1989) aimed to understand the systemic damage and mechanisms of action involved, while the most recent focused on understanding the receptors and mechanisms involved in addiction, as well as genetic factors. Our results show the panorama of the most widespread scientific production in the scientific community on the neurotoxicology of ethanol, a high prevalence was observed in studies that addressed fetal alcohol syndrome and/or the effects of ethanol on neurodevelopment.
Collapse
Affiliation(s)
- Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Wallacy Watson Pereira Melo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Luanna Melo Pereira Fernandes
- Department of Morphology and Physiological Sciences, Center of Sciences Biological and Health, State University of Pará, Belém, Brazil
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
8
|
Repeated Cycles of Binge-Like Ethanol Exposure Induces Neurobehavioral Changes During Short- and Long-Term Withdrawal in Adolescent Female Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7207755. [PMID: 36329802 PMCID: PMC9626226 DOI: 10.1155/2022/7207755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Alcohol consumption is spread worldwide and can lead to an abuse profile associated with severe health problems. Adolescents are more susceptible to addiction and usually consume ethanol in a binge drinking pattern. This form of consumption can lead to cognitive and emotional disorders, however scarce studies have focused on long-term hazardous effects following withdrawal periods after binge drinking in adolescents. Thus, the present study aims at investigating whether behavioral and cognitive changes persist until mid and late adulthood. Female Wistar rats (9-10 animals/group) received intragastric administration of four cycles of ethanol binge-like pattern (3.0 g/kg/day, 20% w/v; 3 days-on/4 days-off) from 35th to 58th days old, followed withdrawal checkpoints 1 day, 30 days, and 60 days. At each checkpoint period, behavioral tests of open field, object recognition test, elevated plus maze, and forced swimming test were performed, and blood and hippocampus were collected for oxidative biochemistry and brain-derived neurotrophic factor (BDNF) levels analysis, respectively. The results demonstrated that adolescent rats exposed to binge drinking displayed anxiogenic- and depressive-like phenotype in early and midadulthood, however, anxiety-like profile persisted until late adulthood. Similarly, short-term memory was impaired in all withdrawal periods analysed, including late adult life. These behavioral data were associated with oxidative damage in midadulthood but not BDNF alterations. Taken together, the present work highlights the long-lasting emotional and cognitive alterations induced by ethanol binge drinking during adolescence, even after a long period of abstinence, which might impact adult life.
Collapse
|
9
|
Yuwong Wanyu B, Emégam Kouémou N, Sotoing Taiwe G, Temkou Ngoupaye G, Tamanji Ndzweng L, Lambou Fotio A, Nguepi Dongmo MS, Ngo Bum E. Dichrocephala integrifolia Aqueous Extract Antagonises Chronic and Binges Ethanol Feeding-Induced Memory Dysfunctions: Insights into Antioxidant and Anti-Inflammatory Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1620816. [PMID: 36110196 PMCID: PMC9470300 DOI: 10.1155/2022/1620816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
Ethanol consumption is widely accepted despite its addictive properties and its mind-altering effects. This study aimed to assess the effects of Dichrocephala integrifolia against, memory impairment, on a mouse model of chronic and binges ethanol feeding. Mice were divided, into groups of 8 animals each, and received distilled water, Dichrocephala integrifolia aqueous extract (25; 50; 100; or 200 mg/kg) or memantine (200 mg/kg) once a day, while fe, with Lieber-DeCarli control (sham group only) or Lieber-DeCarli ethanol diet ad libitum for 28 days. The Y maze and the novel object recognition (NOR) tests were used to evaluate spatial short-term and recognition memory, respectively. Malondialdehyde, nitric oxide, glutathione levels, and proinflammatory cytokines (Il-1β, TNF-α, and Il-6) were evaluated in brain homogenates following behavioral assessments. The results showed that chronic ethanol administration in mice was associated with a significant (p < 0.001) reduction in the spontaneous alternation percentage and the discrimination index, in the Y maze and the NOR tests, respectively. It significantly (p < 0.01) increased oxidative stress and inflammation markers levels in the brain. Dichrocephala integrifolia (100 and 200 mg/kg) as well as memantine (200 mg/kg) significantly (p < 0.001) increased the percentage of spontaneous alternation and the discrimination index, in the Y maze and NOR tests, respectively. Dichrocephala integrifolia (100 and 200 mg/kg) likewise memantine (200 mg/kg) significantly (p < 0.01) alleviated ethanol-induced increase, in the brain malondialdehyde level, nitric oxide, Il-1β, TNF-α, and Il-6. From these findings, it can be concluded that Dichrocephala integrifolia counteracted memory impairment, oxidative stress, and neuroinflammation induced by chronic ethanol consumption in mice.
Collapse
Affiliation(s)
- Bertrand Yuwong Wanyu
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Nadège Emégam Kouémou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Linda Tamanji Ndzweng
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Agathe Lambou Fotio
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 52, Maroua, Cameroon
| |
Collapse
|
10
|
Charlton AJ, Perry CJ. The Effect of Chronic Alcohol on Cognitive Decline: Do Variations in Methodology Impact Study Outcome? An Overview of Research From the Past 5 Years. Front Neurosci 2022; 16:836827. [PMID: 35360176 PMCID: PMC8960615 DOI: 10.3389/fnins.2022.836827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive alcohol use is often associated with accelerated cognitive decline, and extensive research using animal models of human alcohol consumption has been conducted into potential mechanisms for this relationship. Within this literature there is considerable variability in the types of models used. For example, alcohol administration style (voluntary/forced), length and schedule of exposure and abstinence period are often substantially different between studies. In this review, we evaluate recent research into alcohol-induced cognitive decline according to methodology of alcohol access, as well as cognitive behavioral task employed. Our aim was to query whether the nature and severity of deficits observed may be impacted by the schedule and type of alcohol administration. We furthermore examined whether there is any apparent relationship between the amount of alcohol consumed and the severity of the deficit, as well as the potential impact of abstinence length, and other factors such as age of administration, and sex of subject. Over the past five years, researchers have overwhelmingly used non-voluntary methods of intake, however deficits are still found where intake is voluntary. Magnitude of intake and type of task seem most closely related to the likelihood of producing a deficit, however even this did not follow a consistent pattern. We highlight the importance of using systematic and clear reporting styles to facilitate consistency across the literature in this regard. We hope that this analysis will provide important insights into how experimental protocols might influence findings, and how different patterns of consumption are more or less likely to produce an addiction-vulnerable cognitive phenotype in animal models.
Collapse
Affiliation(s)
- Annai J. Charlton
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christina J. Perry
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- School of Psychological Sciences, Centre for Emotional Health, Macquarie University, North Ryde, NSW, Australia
- *Correspondence: Christina J. Perry,
| |
Collapse
|
11
|
Methylmercury exposure during prenatal and postnatal neurodevelopment promotes oxidative stress associated with motor and cognitive damages in rats: an environmental-experimental toxicology study. Toxicol Rep 2022; 9:563-574. [PMID: 35392159 PMCID: PMC8980556 DOI: 10.1016/j.toxrep.2022.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 μg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats. The MeHg exposure during CNS development increased mercury levels in hippocampal and cerebellar parenchyma. The MeHg intoxication during pregnancy and lactation impairs the redox status of hippocampus and cerebellum of the offspring. MeHg exposure causes behavioral effects in motor ability and cognition of offspring rats.
Collapse
|
12
|
Dong GH, Xu YH, Liu LY, Lu D, Chu CP, Cui SB, Qiu DL. Chronic ethanol exposure during adolescence impairs simple spike activity of cerebellar Purkinje cells in vivo in mice. Neurosci Lett 2021; 771:136396. [PMID: 34919990 DOI: 10.1016/j.neulet.2021.136396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Cerebellar Purkinje cells (PCs) play critical roles in motor coordination and motor learning through their simple spike (SS) activity. Previous studies have shown that chronic ethanol exposure (CEE) in adolescents impairs learning, attention, and behavior, at least in part by impairing the activity of cerebellar PCs. In this study, we investigated the effect of CEE on the SS activity in urethane-anesthetized adolescent mice by in vivo electrophysiological recordings and pharmacological methods. Our results showed that the cerebellar PCs in CEE adolescent mice expressed a significant decrease in the frequency and an increase in the coefficient of variation (CV) of SS than control group. Blockade of ɤ-aminobutyric acid A (GABAA) receptor did not change the frequency and CV of SS firing in control group but produced a significant increase in the frequency and a decrease in the CV of SS firing in CEE mice. The CEE-induced decrease in SS firing rate and increase in CV were abolished by application of an N-methyl-D-aspartate (NMDA) receptor blocker, D-APV, but not by anα-amino-3-hydroxy-5-methyl -4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX. Notably, the spontaneous spike rate of molecular layer interneurons (MLIs) in CEE mice was significantly higher than control group, which was also abolished by application of D-APV. These results indicate that adolescent CEE enhances the spontaneous spike firing rate of MLIs through activation of NMDA receptor, resulting in a depression in the SS activity of cerebellar PCs in vivo in mice.
Collapse
Affiliation(s)
- Guang-Hui Dong
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yin-Hua Xu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Liang-Yan Liu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Di Lu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Chun-Ping Chu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China
| | - Song-Biao Cui
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, China.
| | - De-Lai Qiu
- Brain Science Research Center, Yanbian University, Yanji, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China; Institute of Brain Science, Jilin Medical University, Jilin, China.
| |
Collapse
|
13
|
Dulman RS, Auta J, Wandling GM, Patwell R, Zhang H, Pandey SC. Persistence of cerebellar ataxia during chronic ethanol exposure is associated with epigenetic up-regulation of Fmr1 gene expression in rat cerebellum. Alcohol Clin Exp Res 2021; 45:2006-2016. [PMID: 34453331 PMCID: PMC8602769 DOI: 10.1111/acer.14691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Alcohol intoxication produces ataxia by affecting the cerebellum, which coordinates movements. Fragile X mental retardation (FMR) protein is a complex regulator of RNA and synaptic plasticity implicated in fragile X-associated tremor/ataxia syndrome, which features ataxia and increased Fmr1 mRNA expression resulting from epigenetic dysregulation of FMRP. We recently demonstrated that acute ethanol-induced ataxia is associated with increased cerebellar Fmr1 gene expression via histone modifications in rats, but it is unknown whether similar behavioral and molecular changes occur following chronic ethanol exposure. Here, we investigated the effects of chronic ethanol exposure on ataxia and epigenetically regulated changes in Fmr1 expression in the cerebellum. METHODS Male adult Sprague-Dawley rats were trained on the accelerating rotarod and then fed with chronic ethanol or a control Lieber-DeCarli diet while undergoing periodic behavioral testing for ataxia during ethanol exposure and withdrawal. Cerebellar tissues were analyzed for expression of the Fmr1 gene and its targets using a real-time quantitative polymerase chain reaction assay. The epigenetic regulation of Fmr1 was also investigated using a chromatin immunoprecipitation assay. RESULTS Ataxic behavior measured by the accelerating rotarod behavioral test developed during chronic ethanol treatment and persisted at both the 8-h and 24-h withdrawal time points compared to control diet-fed rats. In addition, chronic ethanol treatment resulted in up-regulated expression of Fmr1 mRNA and increased activating epigenetic marks H3K27 acetylation and H3K4 trimethylation at 2 sites within the Fmr1 promoter. Finally, measurement of the expression of relevant FMRP mRNA targets in the cerebellum showed that chronic ethanol up-regulated cAMP response element binding (CREB) Creb1, Psd95, Grm5, and Grin2b mRNA expression without altering Grin2a, Eaa1, or histone acetyltransferases CREB binding protein (Cbp) or p300 mRNA transcripts. CONCLUSIONS These results suggest that epigenetic regulation of Fmr1 and subsequent FMRP regulation of target mRNA transcripts constitute neuroadaptations in the cerebellum that may underlie the persistence of ataxic behavior during chronic ethanol exposure and withdrawal.
Collapse
Affiliation(s)
- Russell S. Dulman
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Gabriela M. Wandling
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Ryan Patwell
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| | - Subhash C. Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612 USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612 USA
| |
Collapse
|
14
|
Pinheiro-da-Silva J, Agues-Barbosa T, Luchiari AC. Embryonic Exposure to Ethanol Increases Anxiety-Like Behavior in Fry Zebrafish. Alcohol Alcohol 2021; 55:581-590. [PMID: 32886092 DOI: 10.1093/alcalc/agaa087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Fetal alcohol spectrum disorder (FASD) is an umbrella term to describe the effects of ethanol (Eth) exposure during embryonic development, including several conditions from malformation to cognitive deficits. Zebrafish (Danio rerio) are a translational model popularly applied in brain disorders and drug screening studies due to its genetic and physiology homology to humans added to its transparent eggs and fast development. In this study, we investigated how early ethanol exposure affects zebrafish behavior during the initial growth phase. METHODS Fish eggs were exposed to 0.0 (control), 0.25 and 0.5% ethanol at 24 h post-fertilization. Later, fry zebrafish (10 days old) were tested in a novel tank task and an inhibitory avoidance protocol to inquire about morphology and behavioral alterations. RESULTS Analysis of variance showed that ethanol doses of 0.25 and 0.5% do not cause morphological malformations and did not impair associative learning but increased anxiety-like behavior responses and lower exploratory behavior when compared to the control. CONCLUSION Our results demonstrate that one can detect behavioral abnormalities in the zebrafish induced by embryonic ethanol as early as 10 days post-fertilization and that alcohol increases anxious behavior during young development in zebrafish.
Collapse
Affiliation(s)
| | - Thais Agues-Barbosa
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| |
Collapse
|
15
|
Nascimento PC, Bittencourt LO, Pinto SO, Santana LNS, Souza-Rodrigues RD, Pereira-Neto AL, Maia CSF, Rösing CK, Lima RR. Effects of Chronic Ethanol Consumption and Ovariectomy on the Spontaneous Alveolar Bone Loss in Rats. Int J Dent 2020; 2020:8873462. [PMID: 33273924 PMCID: PMC7676921 DOI: 10.1155/2020/8873462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022] Open
Abstract
Postmenopausal estrogen deficiency and ethanol (EtOH) abuse are known risk factors for different diseases including bone tissues. However, little is known about the synergic effects of EtOH abuse and estrogen deficiency on alveolar bone loss in women. The present study evaluated the effects of EtOH chronic exposure and ovariectomy on the alveolar bone loss in female rats. For this, 40 female Wistar rats were randomly divided into 4 groups: control, EtOH exposure, ovariectomy (OVX), and OVX plus EtOH exposure. Initially, half of the animals were ovariectomized at 75 days of age. After that, the groups received distilled water or EtOH 6.5 g/kg/day (20% w/v) for 55 days via gavage. Thereafter, animals were sacrificed and the mandibles were collected, dissected, and separated into hemimandibles. Alveolar bone loss was evaluated by measuring the distance between the cementoenamel junction and the alveolar bone crest through a stereomicroscope in 3 different anatomical regions of the tissue. One-way ANOVA and post hoc Tukey were used to compare groups (p < 0.05). The results showed that the ovariectomy and EtOH exposure per se were able to induce alveolar bone loss, and their association did intensify significantly the effect. Therefore, OVX associated with heavy EtOH exposure increase the spontaneous alveolar bone loss in rats.
Collapse
Affiliation(s)
- Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Soraya O. Pinto
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Luana N. S. Santana
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Renata Duarte Souza-Rodrigues
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Armando L. Pereira-Neto
- School of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Cristiane S. F. Maia
- Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| | - Cassiano K. Rösing
- Department of Periodontology, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém-Pará 66075-110, Brazil
| |
Collapse
|
16
|
Lopes GO, Martins Ferreira MK, Davis L, Bittencourt LO, Bragança Aragão WA, Dionizio A, Rabelo Buzalaf MA, Crespo-Lopez ME, Maia CSF, Lima RR. Effects of Fluoride Long-Term Exposure over the Cerebellum: Global Proteomic Profile, Oxidative Biochemistry, Cell Density, and Motor Behavior Evaluation. Int J Mol Sci 2020; 21:E7297. [PMID: 33023249 PMCID: PMC7582550 DOI: 10.3390/ijms21197297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Although the literature does not provide evidence of health risks from exposure to fluoride (F) in therapeutic doses, questions remain about the effects of long-term and high-dose use on the function of the central nervous system. The objective of this study was to investigate the effect of long-term exposure to F at levels similar to those found in areas of artificial water fluoridation and in areas of endemic fluorosis on biochemical, proteomic, cell density, and functional parameters associated with the cerebellum. For this, mice were exposed to water containing 10 mg F/L or 50 mg F/L (as sodium fluoride) for 60 days. After the exposure period, the animals were submitted to motor tests and the cerebellum was evaluated for fluoride levels, antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (MDA), and nitrite levels (NO). The proteomic profile and morphological integrity were also evaluated. The results showed that the 10 mg F/L dose was able to decrease the ACAP levels, and the animals exposed to 50 mg F/L presented lower levels of ACAP and higher levels of MDA and NO. The cerebellar proteomic profile in both groups was modulated, highlighting proteins related to the antioxidant system, energy production, and cell death, however no neuronal density change in cerebellum was observed. Functionally, the horizontal exploratory activity of both exposed groups was impaired, while only the 50 mg F/L group showed significant changes in postural stability. No motor coordination and balance impairments were observed in both groups. Our results suggest that fluoride may impair the cerebellar oxidative biochemistry, which is associated with the proteomic modulation and, although no morphological impairment was observed, only the highest concentration of fluoride was able to impair some cerebellar motor functions.
Collapse
Affiliation(s)
- Géssica Oliveira Lopes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Lodinikki Davis
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| | - Aline Dionizio
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Marília Afonso Rabelo Buzalaf
- Bauru School of Dentistry, Department of Biological Sciences, University of São Paulo, Bauru, SP 17012-90, Brazil; (A.D.); (M.A.R.B.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, PA 66075-110, Brazil;
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA 66075-110, Brazil; (G.O.L.); (M.K.M.F.); (L.D.); (L.O.B.); (W.A.B.A.)
| |
Collapse
|
17
|
Wang F, Li J, Li L, Gao Y, Wang F, Zhang Y, Fan Y, Wu C. Protective effect of apple polyphenols on chronic ethanol exposure-induced neural injury in rats. Chem Biol Interact 2020; 326:109113. [PMID: 32360496 DOI: 10.1016/j.cbi.2020.109113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Apple polyphenols (AP) have attracted much attention due to their various bioactivities. In this study, the protective effect of AP against chronic ethanol exposure-induced neural injury as well as the possible mechanisms were investigated. Body weight, daily average food intake and daily average fluid intake were measured and daily average ethanol consumption was calculated. The influences of AP on motor behavior and memory were detected by locomotor activity test, rotarod test, beam walking test, and Y maze test and novel object recognition test, respectively. The changes of blood ethanol concentration and the oxidative stress were also measured. AP improved chronic ethanol exposure-induced the inhibition of body weight and the decrease of daily average food intake, but did not influence the daily average fluid intake and the daily average ethanol intake, indicating that the improve effect of AP did not result from the decrease of ethanol intake. Motor activity and motor coordination were not influenced after chronic ethanol exposure though the blood ethanol concentration was higher than that in control group. AP improved significantly chronic ethanol-induced the memory impairment and the hippocampal CA1 neurons damage. Further studies found that AP decreased the contents of NO and MDA and increased the levels of T-AOC and GSH in the hippocampus of rats. These results suggest that AP exerts a protective effect against chronic ethanol-induced memory impairment through improving the oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Jinghong Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Ying Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanxia Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
King JA, Nephew BC, Choudhury A, Poirier GL, Lim A, Mandrekar P. Chronic alcohol-induced liver injury correlates with memory deficits: Role for neuroinflammation. Alcohol 2020; 83:75-81. [PMID: 31398460 DOI: 10.1016/j.alcohol.2019.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder (AUD) affects over 15 million adults over age 18 in the United States, with estimated costs of 220 billion dollars annually - mainly due to poor quality of life and lost productivity, which in turn is intricately linked to cognitive dysfunction. AUD-induced neuroinflammation in the brain, notably the hippocampus, is likely to contribute to cognitive impairments. The neuroinflammatory mechanisms mediating the impact of chronic alcohol on the central nervous system, specifically cognition, require further study. We hypothesized that chronic alcohol consumption impairs memory and increases the inflammatory cytokines TNFα, IL6, MCP1, and IL1β in the hippocampus and prefrontal cortex regions in the brain. Using the chronic-binge Gao-NIAAA alcohol mouse model of liver disease, representative of the drinking pattern common to human alcoholics, we investigated behavioral and neuroinflammatory parameters. Our data show that chronic alcohol intake elevated peripheral and brain alcohol levels, induced serum alanine aminotransferase (ALT, a marker of liver injury), impaired memory and sensorimotor coordination, and increased inflammatory gene expression in the hippocampus and prefrontal cortex. Interestingly, serum ALT and hippocampal IL6 correlated with memory impairment, suggesting an intrinsic relationship between neuroinflammation, cognitive decline, and liver disease. Overall, our results point to a likely liver-brain functional partnership and suggest that future strategies to alleviate hepatic and/or neuroinflammatory impacts of chronic AUD may result in improved cognitive outcomes.
Collapse
Affiliation(s)
- Jean A King
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.
| | - Benjamin C Nephew
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States; Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Asmita Choudhury
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Guillaume L Poirier
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States
| | - Arlene Lim
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
19
|
Sun N, Li BX, Dong GH, Li DY, Cui BR, Qiu DL, Cui SB, Chu CP. Chronic ethanol exposure facilitates facial-evoked MLI-PC synaptic transmission via nitric oxide signaling pathway in vivo in mice. Neurosci Lett 2020; 715:134628. [PMID: 31738951 DOI: 10.1016/j.neulet.2019.134628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
Ethanol (EtOH) exposure causes alterations of motor coordination, balance, behavior, speech, and certain cognitive functions are considered to be caused partly by impairment of cerebellar circuits function and modulation of synaptic transmission. The cerebellar cortical molecular layer interneuron-Purkinje cell (MLI-PC) synapses are critical for various information integration and transmission, which are sensitive to acute and chronic EtOH exposure. The aim of this study is to investigate the effect of chronic ethanol exposure on the facial stimulation-evoked MLI-PC synaptic transmission in urethane-anesthetized mice, by electrophysiological recording and pharmacological methods. Under current-clamp recording conditions, air-puff stimulation of ipsilateral whisker pad evoked MLI-PC synaptic transmission, which expressed an inhibitory component (P1) followed by a pause of simple spike (SS) firing in cerebellar PCs. Chronic ethanol exposure did not change the latency of the facial stimulation-evoked responses in cerebellar PCs, but induced significant enhancement of the stimulation-evoked MLI-PC synaptic transmission, which expressed increases in amplitude of P1 and pause of SS firing. The amplitude of P1 and pause of SS in ethanol exposure group were significant higher than that in control group. Cerebellar surface application of nitric oxide synthesis (NOS) inhibitor, L-NNA (5 mM) significantly decreased the amplitude of P1 and the pause of SS firing in EtOH exposure group, but did no effect on control group. In contrast, cerebellar surface application of NO donor, SNAP (100 μM) significantly increased the amplitude of P1 and the pause of SS firing in control group, but not in EtOH exposure group. These results indicated that chronic EtOH exposure significantly facilitated the sensory-evoked MLI-PC synaptic transmission via NO signaling pathway in mouse cerebellar cortex.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Bing-Xue Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Guang-Hui Dong
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Da-Yong Li
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Bai-Ri Cui
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - De-Lai Qiu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China; Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | - Song-Biao Cui
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanji, Jilin Province, China
| | - Chun-Ping Chu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
20
|
Rodrigues KE, de Oliveira FR, Barbosa BRC, Paraense RSO, Bannwart CM, Pinheiro BG, Botelho ADS, Muto NA, do Amarante CB, Hamoy M, Macchi BDM, Maia CDSF, do Prado AF, do Nascimento JLM. Aqueous Coriandrum sativum L. extract promotes neuroprotection against motor changes and oxidative damage in rat progeny after maternal exposure to methylmercury. Food Chem Toxicol 2019; 133:110755. [PMID: 31408720 DOI: 10.1016/j.fct.2019.110755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 01/18/2023]
Abstract
This study aimed to investigate the effects of Coriandrum sativum aqueous extract (CSAE) on the rat progeny of mothers exposed to methylmercury (MeHg). The presence of bioactive compounds and CSAE's antioxidant capacity been evaluated, and the offspring were assessed for their total mercury levels, motor behavioral parameters and oxidative stress in the cerebellum. The analysis of the bioactive compounds revealed significant amounts of polyphenols, flavonoids, and anthocyanins, as well as a variety of minerals. A DPPH test showed the CSAE had important antioxidant activity. The MeHg + CSAE group performed significantly better spontaneous locomotor activity, palmar grip strength, balance, and motor coordination in behavioral tests compared the MeHg group, as well as in the parameters of oxidative stress, with similar results to those of the control group. The MeHg + CSAE group also had significantly reduced mercury levels in comparison to the MeHg group. Based on the behavioral tests, which detected large locomotor, balance, and coordination improvements, as well as a reduction in oxidative stress, we conclude that CSAE had positive functional results in the offspring of rats exposed to MeHg.
Collapse
Affiliation(s)
- Keuri Eleutério Rodrigues
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Fábio Rodrigues de Oliveira
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Bromatology and Quality Control Laboratory, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapa, Ap, Brazil
| | - Benilson Ramos Cassunde Barbosa
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Ricardo S Oliveira Paraense
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy Manoel Bannwart
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Bruno Gonçalves Pinheiro
- Behavioral and Inflammatory Pharmacology Laboratory, Health Sciences Institute, Pharmacy College, Federal University of Para, Belem, PA, Brazil
| | | | - Nilton Akio Muto
- Amazonian Bioactive Compounds Valorization Center, Federal University of Para, Belem, PA, Brazil
| | | | - Moises Hamoy
- Natural Products' Toxicology and Pharmacology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Barbarella de Matos Macchi
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Behavioral and Inflammatory Pharmacology Laboratory, Health Sciences Institute, Pharmacy College, Federal University of Para, Belem, PA, Brazil
| | - Alejandro Ferraz do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - José Luiz Martins do Nascimento
- Neuroscience and Cellular Biology Post Graduation Program, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil; National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, RJ, Brazil; Pharmaceutical Sciences Post Graduation Program, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapa, Ap, Brazil.
| |
Collapse
|
21
|
Physical Exercise Attenuates Oxidative Stress and Morphofunctional Cerebellar Damages Induced by the Ethanol Binge Drinking Paradigm from Adolescence to Adulthood in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6802424. [PMID: 30911348 PMCID: PMC6398010 DOI: 10.1155/2019/6802424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Ethanol (EtOH) binge drinking is characterized by high EtOH intake during few hours followed by withdrawal. Protection strategies against the damages generated by this binge are poorly explored. Thus, this study is aimed at investigating the protective role of treadmill physical exercise (PE) on the damage caused after repeated cycles of binge-like EtOH exposure in the oxidative biochemistry, morphology, and cerebellar function of rats from adolescence to adulthood. For this, animals were divided into four groups: control group (sedentary animals with doses of distilled water), exercised group (exercised animals with doses of distilled water), EtOH group (sedentary animals with doses of 3 g/kg/day of EtOH, 20% w/v), and exercised+EtOH group (exercised animals with previous mentioned doses of EtOH). The PE occurred on a running treadmill for 5 days a week for 4 weeks, and all doses of EtOH were administered through intragastric gavage in four repeated cycles of EtOH in a binge-like manner. After the EtOH protocol and PE, animals were submitted to open field and beam walking tests. In sequence, the cerebellums were collected for the biochemical and morphological analyses. Biochemical changes were analyzed by measurement of Trolox equivalent antioxidant capacity (TEAC), reduced glutathione content measurements (GSH), and measurement of nitrite and lipid peroxidation (LPO). In morphological analyses, Purkinje cell density evaluation and immunohistochemistry evaluation were measured by antimyelin basic protein (MBP) and antisynaptophysin (SYP). The present findings demonstrate that the binge drinking protocol induced oxidative biochemistry misbalance, from the decrease of TEAC levels and higher LPO related to tissue damage and motor impairment. In addition, we have shown for the first time that treadmill physical exercise reduced tissue and functional alterations displayed by EtOH exposure.
Collapse
|
22
|
Chronic ethanol forced administration from adolescence to adulthood reduces cell density in the rat spinal cord. Tissue Cell 2018; 55:77-82. [PMID: 30503063 DOI: 10.1016/j.tice.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 11/21/2022]
Abstract
Ethanol (EtOH) consumption is a risk factor for central nervous system damage, especially during adolescence. This study aimed to investigate the possible effects of chronic EtOH forced administration on gray and white matter of the spinal cord, from adolescence to adulthood. For this, male Wistar rats were administered EtOH by gavage (6.5 g/kg/day; 22.5% w/v) from the 35th to the 90th day of life, while control animals received only distilled water. After exposure, animals were euthanized and their spinal cords processed to obtain cervical and thoracic segments for histological analyses. Quantitative analyses of total cell density and motor neurons of white and gray matter from the ventral horns were evaluated. Forced EtOH administration model showed a decrease in the motoneuron density in the spinal cord in both segments evaluated. Analyses of total cell density showed that the cervical segment was more susceptible to damages promoted by EtOH, with a significant decrease in cell density. Our results showed that chronic EtOH exposure during adolescence could promote injuries to the spinal cord, with neurodegeneration of motoneurons and other cell types present in neural parenchyma.
Collapse
|
23
|
Fernandes LMP, Lopes KS, Santana LNS, Fontes-Júnior EA, Ribeiro CHMA, Silva MCF, de Oliveira Paraense RS, Crespo-López ME, Gomes ARQ, Lima RR, Monteiro MC, Maia CSF. Repeated Cycles of Binge-Like Ethanol Intake in Adolescent Female Rats Induce Motor Function Impairment and Oxidative Damage in Motor Cortex and Liver, but Not in Blood. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3467531. [PMID: 30327712 PMCID: PMC6169231 DOI: 10.1155/2018/3467531] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 01/11/2023]
Abstract
Moderate ethanol consumption (MEC) is increasing among women. Alcohol exposure usually starts in adolescence and tends to continue until adulthood. We aimed to investigate MEC impacts during adolescence until young adulthood of female rats. Adolescent female Wistar rats received distilled water or ethanol (3 g/kg/day), in a 3 days on-4 days off paradigm (binge drinking) for 1 and 4 consecutive weeks. We evaluate liver and brain oxidative damage, peripheral oxidative parameters by SOD, catalase, thiol contents, and MDA, and behavioral motor function by open-field, pole, beam-walking, and rotarod tests. Our results revealed that repeated episodes of binge drinking during adolescence displayed lipid peroxidation in the liver and brain. Surprisingly, such oxidative damage was not detectable on blood. Besides, harmful histological effects were observed in the liver, associated to steatosis and loss of parenchymal architecture. In addition, ethanol intake elicited motor incoordination, bradykinesia, and reduced spontaneous exploratory behavior in female rats.
Collapse
Affiliation(s)
- Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | - Klaylton Sousa Lopes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | - Luana Nazaré Silva Santana
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém PA, Brazil
| | - Antônio Rafael Quadros Gomes
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marta Chagas Monteiro
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém PA, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|