1
|
Galagovsky D, Depetris-Chauvin A, Kunert G, Knaden M, Hansson BS. Shaping the environment - Drosophila suzukii larvae construct their own niche. iScience 2024; 27:111341. [PMID: 39687005 PMCID: PMC11647167 DOI: 10.1016/j.isci.2024.111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/24/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
In holometabolous insects, the choice of oviposition substrate by the adult needs to be coordinated with the developmental needs of the larva. Drosophila suzukii female flies possess an enlarged serrated ovipositor, which has enabled them to conquer the ripening fruit as an oviposition niche. They insert their eggs through the skin of priced small fruits. However, this specialization seems to clash with the nutritional needs for larval development since ripening fruits have a low protein content and are high in sugars. In this work, we studied how D. suzukii larvae develop in and interact with the blueberry. We show that despite its hardness and composition, D. suzukii's first instar larvae are able to use the ripening fruit by engaging in niche construction. They display unique physical and behavioral characteristics that allow them to process the hard-ripening fruit and provoke an improvement in its composition that better suits larval nutritional needs.
Collapse
Affiliation(s)
- Diego Galagovsky
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Ana Depetris-Chauvin
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department for Biochemistry, Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Jena, Germany
| |
Collapse
|
2
|
Guillemin J, Li J, Li V, McDowell SAT, Audette K, Davis G, Jelen M, Slamani S, Kelliher L, Gordon MD, Stanley M. Taste cells expressing Ionotropic Receptor 94e reciprocally impact feeding and egg laying in Drosophila. Cell Rep 2024; 43:114625. [PMID: 39141516 DOI: 10.1016/j.celrep.2024.114625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/01/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Chemosensory cells across the body of Drosophila melanogaster evaluate the environment to prioritize certain behaviors. Previous mapping of gustatory receptor neurons (GRNs) on the fly labellum identified a set of neurons in L-type sensilla that express Ionotropic Receptor 94e (IR94e), but the impact of IR94e GRNs on behavior remains unclear. We used optogenetics and chemogenetics to activate IR94e neurons and found that they drive mild feeding suppression but enhance egg laying. In vivo calcium imaging revealed that IR94e GRNs respond strongly to certain amino acids, including glutamate, and that IR94e plus co-receptors IR25a and IR76b are required for amino acid detection. Furthermore, IR94e mutants show behavioral changes to solutions containing amino acids, including increased consumption and decreased egg laying. Overall, our results suggest that IR94e GRNs on the fly labellum discourage feeding and encourage egg laying as part of an important behavioral switch in response to certain chemical cues.
Collapse
Affiliation(s)
| | - Jinfang Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Viktoriya Li
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sasha A T McDowell
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kayla Audette
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Grace Davis
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samy Slamani
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Liam Kelliher
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Molly Stanley
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
3
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
4
|
Vijayan V, Wang F, Wang K, Chakravorty A, Adachi A, Akhlaghpour H, Dickson BJ, Maimon G. A rise-to-threshold process for a relative-value decision. Nature 2023; 619:563-571. [PMID: 37407812 PMCID: PMC10356611 DOI: 10.1038/s41586-023-06271-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Whereas progress has been made in the identification of neural signals related to rapid, cued decisions1-3, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes4-6. Drosophila search for many seconds to minutes for egg-laying sites with high relative value7,8 and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme9. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.
Collapse
Affiliation(s)
- Vikram Vijayan
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Arun Chakravorty
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Atsuko Adachi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
5
|
Cury KM, Axel R. Flexible neural control of transition points within the egg-laying behavioral sequence in Drosophila. Nat Neurosci 2023; 26:1054-1067. [PMID: 37217726 PMCID: PMC10244180 DOI: 10.1038/s41593-023-01332-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Innate behaviors are frequently comprised of ordered sequences of component actions that progress to satisfy essential drives. Progression is governed by specialized sensory cues that induce transitions between components within the appropriate context. Here we have characterized the structure of the egg-laying behavioral sequence in Drosophila and found significant variability in the transitions between component actions that affords the organism an adaptive flexibility. We identified distinct classes of interoceptive and exteroceptive sensory neurons that control the timing and direction of transitions between the terminal components of the sequence. We also identified a pair of motor neurons that enact the final transition to egg expulsion. These results provide a logic for the organization of innate behavior in which sensory information processed at critical junctures allows for flexible adjustments in component actions to satisfy drives across varied internal and external environments.
Collapse
Affiliation(s)
- Kevin M Cury
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Álvarez-Ocaña R, Shahandeh MP, Ray V, Auer TO, Gompel N, Benton R. Odor-regulated oviposition behavior in an ecological specialist. Nat Commun 2023; 14:3041. [PMID: 37236992 DOI: 10.1038/s41467-023-38722-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Colonization of a novel ecological niche can require, or be driven by, evolution of an animal's behaviors promoting their reproductive success. We investigated the evolution and sensory basis of oviposition in Drosophila sechellia, a close relative of Drosophila melanogaster that exhibits extreme specialism for Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other drosophilids and lays these almost exclusively on noni substrates. We show that visual, textural and social cues do not explain this species-specific preference. By contrast, we find that loss of olfactory input in D. sechellia, but not D. melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates gustatory-driven noni preference. Noni odors are detected by redundant olfactory pathways, but we discover a role for hexanoic acid and the cognate Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor exchange in D. melanogaster, we provide evidence for a causal contribution of odor-tuning changes in Ir75b to the evolution of D. sechellia's oviposition behavior.
Collapse
Affiliation(s)
- Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vijayaditya Ray
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Fanara JJ, Beti MIL, Gandini L, Hasson E. Oviposition behaviour in Drosophila melanogaster: Genetic and behavioural decoupling between oviposition acceptance and preference for natural fruits. J Evol Biol 2023; 36:251-263. [PMID: 36357966 DOI: 10.1111/jeb.14109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
In phytophagous insects, oviposition behaviour is an important component of habitat selection and, given the multiplicity of genetic and environmental factors affecting its expression, is defined as a complex character resulting from the sum of interdependent traits. Here, we study two components of egg-laying behaviour: oviposition acceptance (OA) and oviposition preference (OP) in Drosophila melanogaster using three natural fruits as resources (grape, tomato and orange) by means of no-choice and two-choice experiments, respectively. This experimental design allowed us to show that the results obtained in two-choice assays (OP) cannot be accounted for by those resulting from no-choice assays (OA). Since the genomes of all lines used are completely sequenced, we perform a genome-wide association study to identify and characterize the genetic underpinnings of these oviposition behaviour traits. The analyses revealed different candidate genes affecting natural genetic variation of both OA and OP traits. Moreover, our results suggest behavioural and genetic decoupling between OA and OP and that egg-laying behaviour is plastic and context-dependent. Such independence in the genetic architectures of OA and OP variation may influence different aspects of oviposition behaviour, including plasticity, canalization, host shift and maintenance of genetic variability, which contributes to the adoption of adaptive strategies during habitat selection.
Collapse
Affiliation(s)
- Juan J Fanara
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Maria I L Beti
- Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Luciano Gandini
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| | - Esteban Hasson
- Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Evolución, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), CONICET-UBA, FCEN, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
8
|
Buchert SN, Murakami P, Kalavadia AH, Reyes MT, Sitaraman D. Sleep correlates with behavioral decision making critical for reproductive output in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2022; 264:111114. [PMID: 34785379 PMCID: PMC9299756 DOI: 10.1016/j.cbpa.2021.111114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023]
Abstract
Balance between sleep, wakefulness and arousal is important for survival of organisms and species as a whole. While, the benefits of sleep both in terms of quantity and quality is widely recognized across species, sleep has a cost for organismal survival and reproduction. Here we focus on how sleep duration, sleep depth and sleep pressure affect the ability of animals to engage in courtship and egg-laying behaviors critical for reproductive success. Using isogenic lines from the Drosophila Genetic Reference Panel with variable sleep phenotypes we investigated the relationship between sleep and reproductive behaviors, courtship and oviposition. We found that three out of five lines with decreased sleep and increased arousal phenotypes, showed increased courtship and decreased latency to court as compared to normal and long sleeping lines. However, the male courtship phenotype is dependent on context and genotype as some but not all long sleeping-low courting lines elevate their courtship in the presence of short sleeping-high courting flies. We also find that unlike courtship, sleep phenotypes were less variable and minimally susceptible to social experience. In addition to male courtship, we also investigated egg-laying phenotype, a readout of female reproductive output and find oviposition to be less sensitive to sleep length and parameters that are indicative of switch between sleep and wake states. Taken together our extensive behavioral analysis here shows complex bidirectional interactions between genotype and environment and add to the growing evidence linking sleep duration and sleep-wake switch parameters to behavioral decision making critical to reproductive output.
Collapse
Affiliation(s)
- Steven N. Buchert
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Pomai Murakami
- Department of Psychological Sciences, College of Arts and Sciences, 5998 Alcala Park, University of San Diego, San Diego, CA 92110, United States of America
| | - Aashaka H. Kalavadia
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Martin T. Reyes
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America
| | - Divya Sitaraman
- Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America,Department of Psychological Sciences, College of Arts and Sciences, 5998 Alcala Park, University of San Diego, San Diego, CA 92110, United States of America,Corresponding author at: Department of Psychology, College of Science, 25800 Carlos Bee Blvd, California State University, Hayward, CA 94542, United States of America. (D. Sitaraman)
| |
Collapse
|
9
|
Zhang L, Yu J, Guo X, Wei J, Liu T, Zhang W. Parallel Mechanosensory Pathways Direct Oviposition Decision-Making in Drosophila. Curr Biol 2020; 30:3075-3088.e4. [PMID: 32649914 DOI: 10.1016/j.cub.2020.05.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Female Drosophila choose their sites for oviposition with deliberation. Female flies employ sensitive chemosensory systems to evaluate chemical cues for egg-laying substrates, but how they determine the physical quality of an oviposition patch remains largely unexplored. Here we report that flies evaluate the stiffness of the substrate surface using sensory structures on their appendages. The TRPV family channel Nanchung is required for the detection of all stiffness ranges tested, whereas two other proteins, Inactive and DmPiezo, interact with Nanchung to sense certain spectral ranges of substrate stiffness differences. Furthermore, Tmc is critical for sensing subtle differences in substrate stiffness. The Tmc channel is expressed in distinct patterns on the labellum and legs and the mechanosensory inputs coordinate to direct the final decision making for egg laying. Our study thus reveals the machinery for deliberate egg-laying decision making in fruit flies to ensure optimal survival for their offspring.
Collapse
Affiliation(s)
- Liwei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China.
| | - Jie Yu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Xuan Guo
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Jianhuan Wei
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Bräcker LB, Gong X, Schmid C, Dawid C, Ulrich D, Phung T, Leonhard A, Ainsworth J, Olbricht K, Parniske M, Gompel N. A strawberry accession with elevated methyl anthranilate fruit concentration is naturally resistant to the pest fly Drosophila suzukii. PLoS One 2020; 15:e0234040. [PMID: 32484826 PMCID: PMC7266294 DOI: 10.1371/journal.pone.0234040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
During the past decade, Drosophila suzukii has established itself as a global invasive fruit pest, enabled by its ability to lay eggs into fresh, ripening fruit. In a previous study, we investigated the impact of different strawberry accessions on the development of D. suzukii eggs, in the search of natural resistance. We identified several accessions that significantly reduced adult fly emergence from infested fruit. In the present study, we aimed at understanding the chemical basis of this effect. We first noted that one of the more resistant accessions showed an unusual enrichment of methyl anthranilate within its fruit, prompting us to investigate this fruit compound as a possible cause limiting fly development. We found that methyl anthranilate alone triggers embryo lethality in a concentration-dependent manner, unlike another comparable organic fruit compound. We also showed that a chemical fraction of the resistant strawberry accession that contains methyl anthranilate carries some activity toward the egg hatching rate. Surprisingly, in spite of the lethal effect of this compound to their eggs, adult females are not only attracted to methyl anthranilate at certain concentrations, but they also display a concentration-dependent preference to lay on substrates enriched in methyl anthranilate. This study demonstrates that methyl anthranilate is a potent agonist molecule against D. suzukii egg development. Its elevated concentration in a specific strawberry accession proven to reduce the fly development may explain, at least in part the fruit resistance. It further illustrates how a single, natural compound, non-toxic to humans could be exploited for biological control of a pest species.
Collapse
Affiliation(s)
- Lasse B. Bräcker
- Chair of Evolutionry Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Xiaoyun Gong
- Chair of Genetics, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Christian Schmid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Freising, Germany
| | - Detlef Ulrich
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Tuyen Phung
- Chair of Evolutionry Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Alexandra Leonhard
- Chair of Evolutionry Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Julia Ainsworth
- Chair of Evolutionry Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Klaus Olbricht
- Hansabred GmbH & Co. KG, Dresden, Germany
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Berlin, Germany
- * E-mail: (KO); (MP); (NG)
| | - Martin Parniske
- Chair of Genetics, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
- * E-mail: (KO); (MP); (NG)
| | - Nicolas Gompel
- Chair of Evolutionry Ecology, Faculty of Biology, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
- * E-mail: (KO); (MP); (NG)
| |
Collapse
|