1
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Hildebrandt BA, Lee JR, Culbert KM, Sisk CL, Johnson AW, Klump KL. The organizational role of ovarian hormones during puberty on risk for binge-like eating in rats. Physiol Behav 2023; 265:114177. [PMID: 36967031 PMCID: PMC10121844 DOI: 10.1016/j.physbeh.2023.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Puberty is a high-risk period for the development of dysregulated eating, including binge eating. While risk for binge eating in animals and humans increases in both males and females during puberty, the increased prevalence is significantly greater in females. Emerging data suggest that the organizational effects of gonadal hormones may contribute to the female preponderance of binge eating. In this narrative review, we discuss studies conducted in animals that have examined these organizational effects as well as the neural systems that may serve as intermediary mechanisms. Relatively few studies have been conducted, but data thus far suggest that pubertal estrogens may organize risk for binge eating, potentially by altering key circuits in brain reward pathways. These promising results highlight the need for future studies to directly test organizational effects of pubertal hormones using hormone replacement techniques and circuit-level manipulations that can identify pathways contributing to binge eating across development.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenna R Lee
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Kristen M Culbert
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Cheryl L Sisk
- Department of Psychology, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, MI, USA; Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Clarke RE, Voigt K, Reichenbach A, Stark R, Bharania U, Dempsey H, Lockie SH, Mequinion M, Lemus M, Wei B, Reed F, Rawlinson S, Nunez-Iglesias J, Foldi CJ, Kravitz AV, Verdejo-Garcia A, Andrews ZB. Identification of a Stress-Sensitive Anorexigenic Neurocircuit From Medial Prefrontal Cortex to Lateral Hypothalamus. Biol Psychiatry 2023; 93:309-321. [PMID: 36400605 DOI: 10.1016/j.biopsych.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND A greater understanding of how the brain controls appetite is fundamental to developing new approaches for treating diseases characterized by dysfunctional feeding behavior, such as obesity and anorexia nervosa. METHODS By modeling neural network dynamics related to homeostatic state and body mass index, we identified a novel pathway projecting from the medial prefrontal cortex (mPFC) to the lateral hypothalamus (LH) in humans (n = 53). We then assessed the physiological role and dissected the function of this mPFC-LH circuit in mice. RESULTS In vivo recordings of population calcium activity revealed that this glutamatergic mPFC-LH pathway is activated in response to acute stressors and inhibited during food consumption, suggesting a role in stress-related control over food intake. Consistent with this role, inhibition of this circuit increased feeding and sucrose seeking during mild stressors, but not under nonstressful conditions. Finally, chemogenetic or optogenetic activation of the mPFC-LH pathway is sufficient to suppress food intake and sucrose seeking in mice. CONCLUSIONS These studies identify a glutamatergic mPFC-LH circuit as a novel stress-sensitive anorexigenic neural pathway involved in the cortical control of food intake.
Collapse
Affiliation(s)
- Rachel E Clarke
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Urvi Bharania
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Harry Dempsey
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Moyra Lemus
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Bowen Wei
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Felicia Reed
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sasha Rawlinson
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Juan Nunez-Iglesias
- Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Claire J Foldi
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Alexxai V Kravitz
- Departments of Psychiatry, Anesthesiology, and Neuroscience, Washington University in St. Louis, St. Louis, Missouri
| | - Antonio Verdejo-Garcia
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
4
|
Quansah Amissah R, Basha D, Bukhtiyarova O, Timofeeva E, Timofeev I. Neuronal activities during palatable food consumption in the reward system of binge-like eating female rats. Physiol Behav 2021; 242:113604. [PMID: 34563545 DOI: 10.1016/j.physbeh.2021.113604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022]
Abstract
Binge eating disorder (BED), characterized by bingeing episodes and compulsivity, is the most prevalent eating disorder; however, little is known about its neurobiological underpinnings. In humans, BED is associated with desensitization of the reward system, specifically, the medial prefrontal cortex (mPFC), nucleus accumbens (Acb), and ventral tegmental area (VTA). Additionally, BED patients feel relieved during bingeing, suggesting that bingeing helps to decrease the negative emotions they were feeling prior to the binge episode. However, the mechanisms that underlie this feeling of relief in BED patients have not been well investigated. To investigate neuronal activity before and during palatable food consumption in BED, we performed in vivo electrophysiological recordings in a binge-like eating rat model (bingeing, n = 12 and non-bingeing, n = 14) and analyzed the firing rate of neurons in the mPFC, Acb, and VTA before and during access to sucrose solution. We also investigated changes in the firing rate of neurons in these regions during and between active bingeing, which may underlie the feeling of relief in BED patients. We found that neuronal firing rates of mPFC and VTA neurons in bingeing rats were lower than those in non-bingeing rats before and during sucrose consumption. Palatable food consumption increased neuronal firing rates during and between active bingeing in bingeing rats. Our results suggest a desynchronization in the activity of reward system regions, specifically in the mPFC, in bingeing rats, which may also contribute to BED. These results are consistent with those of functional magnetic resonance imaging (fMRI) studies that reported decreased activity in the reward system in BED patients. We propose that increased neuronal activity in the mPFC, Acb, or VTA produces an antidepressant effect in rats, which may underlie the sense of relief patients express during bingeing episodes.
Collapse
Affiliation(s)
- Richard Quansah Amissah
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| | - Diellor Basha
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| | - Olga Bukhtiyarova
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| | - Igor Timofeev
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada.
| |
Collapse
|
5
|
Sun R, Tsunekawa T, Hirose T, Yaginuma H, Taki K, Mizoguchi A, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Banno R, Bettler B, Arima H. GABA B receptor signaling in the caudate putamen is involved in binge-like consumption during a high fat diet in mice. Sci Rep 2021; 11:19296. [PMID: 34588513 PMCID: PMC8481241 DOI: 10.1038/s41598-021-98590-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Previous studies suggest that signaling by the gamma-aminobutyric acid (GABA) type B receptor (GABABR) is involved in the regulation of binge eating, a disorder which might contribute to the development of obesity. Here, we show that intermittent access to a high fat diet (HFD) induced binge-like eating behavior with activation of dopamine receptor d1 (drd1)-expressing neurons in the caudate putamen (CPu) and nucleus accumbens (NAc) in wild-type (WT) mice. The activation of drd1-expressing neurons during binge-like eating was substantially increased in the CPu, but not in the NAc, in corticostriatal neuron-specific GABABR-deficient knockout (KO) mice compared to WT mice. Treatment with the GABABR agonist, baclofen, suppressed binge-like eating behavior in WT mice, but not in KO mice, as reported previously. Baclofen also suppressed the activation of drd1-expressing neurons in the CPu, but not in the NAc, during binge-like eating in WT mice. Thus, our data suggest that GABABR signaling in CPu neurons expressing drd1 suppresses binge-like consumption during a HFD in mice.
Collapse
Affiliation(s)
- Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22, Bunkyo, Ichinomiya, 491-8558, Japan.
| | - Tomonori Hirose
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
- Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22, Bunkyo, Ichinomiya, 491-8558, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| |
Collapse
|
6
|
Quansah Amissah R, Chometton S, Calvez J, Guèvremont G, Timofeeva E, Timofeev I. Differential Expression of DeltaFosB in Reward Processing Regions Between Binge Eating Prone and Resistant Female Rats. Front Syst Neurosci 2020; 14:562154. [PMID: 33177996 PMCID: PMC7596303 DOI: 10.3389/fnsys.2020.562154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Binge eating (BE) is characterized by the consumption of large amounts of palatable food in a discrete period and compulsivity. Even though BE is a common symptom in bulimia nervosa (BN), binge eating disorder (BED), and some cases of other specified feeding or eating disorders, little is known about its pathophysiology. We aimed to identify brain regions and neuron subtypes implicated in the development of binge-like eating in a female rat model. We separated rats into binge eating prone (BEP) and binge eating resistant (BER) phenotypes based on the amount of sucrose they consumed following foot-shock stress. We quantified deltaFosB (ΔFosB) expression, a stably expressed Fos family member, in different brain regions involved in reward, taste, or stress processing, to assess their involvement in the development of the phenotype. The number of ΔFosB-expressing neurons was: (1) higher in BEP than BER rats in reward processing areas [medial prefrontal cortex (mPFC), nucleus accumbens (Acb), and ventral tegmental area (VTA)]; (2) similar in taste processing areas [insular cortex, IC and parabrachial nucleus (PBN)]; and (3) higher in the paraventricular nucleus of BEP than BER rats, but not different in the locus coeruleus (LC), which are stress processing structures. To study subtypes of ΔFosB-expressing neurons in the reward system, we performed in situ hybridization for glutamate decarboxylase 65 and tyrosine hydroxylase (TH) mRNA after ΔFosB immunohistochemistry. In the mPFC and Acb, the proportions of γ-aminobutyric acidergic (GABAergic) and non-GABAergic ΔFosB-expressing neurons were similar in BER and BEP rats. In the VTA, while the proportion of dopaminergic ΔFosB-expressing neurons was similar in both phenotypes, the proportion of GABAergic ΔFosB-expressing neurons was higher in BER than BEP rats. Our results suggest that reward processing brain regions, particularly the VTA, are important for the development of binge-like eating.
Collapse
Affiliation(s)
- Richard Quansah Amissah
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada.,Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche du CERVO, Université Laval, Québec, QC, Canada
| | - Sandrine Chometton
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Juliane Calvez
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Genevieve Guèvremont
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Igor Timofeev
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche du CERVO, Université Laval, Québec, QC, Canada
| |
Collapse
|
7
|
Nashawi H, Gustafson TJ, Mietlicki-Baase EG. Palatable food access impacts expression of amylin receptor components in the mesocorticolimbic system. Exp Physiol 2020; 105:1012-1024. [PMID: 32306457 DOI: 10.1113/ep088356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? We tested whether intra-nucleus accumbens core amylin receptor (AmyR) activation suppresses feeding and evaluated whether intake of palatable food influences mesocorticolimbic AmyR expression. What is the main finding and its importance? Intra-nucleus accumbens core AmyR activation reduces food intake in some dietary conditions. We showed that all components of the AmyR are expressed in the prefrontal cortex and central nucleus of the amygdala and demonstrated that access to fat impacts AmyR expression in these and other mesocorticolimbic nuclei. These results suggest that the intake of palatable food might alter amylin signalling in the brain and shed further light onto potential sites of action for amylin. ABSTRACT Amylin is a pancreas- and brain-derived peptide that acts within the CNS to promote negative energy balance. However, our understanding of the CNS sites of action for amylin remains incomplete. Here, we investigate the effect of amylin receptor (AmyR) activation in the nucleus accumbens core (NAcC) on the intake of bland and palatable foods. Intra-NAcC injection of the AmyR agonist salmon calcitonin or amylin itself in male chow-fed rats had no effect on food intake, meal size or number of meals. However, in chow-fed rats with access to fat solution, although fat intake was not affected by intra-NAcC AmyR activation, subsequent chow intake was suppressed. Given that mesolimbic AmyR activation suppresses energy intake in rats with access to fat solution, we tested whether fat access changes AmyR expression in key mesocorticolimbic nuclei. Fat exposure did not affect NAcC AmyR expression, whereas in the accumbens shell, expression of receptor activity modifying protein (RAMP) 3 was significantly reduced in fat-consuming rats. We show that all components of AmyRs are expressed in the medial prefrontal cortex and central nucleus of the amygdala; fat access significantly reduced expression of calcitonin receptor-A in the central nucleus of the amygdala and RAMP2 in the medial prefrontal cortex. Taken together, these results indicate that intra-NAcC AmyR activation can suppress energy intake and, furthermore, suggest that AmyR signalling in a broader range of mesocorticolimbic sites might have a role in mediating the effects of amylin on food intake and body weight.
Collapse
Affiliation(s)
- Houda Nashawi
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Tyler J Gustafson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|