1
|
Minnes GL, Wiener AJ, Pisahl AS, Duecker EA, Baskhairoun BA, Lowe SC, Simon NW. Effects of maternal separation on punishment-driven risky decision making in adolescence and adulthood. Neurobiol Learn Mem 2024; 217:108016. [PMID: 39709000 DOI: 10.1016/j.nlm.2024.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Early life adversity (ELA) is associated with a multitude of neural and behavioral aberrations. To develop treatments to mitigate the effects of ELA, it is critical to determine which aspects of cognition are affected and when these disturbances manifest across the lifespan. Here, we tested the effects of maternal separation, an established rodent model of ELA, on punishment-driven risky decision-making longitudinally in both adolescence (25-55 days old) and adulthood (80-100 days old). Risk-taking was assessed with the Risky Decision-making Task, wherein rats choose between a small, safe reward and a large reward accompanied by an escalating risk of punishment (foot shock). We observed that rats exposed to maternal separation were more prone to risk-taking than controls during adolescence, and demonstrated reduced latency to make both risky and safe decisions. Interestingly, this augmented risk-taking was no longer evident in adulthood. Males and females displayed comparable levels of risk-taking during adolescence then diverged in adulthood, with adult males displaying a sharp increase in risk-taking. Finally, we observed that risk-taking changed across the lifespan in rats exposed to maternal separation, but not in control rats. Collectively, these data reveal that ELA engenders risk-taking in adolescence but not adulthood, and that sex differences in risky decision-making are not evident until adulthood. This has important implications for the development of both behavioral and biological treatments to improve decision-making during the vulnerable adolescent period.
Collapse
Affiliation(s)
- Grace L Minnes
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Anna J Wiener
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Audrey S Pisahl
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Elizabeth A Duecker
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Boula A Baskhairoun
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Sharoderick C Lowe
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA
| | - Nicholas W Simon
- University of Memphis, Department of Psychology, 400 Fogelman DR, Memphis, TN 38111, USA.
| |
Collapse
|
2
|
Huang WL, Wu CS, Yen CM, Chang HY, Yu CY, Chang KC, Chen HS, Chang CK, Hwang JJ, Huang SH, Chen YM, Cheng BW, Weng MH, Hsu CC. Development of a tool measuring various aspects of social detachment: The social detachment questionnaire for older population. J Formos Med Assoc 2024; 123:1303-1310. [PMID: 38997877 DOI: 10.1016/j.jfma.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Social detachment includes the subjective aspect "loneliness" and the objective aspect "social isolation," but tools to assess both dimensions are limited. This study aims to develop a questionnaire, the Social Detachment Questionnaire for Older Population (SDQO), that considers multiple dimensions of social detachment simultaneously. METHODS The study collected 600 valid samples from individuals aged 55 and above to examine the psychometric properties of the developed SDQO. Item analysis was conducted to assess the performance of each item, and exploratory factor analysis (EFA) was employed to analyze its initial structure and eliminate less ideal items. Subsequently, confirmatory factor analysis (CFA) was used to examine the model fit of the suggested structure by EFA, using different subsamples. Internal consistency, concurrent validity, and other analyses were also performed. RESULTS The original 27-item SDQO was reduced to 17 items after removing 4 questions in item analysis and 6 questions in EFA. The Cronbach's alpha for the 17-item version of SDQO was 0.80. Both EFA and CFA supported its 6-factor structure, with factors identified as community activities, loneliness, personal resources, leisure activities, friendship, and family resources. SDQO also demonstrated expected performance in concurrent validity. CONCLUSION The 17-item version of SDQO exhibited good reliability and validity, measuring various aspects of social detachment behavior, feelings, and resources. It holds value for future research applications.
Collapse
Affiliation(s)
- Wei-Lieh Huang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Taiwan; Department of Psychiatry, College of Medicine, National Taiwan University, Taiwan.
| | - Chi-Shin Wu
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Taiwan
| | - Chia-Ming Yen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taiwan
| | - Hung-Yeh Chang
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Chih-Yuan Yu
- Department of Psychiatry, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Kai-Chieh Chang
- Department of Neurology, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Hsin-Shui Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Yunlin Branch, Taiwan; Department of Geriatrics, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Chin-Kai Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Yunlin Branch, Taiwan; Department of Geriatrics, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Juey-Jen Hwang
- Department of Internal Medicine, National Taiwan University Hospital, Taiwan; Department of Cardiovascular Medicine, Fu Jen Catholic University Hospital, Taiwan
| | - Su-Hua Huang
- Department of Nutrition, National Taiwan University Hospital Yunlin Branch, Taiwan
| | - Yung-Ming Chen
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taiwan; National Taiwan University Hospital Bei-Hu Branch, Taiwan
| | - Bor-Wen Cheng
- Department of Industrial Engineering and Management, National Yunlin University of Science and Technology, Taiwan
| | - Min-Hsiu Weng
- Graduate School of Applied Chinese Studies, National Yunlin University of Science and Technology, Taiwan
| | - Chih-Cheng Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Taiwan
| |
Collapse
|
3
|
Naumova AA, Oleynik EA, Grigorieva YS, Nikolaeva SD, Chernigovskaya EV, Glazova MV. In search of stress: analysis of stress-related markers in mice after hindlimb unloading and social isolation. Neurol Res 2023; 45:957-968. [PMID: 37642364 DOI: 10.1080/01616412.2023.2252280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES Hindlimb unloading (HU), widely used to simulate microgravity effects, is known to induce a stress response. However, as single-housed animals are usually used in such experiments, social isolation (SI) stress can affect experimental results. In the present study, we aimed to delineate stressful effects of 3-day HU and SI in mice. METHODS Three animal groups, HU, SI, and group-housed (GH) control mice, were recruited. A comprehensive analysis of stress-related markers was performed using ELISA, western blotting, and immunohistochemistry. RESULTS Our results showed that blood corticosterone and activity of glucocorticoid receptors and cAMP response element-binding protein (CREB) in the hippocampus of SI and HU animals did not differ from GH control. However, SI mice demonstrated upregulation of the hippocampal corticotropin-releasing hormone (CRH), inducible NO synthase (iNOS), vesicular glutamate transporter 1 (VGLUT1), and glutamate decarboxylases 65/67 (GAD65/67) along with activation of Fos-related antigen 1 (Fra-1) in the amygdala confirming the expression of stress. In HU mice, the same increase in GAD65/67 and Fra-1 indicated the contribution of SI. The special HU effect was expressed only in neurogenesis attenuation. DISCUSSION Thus, our data indicated that 3-day HU could not be characterized as physiological stress, but SI stress contributed to the negative effects of HU.
Collapse
Affiliation(s)
- Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina A Oleynik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Vienna, Austria
| | - Yulia S Grigorieva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Zeng PY, Tsai YH, Lee CL, Ma YK, Kuo TH. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci 2023; 16:1146109. [PMID: 37470056 PMCID: PMC10352621 DOI: 10.3389/fnmol.2023.1146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Sex bias has been an issue in many biomedical fields, especially in neuroscience. In rodent research, many scientists only focused on male animals due to the belief that female estrous cycle gives rise to unacceptable, high levels of variance in the experiments. However, even though female sexual behaviors are well known to be regulated by estrous cycle, which effects on other non-sexual behaviors were not always consistent in previous reports. Recent reviews analyzing published literature even suggested that there is no evidence for larger variation in female than male in several phenotypes. Methods To further investigate the impact of estrous cycle on the variability of female behaviors, we conducted multiple behavioral assays, including the open field test, forced swimming test, and resident-intruder assay to assess anxiety-, depression-like behaviors, as well as social interaction respectively. We compared females in the estrus and diestrus stages across four different mouse strains: C57BL/6, BALB/c, C3H, and DBA/2. Results Our results found no significant difference in most behavioral parameters between females in these two stages. On the other hand, the differences in behaviors among certain strains are relatively consistent in both stages, suggesting a very minimal effect of estrous cycle for detecting the behavioral difference. Last, we compared the behavioral variation between male and female and found very similar variations in most behaviors between the two sexes. Discussion While our study successfully identified behavioral differences among strains and between the sexes, we did not find solid evidence to support the notion that female behaviors are influenced by the estrous cycle. Additionally, we observed similar levels of behavioral variability between males and females. Female mice, therefore, have no reason to be excluded in future behavioral research.
Collapse
Affiliation(s)
- Pei-Yun Zeng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Tsai
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Kai Ma
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
6
|
Coteur K, Van Nuland M, Schoenmakers B, Van den Broeck K, Anthierens S. "At the time I only wanted to relieve stress": Exploring motivation for behaviour change in long-term hypnotic users. Heliyon 2023; 9:e16215. [PMID: 37234622 PMCID: PMC10205632 DOI: 10.1016/j.heliyon.2023.e16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Background Motivating patients to discontinue long-term benzodiazepine receptor agonist (BZRA) use for insomnia remains an important challenge in primary care because of the medication's unfavourable risk-benefit profile. Previous studies have shown that understanding the complexity of patients' motivation is crucial to the primary care physician for providing effective interventions efficiently. Theoretical frameworks about behaviour change show that motivation is a multi-layered concept that interacts with other concepts, which aligns with a holistic perspective or implementation of the biopsychosocial model. Aim Exploring primary care patients' views and ideas on what factors helped or hindered them in discontinuing long-term BZRA use, in relation to motivation as conceptualised in the Behaviour Change Wheel, and associated domains of the Theoretical Domains Framework. Design and setting A qualitative study with semi-structured interviews in primary care in Belgium between September 2020 and March 2021. Method Eighteen interviews with long-term hypnotic users were audio recorded, transcribed and thematically analyzed, using the Framework Method. Results The success of discontinuation interventions does not solely rely on patients' spontaneous sense of striving for improvement. Reinforcement and identity were found to be important domains for motivation. Beliefs about personal capabilities, and about consequences of both BZRA intake and discontinuation, differed between previous and current users. Conclusion Motivation is a multi-layered concept which is not fixed in time. Patient empowerment and goal setting could help long-term BZRA users to lower their intake. As well as public health interventions that might change social attitudes towards the use of hypnotic medication.
Collapse
Affiliation(s)
- Kristien Coteur
- Department of Public Health and Primary Care, Academic Centre for General Practice, KU Leuven, Belgium
| | - Marc Van Nuland
- Department of Public Health and Primary Care, Academic Centre for General Practice, KU Leuven, Belgium
| | - Birgitte Schoenmakers
- Department of Public Health and Primary Care, Academic Centre for General Practice, KU Leuven, Belgium
| | - Kris Van den Broeck
- Department of Family Medicine and Population Health, University of Antwerp, Belgium
| | - Sibyl Anthierens
- Department of Family Medicine and Population Health, University of Antwerp, Belgium
| |
Collapse
|
7
|
Abdelfattah AM, Abuelezz SA, Hendawy N, Negm EA, Nawishy SAEK, Khalil AMM. Sonic hedgehog pathway as a new target of atypical antipsychotics: Revisiting of amisulpride and aripiprazole effects in a rat model of schizophrenia. Life Sci 2023; 316:121366. [PMID: 36649751 DOI: 10.1016/j.lfs.2022.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Schizophrenia is a chronic mental illness presented by cognitive deficits that precede its positive and negative symptoms. Sonic hedgehog (Shh)-pathway contributes to its pathophysiology. Shh has a role in neurogenesis as it regulates proliferation and survival of neural cells. In this study, effects of the anti-psychotics Amisulpride and/or Aripiprazole on the Shh-pathway and its relation to cognitive functions and neurogenesis in a rat model of schizophrenia were tested. METHODS 60 male Wistar rats were allocated into the following groups: control, socially isolated, amisulpride and/or aripiprazole-treated groups. Rats were then subjected to behavioral, biochemical, and histopathological tests to assess the impact of these drugs on Shh-pathway. KEY FINDINGS Cognitive-dysfunction was evidenced in socially isolated group in novel object, three-chamber, and Morris water maze tests, associated by disorganised Shh-pathway proteins levels concentrations, increased glial fibrillary acidic protein (GFAP)-stained astrocytes. Treated groups favorably reversed these changes evidenced by increased Shh, transmembrane patched-1 and smoothened, glioma-associated-oncogene (GLI)-1 levels, dopamine-1 receptors and brain derived neurotrophic factor, and decreased GLI-3 protein, GFAP immune reaction in astrocytes and inflammatory markers compared to socially isolated group. CONCLUSION Amisulpride and/or aripiprazole have a favorable role in turning on Shh-pathway with subsequent beneficial cognitive and neurogenesis effects.
Collapse
Affiliation(s)
- Ahmed M Abdelfattah
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Cairo, Egypt.
| | - Sally A Abuelezz
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman A Negm
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
8
|
Lanooij SD, Eisel ULM, Drinkenburg WHIM, van der Zee EA, Kas MJH. Influencing cognitive performance via social interactions: a novel therapeutic approach for brain disorders based on neuroanatomical mapping? Mol Psychiatry 2023; 28:28-33. [PMID: 35858991 PMCID: PMC9812764 DOI: 10.1038/s41380-022-01698-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023]
Abstract
Many psychiatric and neurological disorders present deficits in both the social and cognitive domain. In this perspectives article, we provide an overview and the potential of the existence of an extensive neurobiological substrate underlying the close relationship between these two domains. By mapping the rodent brain regions involved in the social and/or cognitive domain, we show that the vast majority of brain regions involved in the cognitive domain are also involved in the social domain. The identified neuroanatomical overlap has an evolutionary basis, as complex social behavior requires cognitive skills, and aligns with the reported functional interactions of processes underlying cognitive and social performance. Based on the neuroanatomical mapping, recent (pre-)clinical findings, and the evolutionary perspective, we emphasize that the social domain requires more focus as an important treatment target and/or biomarker, especially considering the presently limited treatment strategies for these disorders.
Collapse
Affiliation(s)
- Suzanne D. Lanooij
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ulrich L. M. Eisel
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Wilhelmus H. I. M. Drinkenburg
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands ,grid.419619.20000 0004 0623 0341Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Eddy A. van der Zee
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martien J. H. Kas
- grid.4830.f0000 0004 0407 1981Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Coccia G, La Greca F, Di Luca M, Scheggia D. Dissecting social decision-making: A spotlight on oxytocinergic transmission. Front Mol Neurosci 2022; 15:1061934. [PMID: 36618824 PMCID: PMC9813388 DOI: 10.3389/fnmol.2022.1061934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Social decision-making requires the ability to balance both the interests of the self and the interests of others to survive in social environments. Empathy is essential to the regulation of this type of interaction, and it often sustains relevant prosocial behaviors such as altruism and helping behavior. In the last decade, our capacity to assess affective and empathy-like behaviors in rodents has expanded our understanding of the neurobiological substrates that underly social decision-making processes such as prosocial behaviors. Within this context, oxytocinergic transmission is profoundly implicated in modulating some of the major components of social decision-making. Thus, this review will present evidence of the association between oxytocin and empathy-like and prosocial behaviors in nonhuman animals. Then, we will dissect the involvement of oxytocinergic transmission-across different brain regions and pathways-in some of the key elements of social decision-making such as emotional discrimination, social recognition, emotional contagion, social dominance, and social memory. Evidence of the modulatory role of oxytocin on social decision-making has raised considerable interest in its clinical relevance, therefore we will also discuss the controversial findings on intranasal oxytocin administration.
Collapse
Affiliation(s)
| | | | | | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
11
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
12
|
Abstract
Until recently laboratory tasks for studying behavior were highly artificial, simplified, and designed without consideration for the environmental or social context. Although such an approach offers good control over behavior, it does not allow for researching either voluntary responses or individual differences. Importantly for neuroscience studies, the activity of the neural circuits involved in producing unnatural, artificial behavior is variable and hard to predict. In addition, different ensembles may be activated depending on the strategy the animal adopts to deal with the spurious problem. Thus, artificial and simplified tasks based on responses, which do not occur spontaneously entail problems with modeling behavioral impairments and underlying brain deficits. To develop valid models of human disorders we need to test spontaneous behaviors consistently engaging well-defined, evolutionarily conserved neuronal circuits. Such research focuses on behavioral patterns relevant for surviving and thriving under varying environmental conditions, which also enable high reproducibility across different testing settings.
Collapse
Affiliation(s)
- Alicja Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders – BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3 Street, 02-093 Warsaw, Poland
| |
Collapse
|
13
|
Corticotropin-releasing factor receptor 1 in infralimbic cortex modulates social stress-altered decision-making. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110523. [PMID: 35122897 DOI: 10.1016/j.pnpbp.2022.110523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
Abstract
Chronic stress could lead to a bias in behavioral strategies toward habits. However, it remains unclear which neuronal system modulates stress-induced behavioral abnormality during decision making. The corticotropin-releasing factor (CRF) system in the medial prefrontal cortex (mPFC), which has been implicated in governing strategy choice, is involved in the response to stress. The present study aimed to clarify whether altered function in cortical CRF receptors is linked to abnormal behaviors after chronic stress. In results, mice subjected to a 10-day social defeat preferred to use a habitual strategy. The infralimbic cortex (IL), but not the prelimbic cortex (PL) or anterior cingulate cortex (ACC), showed higher cFos expression in stress-subjected mice than in control mice, which may be associated with habitual behavior choice. Furthermore, CRF receptor 1 (CRFR1) agonist and antagonist infusion in IL during behavioral training mimicked and rescued stress-caused behavioral change in the decision-making assessment, respectively. An electrophysiological approach showed that the frequencies of both spontaneous IPSC and spontaneous EPSC, but not their amplitude, increased after stress and were modulated by CRFR1 agents. Further recordings revealed that an increased ratio of excitation to inhibition (E/I ratio) of IL by stress was rescued under conditions with CRFR1 antagonist. Collectively, these data indicate that CRFR1 plays a critical role in stress-permitted or enhanced glutamatergic and GABAergic presynaptic transmission in direct or indirect ways, as well as the modulation for E/I ratio in the IL. Thus, CRFR1 in the mPFC may be a proper target for treating cases of chronic stress-altered behavior.
Collapse
|
14
|
Kretschmer M, Gapp K. Deciphering the RNA universe in sperm in its role as a vertical information carrier. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac011. [PMID: 35633894 PMCID: PMC9134061 DOI: 10.1093/eep/dvac011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 05/21/2023]
Abstract
The inheritance of neurophysiologic and neuropsychologic complex diseases can only partly be explained by the Mendelian concept of genetic inheritance. Previous research showed that both psychological disorders like post-traumatic stress disorder and metabolic diseases are more prevalent in the progeny of affected parents. This could suggest an epigenetic mode of transmission. Human studies give first insight into the scope of intergenerational influence of stressors but are limited in exploring the underlying mechanisms. Animal models have elucidated the mechanistic underpinnings of epigenetic transmission. In this review, we summarize progress on the mechanisms of paternal intergenerational transmission by means of sperm RNA in mouse models. We discuss relevant details for the modelling of RNA-mediated transmission, point towards currently unanswered questions and propose experimental considerations for tackling these questions.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Katharina Gapp
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
15
|
Hatton-Jones KM, du Toit EF, Cox AJ. Effect of chronic restraint stress and western-diet feeding on colonic regulatory gene expression in mice. Neurogastroenterol Motil 2022; 34:e14300. [PMID: 34825433 DOI: 10.1111/nmo.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diet-induced obesity (DIO) and psychological stress are significant independent regulators of gastrointestinal physiology; however, our understanding of how these two disorders influence the host-microbe interface is still poorly characterized. The aim of this study was to assess the combined influences of diet-induced obesity and psychological stress on microbiome composition and colonic gene expression. METHODS C57BL/6J mice (n = 48) were subject to a combination of 22 weeks of Western diet (WD) feeding and a chronic restraint stressor (CRS) for the last 4 weeks of feeding. At the end of the combined intervention, microbiome composition was determined from cecal contents, and colonic tissue gene expression was assessed by multiplex analysis using NanoString nCounter System and real-time qPCR. RESULTS WD feeding induced a DIO phenotype with increased body weight, worsened metabolic markers, and alterations to microbiome composition. CRS reduced body weight in both dietary groups while having differential effects on glucose metabolism. CRS improved the Firmicutes/Bacteroidetes ratio in WD-fed animals while expanding the Proteobacteria phyla. Significantly lower expression of colonic Tlr4 (p = 0.008), Ocln (p = 0.004), and Cldn3 (p = 0.004) were noted in WD-fed animals compared to controls with no synergistic effects observed when combined with CRS. No changes to colonic expression of downstream inflammatory mediators were observed. Interestingly, higher levels of expression of Cldn2 (p = 0.04) and bile acid receptor Nr1h4 (p = 0.02) were seen in mice exposed to CRS. CONCLUSION Differential but not synergistic effects of WD and CRS were noted at the host-microbe interface suggesting multifactorial responses that require further investigation.
Collapse
Affiliation(s)
- Kyle M Hatton-Jones
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Eugene F du Toit
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Amanda J Cox
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
16
|
Chess-Williams R, McDermott C, Sellers DJ, West EG, Mills KA. Chronic psychological stress and lower urinary tract symptoms. Low Urin Tract Symptoms 2021; 13:414-424. [PMID: 34132480 DOI: 10.1111/luts.12395] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022]
Abstract
It is well established that lower urinary tract symptoms (LUTS), particularly urinary urgency and incontinence, cause stress and anxiety for patients. However, there is mounting evidence that the relationship between these two factors is bidirectional and that chronic psychological stress itself can result in the development of symptoms such as urinary frequency, urgency, incontinence, and pelvic pain. This review considers the evidence that such a relationship exists and reviews the literature from clinical and animal studies to identify some of the mechanisms that might be involved. Inflammatory responses induced by chronic stress appear to offer the strongest link to bladder dysfunction. There is overwhelming evidence, both in patients and animal models, for a release of pro-inflammatory cytokines and chemokines during periods of chronic stress. Furthermore, cytokines have been shown to cause bladder dysfunction and pain via actions in the central nervous system and locally in the bladder. In the brain and spinal cord, pro-inflammatory cytokines influence the regulation of micturition pathways by corticotropin-releasing factor (CRF) and its receptors, while peripherally cytokines affect bladder function, directly causing detrusor hypertrophy and afferent nerve hypersensitivity. There is little information on which treatments may have most benefit for stressed/anxious patients with LUTS, but animal studies suggest traditional drugs for overactive bladder (solifenacin, mirabegron) are more effective on LUTS than anxiolytic drugs (fluoxetine, imipramine). The preliminary preclinical data for CRF receptor antagonists is not consistent. A clearer understanding of the mechanisms involved in stress-induced LUTS should provide a basis for improved treatment of this condition.
Collapse
Affiliation(s)
- Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Eliza G West
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
17
|
Hasriadi, Wasana PWD, Vajragupta O, Rojsitthisak P, Towiwat P. Automated home-cage for the evaluation of innate non-reflexive pain behaviors in a mouse model of inflammatory pain. Sci Rep 2021; 11:12240. [PMID: 34112846 PMCID: PMC8192791 DOI: 10.1038/s41598-021-91444-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
The failure to develop analgesic drugs is attributed not only to the complex and diverse pathophysiology of pain in humans but also to the poor experimental design and poor preclinical assessment of pain. Although considerable efforts have been devoted to overcoming the relevant problems, many features of the behavioral pain assessment remain to be characterized. For example, a decreased locomotor activity as a common presentation of pain-like behavior has yet to be described. Studies on mice experimentally induced with carrageenan have provided opportunities to explore pain-related behaviors in automated home-cage monitoring. Through this approach, the locomotor activities of mice with carrageenan-induced inflammatory pain can be precisely and objectively captured. Here, we found that the mobile behaviors of mice reduced, and their immobility increased, indicating that carrageenan induction in mice caused a significant decrease in locomotor activity. These non-reflexive pain behaviors were strongly correlated with the reflexive pain behaviors measured via von Frey and plantar tests. Furthermore, the pharmacological intervention using indomethacin improved the locomotor activity of mice with carrageenan-induced pain. Thus, the analysis of the locomotor activity in automated home-cage monitoring is useful for studying the behavioral analgesia and the pharmacological screening of analgesic drugs. The combined evaluation of reflexive and non-reflexive pain behaviors enhances the translational utility of preclinical pain research in rodents.
Collapse
Affiliation(s)
- Hasriadi
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peththa Wadu Dasuni Wasana
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Opa Vajragupta
- Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pasarapa Towiwat
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
19
|
Sivrikova N, Chernikova E, Kharlanova E, Ptashko T, Perebejnos A, Ryabykh I. Study of student’s self-isolation adaptation strategies during the Covid-19 pandemic. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20212901001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The COVID-19 epidemic, which turned into a pandemic, has led to the introduction of lockdown in many countries as a measure to prevent the spread of the virus. Significant changes have occurred in the lives of Russian students. The research objective is to study students’ strategies of adaptation to the self-isolation caused by the need to prevent the spread of COVID-19. To achieve this purpose, an online survey of students was conducted, followed by a correlation analysis of the data. The survey involved 269 students aged 17-21. In self-isolating conditions, students prefer to use strategies aimed at self-change. Two groups of strategies are distinguished in the structure of students’ adaptive behavior, between which there are positive correlations of average strength. The first group includes students’ preferable behavior strategies (accommodating, self-change, and self-immersion). The second group consists of strategies that are not popular among students (environment changing, waiting, avoidance, and passive self-representation). Male students are more active in solving problems than female students. The research results expand the existing understanding of students’ reactions to changes related to self-isolation. They can be useful to teachers, psychologists involved in assessing the social consequences of the COVID-19 pandemic on students.
Collapse
|
20
|
Arakawa H. Restraint stress activates defensive behaviors in male rats depending on age and housing condition. Physiol Behav 2020; 224:113073. [PMID: 32659391 DOI: 10.1016/j.physbeh.2020.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Restraint is a widely used experimental stress manipulation in animal models. It is still unclear, however, whether restraint is associated with physical fatigue leading to overall behavioral inhibition, or if it induces activation of defensive behaviors and strategies to protect against subsequent challenges. The aim of this study was to systematically investigate restraint effects in rats based on housing condition (isolation- vs. pair-housed) and age at the time of testing, both of which are relevant to the expression of defensive strategies. Restraint induced behavioral inhibition in male rats younger than postnatal day 65 in an open-field paradigm, while it activated defensive behaviors in adult rats, depending on their housing condition; thereby pair-housed adult rats exhibited a heightened stretch-attend postures (SAPs) and it was suppressed by restraint, while isolation-housed adult rats displayed lower SAPs but it was enhanced by restraint. Restraint also enhanced pain tolerance, but not pain sensitivity, across all ages, regardless of housing conditions. These results suggest that restraint stress activates defensive systems of male rats, including sensory defenses and exploratory strategies in a novel environment, and these expression patterns vary with age from overall inhibition to changes in defensive behavior strategies. Understanding differential changes in these models could lead to greater consistency and better standardization of rodent models commonly used to assess the impact of stress on anxiety and defensive behaviors.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department of Psychology, Tokiwa University, 1-430-1 Miwa, Mito, Ibaraki 310-8585 Japan.
| |
Collapse
|