1
|
Sajjad J, Morael J, Melo TG, Foley T, Murphy A, Keane J, Popov J, Stanton C, Dinan TG, Clarke G, Cryan JF, Collins JM, O'Mahony SM. Differential cortical aspartate uptake across the oestrous cycle is associated with changes in gut microbiota in Wistar-Kyoto rats. Neurosci Lett 2024; 847:138096. [PMID: 39716584 DOI: 10.1016/j.neulet.2024.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Pain and psychological stress are intricately linked, with sex differences evident in disorders associated with both systems. Glutamatergic signalling in the central nervous system is influenced by gonadal hormones via the hypothalamic-pituitary-adrenal axis and is central in pain research. Emerging evidence supports an important role for the gut microbiota in influencing pain signalling. Here, the functional activity of excitatory amino acid transporters (EAATs) in the anterior cingulate cortex (ACC) and lumbosacral spinal cord of male and female Wistar-Kyoto rats, an animal model of comorbid visceral hypersensitivity and enhanced stress responsivity, was investigated across the oestrous cycle. Correlations between the gut microbiota and changes in the functional activity of the central glutamatergic system were also investigated. EAAT function in the lumbosacral spinal cord was similar between males and females across the oestrous cycle. EAAT function was higher in the ACC of dioestrus females compared to proestrus and oestrus females. In males, aspartate uptake in the ACC positively correlated with Bacteroides, while aspartate uptake in the spinal cord positively correlated with the relative abundance of Lachnospiraceae NK4A136. Positive associations with aspartate uptake in the spinal cord were also observed for Alistipes and Bifidobacterium during oestrus, and Eubacterium coprostanoligenes during proestrus. Clostridium sensu stricto1 was negatively associated with aspartate uptake in the ACC in males and dioestrus females. These data indicate that glutamate metabolism in the ACC is oestrous stage-dependent and that short-chain fatty acid-producing bacteria are positively correlated with aspartate uptake in males and during specific oestrous stages in females.
Collapse
Affiliation(s)
- Jahangir Sajjad
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Jennifer Morael
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Amy Murphy
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - James Keane
- APC Microbiome Ireland, University College Cork, Ireland
| | - Jelena Popov
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - James M Collins
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
2
|
Reid P, Scherer K, Halasz D, Simal AL, Tang J, Zaheer F, Tuling J, Levine G, Michaud J, Clark AL, Descalzi G. Astrocyte neuronal metabolic coupling in the anterior cingulate cortex of mice with inflammatory pain. Brain Behav Immun 2024:S0889-1591(24)00751-7. [PMID: 39694343 DOI: 10.1016/j.bbi.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024] Open
Abstract
Chronic pain is a major global concern, with at least 1 in 5 people suffering from chronic pain worldwide. Mounting evidence indicates that neuroplasticity of the anterior cingulate cortex (ACC) is a critical step in the development of chronic pain. Previously, we found that chronic pain and fear learning are both associated with enhanced neuronal excitability and cause similar neuroplasticity-related gene expression changes in the ACC of male mice. However, neuroplasticity, imposes large metabolic demands. In the brain, neurons have the highest energy needs and interact with astrocytes, which extract glucose from blood, mobilize glycogen, and release lactate in response to neuronal activity. Here, we use chronic and continuous inflammatory pain models in female and male mice to investigate the involvement of astrocyte-neuronal lactate shuttling (ANLS) in the ACC of female and male mice experiencing inflammatory pain. We found that ANLS in the mouse ACC promotes the development of chronic inflammatory pain, and expresses sex specific patterns of activation. Specifically, whereas both male and female mice show similar levels of chronic pain hypersensitivity, only male mice show sustained increases in lactate levels. Accordingly, chronic pain alters the expression levels of proteins involved in lactate metabolism and shuttling in a sexually dimorphic manner. We found that disrupting astrocyte-neuronal lactate shuttling in the ACC prior to inflammatory injury prevents the development of pain hypersensitivity in female and male mice, but only reduces temporary pain in male mice. Furthermore, using a transgenic mouse model (itga1-null mice) that displays a naturally occurring form of spontaneous osteoarthritis (OA), a painful inflammatory pain condition, we found that whereas both female and male mice develop OA, only male mice show increases in mechanisms involved in astrocyte-neuronal lactate shuttling. Our findings thus indicate that there are sex differences in astrocyte-neuronal metabolic coupling in the mouse ACC during chronic pain development.
Collapse
Affiliation(s)
- Paige Reid
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Kaitlin Scherer
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Danielle Halasz
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Ana Leticia Simal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - James Tang
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Fariya Zaheer
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Jaime Tuling
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Gabriel Levine
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada
| | - Jana Michaud
- Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Andrea L Clark
- Department of Human Health & Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, Canada
| | - Giannina Descalzi
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph ON, Canada.
| |
Collapse
|
3
|
Franciosa F, Acuña MA, Nevian NE, Nevian T. A cellular mechanism contributing to pain-induced analgesia. Pain 2024; 165:2517-2529. [PMID: 38968393 PMCID: PMC11474934 DOI: 10.1097/j.pain.0000000000003315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/07/2024]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) plays a crucial role in the perception of pain. It is consistently activated by noxious stimuli and its hyperactivity in chronic pain indicates plasticity in the local neuronal network. However, the way persistent pain effects and modifies different neuronal cell types in the ACC and how this contributes to sensory sensitization is not completely understood. This study confirms the existence of 2 primary subtypes of pyramidal neurons in layer 5 of the rostral, agranular ACC, which we could classify as intratelencephalic (IT) and cortico-subcortical (SC) projecting neurons, similar to other cortical brain areas. Through retrograde labeling, whole-cell patch-clamp recording, and morphological analysis, we thoroughly characterized their different electrophysiological and morphological properties. When examining the effects of peripheral inflammatory pain on these neuronal subtypes, we observed time-dependent plastic changes in excitability. During the acute phase, both subtypes exhibited reduced excitability, which normalized to pre-inflammatory levels after day 7. Daily conditioning with nociceptive stimuli during this period induced an increase in excitability specifically in SC neurons, which was correlated with a decrease in mechanical sensitization. Subsequent inhibition of the activity of SC neurons projecting to the periaqueductal gray with in vivo chemogenetics, resulted in reinstatement of the hypersensitivity. Accordingly, it was sufficient to enhance the excitability of these neurons chemogenetically in the inflammatory pain condition to induce hypoalgesia. These findings suggest a cell type-specific effect on the descending control of nociception and a cellular mechanism for pain-induced analgesia. Furthermore, increased excitability in this neuronal population is hypoalgesic rather than hyperalgesic.
Collapse
Affiliation(s)
| | - Mario A. Acuña
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Yao D, Chen Y, Chen G. The role of pain modulation pathway and related brain regions in pain. Rev Neurosci 2023; 34:899-914. [PMID: 37288945 DOI: 10.1515/revneuro-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Pain is a multifaceted process that encompasses unpleasant sensory and emotional experiences. The essence of the pain process is aversion, or perceived negative emotion. Central sensitization plays a significant role in initiating and perpetuating of chronic pain. Melzack proposed the concept of the "pain matrix", in which brain regions associated with pain form an interconnected network, rather than being controlled by a singular brain region. This review aims to investigate distinct brain regions involved in pain and their interconnections. In addition, it also sheds light on the reciprocal connectivity between the ascending and descending pathways that participate in pain modulation. We review the involvement of various brain areas during pain and focus on understanding the connections among them, which can contribute to a better understanding of pain mechanisms and provide opportunities for further research on therapies for improved pain management.
Collapse
Affiliation(s)
- Dandan Yao
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
6
|
Journée SH, Mathis VP, Fillinger C, Veinante P, Yalcin I. Janus effect of the anterior cingulate cortex: Pain and emotion. Neurosci Biobehav Rev 2023; 153:105362. [PMID: 37595650 DOI: 10.1016/j.neubiorev.2023.105362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Over the past 20 years, clinical and preclinical studies point to the anterior cingulate cortex (ACC) as a site of interest for several neurological and psychiatric conditions. The ACC plays a critical role in emotion, autonomic regulation, pain processing, attention, memory and decision making. An increasing number of studies have demonstrated the involvement of the ACC in the emotional component of pain and its comorbidity with emotional disorders such as anxiety and depression. Thanks to the development of animal models combined with state-of-the-art technologies, we now have a better mechanistic understanding of the functions of the ACC. Hence, the primary aim of this review is to compile the most recent preclinical studies on the role of ACC in the emotional component and consequences of chronic pain. Herein, we thus thoroughly describe the pain-induced electrophysiological, molecular and anatomical alterations in the ACC and in its related circuits. Finally, we discuss the next steps that are needed to strengthen our understanding of the involvement of the ACC in emotional and pain processing.
Collapse
Affiliation(s)
- Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Victor P Mathis
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
7
|
Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals (Basel) 2022; 15:ph15101203. [PMID: 36297314 PMCID: PMC9611768 DOI: 10.3390/ph15101203] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder, that adversely impacts an individual’s quality of life, but its diagnosis and treatment are not accurately executed and a symptom-based approach is utilized in most cases, due to the lack of precise knowledge regarding the pathophysiology. So far, the first-line treatments are still based on monoamine neurotransmitters. Even though there is a lot of progress in this field, the mechanisms seem to get more and more confusing, and the treatment is also getting more and more controversial. In this study, we try to review the broad advances of monoamine neurotransmitters in the field of MDD, and update its effects in many advanced neuroscience studies. We still propose the monoamine hypothesis but paid special attention to their effects on the new pathways for MDD, such as inflammation, oxidative stress, neurotrophins, and neurogenesis, especially in the glial cells, which have recently been found to play an important role in many neurodegenerative disorders, including MDD. In addition, we will extend the monoamine hypothesis to basic emotions; as suggested in our previous reports, the three monoamine neurotransmitters play different roles in emotions: dopamine—joy, norepinephrine—fear (anger), serotonins—disgust (sadness). Above all, this paper tries to give a full picture of the relationship between the MDD and the monoamine neurotransmitters such as DA, NE, and 5-HT, as well as their contributions to the Three Primary Color Model of Basic Emotions (joy, fear, and disgust). This is done by explaining the contribution of the monoamine from many sides for MDD, such the digestive tract, astrocytes, microglial, and others, and very briefly addressing the potential of monoamine neurotransmitters as a therapeutic approach for MDD patients and also the reasons for its limited clinical efficacy, side effects, and delayed onset of action. We hope this review might offer new pharmacological management of MDD.
Collapse
|
8
|
Yamashiro K, Ikegaya Y, Matsumoto N. In Utero Electroporation for Manipulation of Specific Neuronal Populations. MEMBRANES 2022; 12:membranes12050513. [PMID: 35629839 PMCID: PMC9147339 DOI: 10.3390/membranes12050513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
The complexity of brain functions is supported by the heterogeneity of brain tissue and millisecond-scale information processing. Understanding how complex neural circuits control animal behavior requires the precise manipulation of specific neuronal subtypes at high spatiotemporal resolution. In utero electroporation, when combined with optogenetics, is a powerful method for precisely controlling the activity of specific neurons. Optogenetics allows for the control of cellular membrane potentials through light-sensitive ion channels artificially expressed in the plasma membrane of neurons. Here, we first review the basic mechanisms and characteristics of in utero electroporation. Then, we discuss recent applications of in utero electroporation combined with optogenetics to investigate the functions and characteristics of specific regions, layers, and cell types. These techniques will pave the way for further advances in understanding the complex neuronal and circuit mechanisms that underlie behavioral outputs.
Collapse
Affiliation(s)
- Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (K.Y.); (Y.I.)
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (K.Y.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka 565-0871, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (K.Y.); (Y.I.)
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence:
| |
Collapse
|
9
|
Guo F, Du Y, Qu FH, Lin SD, Chen Z, Zhang SH. Dissecting the Neural Circuitry for Pain Modulation and Chronic Pain: Insights from Optogenetics. Neurosci Bull 2022; 38:440-452. [PMID: 35249185 PMCID: PMC9068856 DOI: 10.1007/s12264-022-00835-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage. The processing of pain involves complicated modulation at the levels of the periphery, spinal cord, and brain. The pathogenesis of chronic pain is still not fully understood, which makes the clinical treatment challenging. Optogenetics, which combines optical and genetic technologies, can precisely intervene in the activity of specific groups of neurons and elements of the related circuits. Taking advantage of optogenetics, researchers have achieved a body of new findings that shed light on the cellular and circuit mechanisms of pain transmission, pain modulation, and chronic pain both in the periphery and the central nervous system. In this review, we summarize recent findings in pain research using optogenetic approaches and discuss their significance in understanding the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Da Lin
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Pan TT, Gao W, Song ZH, Long DD, Cao P, Hu R, Chen DY, Zhou WJ, Jin Y, Hu SS, Wei W, Chai XQ, Zhang Z, Wang D. Glutamatergic neurons and myeloid cells in the anterior cingulate cortex mediate secondary hyperalgesia in chronic joint inflammatory pain. Brain Behav Immun 2022; 101:62-77. [PMID: 34973395 DOI: 10.1016/j.bbi.2021.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ting-Ting Pan
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wei Gao
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zi-Hua Song
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Dan-Dan Long
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng Cao
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Rui Hu
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jie Zhou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Yan Jin
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Qing Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhi Zhang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
11
|
Seamans JK, Floresco SB. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci Biobehav Rev 2021; 133:104503. [PMID: 34922986 DOI: 10.1016/j.neubiorev.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Despite being an intensive area of research, the function of the anterior cingulate cortex (ACC) remains somewhat of a mystery. Human imaging studies implicate the ACC in various cognitive functions, yet surgical ACC lesions used to treat emotional disorders have minimal lasting effects on cognition. An alternative view is that ACC regulates autonomic states, consistent with its interconnectivity with autonomic control regions and that stimulation evokes changes in autonomic/emotional states. At the cellular level, ACC neurons are highly multi-modal and promiscuous, and can represent a staggering array of task events. These neurons nevertheless combine to produce highly event-specific ensemble patterns that likely alter activity in downstream regions controlling emotional and autonomic tone. Since neuromodulators regulate the strength of the ensemble activity patterns, they would regulate the impact these patterns have on downstream targets. Through these mechanisms, the ACC may determine how strongly to react to the very events its ensembles represent. Pathologies arise when specific event-related representations gain excessive control over autonomic/emotional states.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Depts. of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada.
| | - Stan B Floresco
- Depts. of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada
| |
Collapse
|
12
|
Sexually Dimorphic Expression of Fear-conditioned Analgesia in Rats and Associated Alterations in the Endocannabinoid System in the Periaqueductal Grey. Neuroscience 2021; 480:117-130. [PMID: 34774710 DOI: 10.1016/j.neuroscience.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system within the periaqueductal grey (PAG) has been implicated in fear-conditioned analgesia (FCA), the profound suppression of pain upon re-exposure to a context previously paired with an aversive stimulus. Since the endocannabinoid and nociceptive systems exhibit sexual dimorphism, the aim of the present study was to assess possible sex differences in the expression of FCA, fear in the presence of nociceptive tone, and associated sex-dependent alterations in the endocannabinoid system within the PAG. Male and female Sprague-Dawley rats received footshock (10 × 1s; 0.4 mA; every 60 s) or no-footshock in a conditioning arena and 23.5 h later received intraplantar injection of formalin (2.5%) under brief isoflourane anaesthetic into the right hind paw. Nociceptive and fear-related behaviours were assessed 30 min later. Levels of endocannabinoids, N-acylethanolamines and neurotransmitters in the PAG were assessed by LC-MS/MS and expression of endocannabinoid system-related proteins by Western immunoblotting. Male, but not female, rats exhibited robust FCA and greater expression of fear-related behaviours than females. Fear-conditioned formalin-treated males, but not females, had higher levels of N-oleoylethanolamine (OEA) and γ-aminobutyric acid (GABA) in the PAG, compared with non-fear-conditioned controls. There was no effect of fear conditioning on the levels of FAAH or CB1 receptor expression (CB1R) in the PAG of male or female formalin-treated rats. Non-fear-conditioned females had higher levels of CB1R and PPARγ expression than non-fear-conditioned male counterparts. In summary, our results provide evidence of sexual dimorphism in the expression of FCA and fear-related behaviours, and associated alterations in components of the endocannabinoid system and GABA within the PAG.
Collapse
|