1
|
Sakamoto T, Ueda T, Horie T, Sakamoto D, Yoshitomi Y, Ishigaki Y, Ono M, Kato N, Kanda T, Kasamaki Y. Investigating the Unexpected Effect of Bulkheads in a Dementia Model of Mice Through Molecular Analysis of the Hippocampus. Cureus 2024; 16:e72272. [PMID: 39583389 PMCID: PMC11585074 DOI: 10.7759/cureus.72272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
AIM This study aimed to evaluate the impact of long-term exposure to physical barriers used as preventive measures during the coronavirus disease 2019 (COVID-19) pandemic on cognitive function and behavior in an apolipoprotein E-/- (ApoE-/-) mouse dementia model. METHODS ApoE-/- mice were divided into co-housed, partitioned by a transparent bulkhead (partitioned), and isolated groups. To assess anxiety, cognitive recognition, and spatial learning, behavioral tests, including the open-field test, novel object recognition test, and Morris water maze test, were conducted at three and six months after the start of the 33-week rearing period. RNA-sequencing analysis of hippocampal tissues was performed to investigate gene expression changes. RESULTS The partitioned group exhibited reduced exploratory behavior, lower recognition index, and impaired spatial learning compared with the co-housed group. However, the differences were not significant. Based on morphological analysis, the partitioned and isolated groups presented a significant reduction in neuronal density in the hippocampal CA1 region. RNA-sequencing analysis showed significant changes in the expression of genes related to neurotransmitter transport, neurite outgrowth, and neuropeptide signaling pathways. CONCLUSIONS Prolonged physical isolation, even with visual contact, can adversely affect cognitive function and hippocampal structure in dementia models. Changes in gene expression indicate that neurotransmitter imbalances and neuroinflammatory responses may contribute to these effects. These findings emphasize the need to develop new infection-prevention measures for patients with dementia during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Ishikawa, JPN
- Department of Pharmacy, Kanazawa Medical University Hospital, Ishikawa, JPN
| | - Tadashi Ueda
- Department of Community Medicine, Kanazawa Medical University, Ishikawa, JPN
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Ishikawa, JPN
- Department of Pharmacy, Kanazawa Medical University Hospital, Ishikawa, JPN
| | - Daisuke Sakamoto
- Department of Cardiovascular Surgery, Kanazawa Medical University Hospital, Ishikawa, JPN
| | - Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University, Ishikawa, JPN
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Ishikawa, JPN
| | - Munenori Ono
- Department of Physiology, Kanazawa Medical University, Kahoku, Ishikawa, JPN
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, JPN
| | - Tsugiyasu Kanda
- Department of Community Medicine, Kanazawa Medical University, Ishikawa, JPN
- Department of General Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, JPN
| | - Yuji Kasamaki
- Department of General Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, JPN
- Department of Community Medicine, Kanazawa Medical University, Ishikawa, JPN
| |
Collapse
|
2
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
3
|
Alveal-Mellado D, Giménez-Llort L. Use of Ordered Beta Regression Unveils Cognitive Flexibility Index and Longitudinal Cognitive Training Signatures in Normal and Alzheimer's Disease Pathological Aging. Brain Sci 2024; 14:501. [PMID: 38790478 PMCID: PMC11119991 DOI: 10.3390/brainsci14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues for analyzing continuous response data. Here, we applied this combined approach to investigate nuanced differences between the 3xTg-AD model of Alzheimer's disease (AD) and their C57BL/6 non-transgenic (NTg) counterparts with normal aging in a 5-day Morris Water Maze (MWM) test protocol. Our longitudinal study included 22 3xTg-AD mice and 15 NTg mice (both male and female) assessed at 12 and 16 months of age. By identifying and analyzing multiple swimming strategies during three different paradigms (cue, place task, and removal), we uncovered genotypic differences in all paradigms. Thus, the NTg group exhibited a higher percentage of direct search behaviors, while an association between circling episodes and 3xTg-AD animals was found. Furthermore, we also propose a novel metric-the "Cognitive Flexibility Index"-which proved sensitive in detecting sex-related differences. Overall, our integrated GLMMs-OBR approach provides a comprehensive insight into mouse behavior in the MWM test, shedding light on the effects of aging and AD pathology.
Collapse
Affiliation(s)
- Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
AlHarthi A, Alasmari F, AlSharari SD, Alrasheed NM, Alshammari MA, Alshammari TK. Investigating Behavioral and Neuronal Changes in Adolescent Mice Following Prenatal Exposure to Electronic Cigarette (E-Cigarette) Vapor Containing Nicotine. Brain Sci 2023; 13:1417. [PMID: 37891786 PMCID: PMC10605868 DOI: 10.3390/brainsci13101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
A substantial percentage of pregnant smokers stop using traditional cigarettes and switch to alternative nicotine-related products such as e-cigarettes. Prenatal exposure to tobacco increases the risk of psychiatric disorders in children. Adolescence is a complex phase in which higher cognitive and emotional processes undergo maturation and refinement. In this study, we examined the behavioral and molecular effects of first-trimester prenatal exposure to e-cigarettes. Adult female mice were divided into normal air, vehicle, and 2.5%-nicotine-exposed groups. Our analyses indicated that the adolescents in the 2.5%-nicotine-exposed group exhibited a significant lack of normal digging behavior, elevated initial sucrose intake, and reduced recognition memory. Importantly, we identified a substantial level of nicotine self-administration in the 2.5%-nicotine-exposed group. At a molecular level, the mRNAs of metabotropic glutamate receptors and transporters in the nucleus accumbens were not altered. This previously undescribed work indicates that prenatal exposure to e-cigarettes might increase the risk of nicotine addiction during adolescence, reduce cognitive capacity, and alter normal adolescent behavior. The outcome will aid in translating research and assist healthcare practitioners in tackling addiction and mental issues caused by toxicological exposure. Further, it will inform relevant policymaking, such as recommended taxation, labeling e-cigarette devices with more detailed neurotoxic effects, and preventing their sale to pregnant women and adolescents.
Collapse
Affiliation(s)
- Alaa AlHarthi
- Pharmacology & Toxicology Graduate Program, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Shakir D. AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11362, Saudi Arabia; (F.A.); (S.D.A.); (N.M.A.); (M.A.A.)
| |
Collapse
|
5
|
Shivakumar AB, Kumari S, Mehak SF, Gangadharan G. Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:773-784. [PMID: 37881551 PMCID: PMC10593884 DOI: 10.1016/j.bpsgos.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background In addition to memory deficits, patients with Alzheimer's disease (AD) experience neuropsychiatric disturbances. Recent studies have suggested the association of obsessive-compulsive disorder with the early stages of AD. However, there is a lack of understanding of the neurobiological underpinnings of compulsive-like behaviors at the neuronal circuit level and their relationship with AD. Methods We have addressed this issue in an amyloid-β 1-42-induced mouse model of AD by studying compulsive-like behaviors. Next, we compared the hippocampal and medial prefrontal cortex (mPFC) local field potential pattern and coherence between these regions of control and AD mice. We also assessed the expression pattern of acetylcholine and glutamatergic signaling in these regions, using quantitative polymerase chain reaction. Results Our findings show that AD mice exhibit compulsive-like behaviors, as evidenced by enhanced marble burying, nest building, and burrowing. Furthermore, AD mice exhibited hippocampo-cortical circuit dysfunction demonstrated by decreased power of rhythmic oscillations at the theta (4-12 Hz) and gamma (25-50 Hz) frequencies in the hippocampus and mPFC, two functionally interconnected brain regions involved both in AD and compulsive behaviors. Importantly, coherence between the hippocampus and mPFC in the theta band of AD animals was significantly reduced. Furthermore, we found reduced cholinergic and glutamatergic neurotransmission in the hippocampus and mPFC of AD mice. Conclusions We conclude that the hippocampo-cortical functional alterations may play a significant role in mediating the compulsive-like behaviors observed in AD mice. These findings may help in understanding the underlying circuit mechanisms of obsessive-compulsive disorder-like phenotypes associated with AD.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sparsha Kumari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Fraile-Ramos J, Garrit A, Reig-Vilallonga J, Giménez-Llort L. Hepatic Oxi-Inflammation and Neophobia as Potential Liver-Brain Axis Targets for Alzheimer's Disease and Aging, with Strong Sensitivity to Sex, Isolation, and Obesity. Cells 2023; 12:1517. [PMID: 37296638 PMCID: PMC10252497 DOI: 10.3390/cells12111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Research on Alzheimer's disease (AD) has classically focused on alterations that occur in the brain and their intra- and extracellular neuropathological hallmarks. However, the oxi-inflammation hypothesis of aging may also play a role in neuroimmunoendocrine dysregulation and the disease's pathophysiology, where the liver emerges as a target organ due to its implication in regulating metabolism and supporting the immune system. In the present work, we demonstrate organ (hepatomegaly), tissue (histopathological amyloidosis), and cellular oxidative stress (decreased glutathione peroxidase and increased glutathione reductase enzymatic activities) and inflammation (increased IL-6 and TNF𝛼) as hallmarks of hepatic dysfunction in 16-month-old male and female 3xTg-AD mice at advanced stages of the disease, and as compared to age- and sex-matched non-transgenic (NTg) counterparts. Moreover, liver-brain axis alterations were found through behavioral (increased neophobia) and HPA axis correlations that were enhanced under forced isolation. In all cases, sex (male) and isolation (naturalistic and forced) were determinants of worse hepatomegaly, oxidative stress, and inflammation progression. In addition, obesity in old male NTg mice was translated into a worse steatosis grade. Further research is underway determine whether these alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for AD research.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Garrit
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Marín-Pardo D, Giménez-Llort L. Olfactory Signatures in the Food Finding Test in Mice With Normal and Alzheimer's Disease-Pathological Aging With Special Concerns on the Effects of Social Isolation. Front Neurosci 2021; 15:733984. [PMID: 34675767 PMCID: PMC8523944 DOI: 10.3389/fnins.2021.733984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
The temporal course and the severity of the involution of sensory systems through aging can be critical since they ensure the ability to perceive and recognize the world. In older people, sensory impairments significantly increase their risk of biological, psychological, and social impoverishment. Besides this, olfactory loss is considered an early biomarker in Alzheimer’s disease (AD) neurodegenerative process. Here we studied olfactory ethograms in middle-aged male and female gold-standard C57BL/6 mice and 3xTg-AD mice, a genetic model of AD that presents cognitive dysfunction and a conspicuous neuropsychiatric-like phenotype. A paradigm involving 1-day food deprivation was used to investigate the ethological patterns shown in the olfactory inspection of a new cage and the sniffing, finding, and eating of hidden food pellets. The sniffing–find–eat temporal patterns were independent of the loss of weight and unveiled (fast) olfactory signatures in Alzheimer’s disease, differing from those (slow progressive) in normal aging. Male 3xTg-AD mice exhibited an early signature than female mice, opposite to animals with normal aging. The sequence of actions was correlated in male and female 3xTg-AD mice in contrast to control mice. Social isolation, naturally occurring in male 3xTg-AD due to the death of cage mates, emphasized their olfactory patterns and disrupted the behavioral correlates. The paradigm provided distinct contextual, sex, and genotype olfactory ethogram signatures useful to investigate olfactory function in normal and AD-pathological aging. Isolation had an impact on enhancing the changes in the olfactory signature here described, for the first time, in the 3xTg-AD model of Alzheimer’s disease.
Collapse
Affiliation(s)
- Daniela Marín-Pardo
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Sex-Dependent Signatures, Time Frames and Longitudinal Fine-Tuning of the Marble Burying Test in Normal and AD-Pathological Aging Mice. Biomedicines 2021; 9:biomedicines9080994. [PMID: 34440198 PMCID: PMC8391620 DOI: 10.3390/biomedicines9080994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
The marble burying (MB) test, a classical test based on the natural tendency of rodents to dig in diverse substrates and to bury small objects, is sensitive to some intrinsic and extrinsic factors. Here, under emerging neuroethological quantitative and qualitative analysis, the MB performance of 12-month-old male and female 3xTg-AD mice for Alzheimer’s disease and age-matched counterparts of gold-standard C57BL6 strain with normal aging unveiled sex-dependent signatures. In addition, three temporal analyses, through the (1) time course of the performance, and (2) a repeated test schedule, identified the optimal time frames and schedules to detect sex- and genotype-dependent differences. Besides, a (3) longitudinal design from 12 to 16 months of age monitored the changes in the performance with aging, worsening in AD-mice, and modulation through the repeated test. In summary, the present results allow us to conclude that (1) the marble burying test is responsive to genotype, sex, aging, and its interactions; (2) the male sex was more sensitive to showing the AD-phenotype; (3) longitudinal assessment shows a reduction in females with AD pathology; (4) burying remains stable in repeated testing; (5) the time-course of marbles burying is useful; and (6) burying behavior most likely represents perseverative and/or stereotyped-like behavior rather than anxiety-like behavior in 3xTg-AD mice.
Collapse
|
9
|
Santana-Santana M, Bayascas JR, Giménez-Llort L. Fine-Tuning the PI3K/Akt Signaling Pathway Intensity by Sex and Genotype-Load: Sex-Dependent Homozygotic Threshold for Somatic Growth but Feminization of Anxious Phenotype in Middle-Aged PDK1 K465E Knock-In and Heterozygous Mice. Biomedicines 2021; 9:747. [PMID: 34203450 PMCID: PMC8301321 DOI: 10.3390/biomedicines9070747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
According to the Research Domain Criteria (RDoC), phenotypic differences among disorders may be explained by variations in the nature and degree of neural circuitry disruptions and/or dysfunctions modulated by several biological and environmental factors. We recently demonstrated the in vivo behavioral translation of tweaking the PI3K/Akt signaling, an essential pathway for regulating cellular processes and physiology, and its modulation through aging. Here we describe, for the first time, the in vivo behavioral impact of the sex and genetic-load tweaking this pathway. The anxiety-like phenotypes of 61 mature (11-14-month-old) male and female PDK1 K465E knock-in, heterozygous, and WT mice were studied. Forced (open-field) anxiogenic environmental conditions were sensitive to detect sex and genetic-load differences at middle age. Despite similar neophobia and horizontal activity among the six groups, females exhibited faster ethograms than males, with increased thigmotaxis, increased wall and bizarre rearing. Genotype-load unveiled increased anxiety in males, resembling female performances. The performance of mutants in naturalistic conditions (marble test) was normal. Homozygotic-load was needed for reduced somatic growth only in males. Factor interactions indicated the complex interplay in the elicitation of different negative valence system's items and the fine-tuning of PI3K/Akt signaling pathway intensity by genotype-load and sex.
Collapse
Affiliation(s)
- Mikel Santana-Santana
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - José-Ramón Bayascas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| |
Collapse
|
10
|
Caponnetto P, Benenati A, Maglia MG. Psychopathological Impact and Resilient Scenarios in Inpatient with Schizophrenia Spectrum Disorders Related to Covid Physical Distancing Policies: A Systematic Review. Behav Sci (Basel) 2021; 11:bs11040049. [PMID: 33924365 PMCID: PMC8070199 DOI: 10.3390/bs11040049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/07/2023] Open
Abstract
The COVID-19 epidemic posed great challenges to the healthcare community. To contain the epidemiological emergency, confinement measures were instituted, affecting the entire population. The lack of social contact, as well as the disruption of daily life, caused the exacerbation of anxiety and depressive symptoms. The present review of the literature aims to investigate what the effects of the pandemic have been on patients with schizophrenia, hypothesizing, an exacerbation of psychotic symptomatology (positive, negative, disorganized symptoms). Between November 2020 and January 2021, 5353 articles were collected and analyzed from the databases of the ResearchGate, Pubmed, and Psycnet websites, subjected to PRISMA methodology. Of these, 11 were evaluated for eligibility, but only three were included in the study because they met all inclusion criteria. The research did not confirm the expected results, showing that any kind of worsening of schizophrenic symptomatology involved the study samples. However, interesting outcomes were highlighted, such as a significant increase in general well-being during the early period of the pandemic, especially by women, or an increase in CPR (C-reactive Protein) levels in the blood, signaling an inflammatory state. Although the systematic review refuted the initial hypothesis, this must be a starting point: the topic is recent and these findings leave ample room for further investigation, particularly in long-term longitudinal research. It is possible that the true response to this disruption of daily life that occurred only during the past year may manifest itself later in time. On the other hand, interesting outcomes have been brought to light that may provide further interesting research insights.
Collapse
Affiliation(s)
- Pasquale Caponnetto
- Department of Educational Sciences, University of Catania, 95100 Mascalucia, Italy; (A.B.); (M.G.M.)
- Center of Excellence for the Acceleration of Harm Reduction (COEHAR), University of Catania, 95100 Mascalucia, Italy
- CTA-Villa Chiara Psychiatric Rehabilitation Clinic and Research, 95100 Mascalucia, Italy
- Correspondence:
| | - Alessandra Benenati
- Department of Educational Sciences, University of Catania, 95100 Mascalucia, Italy; (A.B.); (M.G.M.)
- CTA-Villa Chiara Psychiatric Rehabilitation Clinic and Research, 95100 Mascalucia, Italy
| | - Marilena G. Maglia
- Department of Educational Sciences, University of Catania, 95100 Mascalucia, Italy; (A.B.); (M.G.M.)
- Center of Excellence for the Acceleration of Harm Reduction (COEHAR), University of Catania, 95100 Mascalucia, Italy
- CTA-Villa Chiara Psychiatric Rehabilitation Clinic and Research, 95100 Mascalucia, Italy
| |
Collapse
|