1
|
Charron I, Magueresse-Battistoni BL, Habert R, Canivenc-Lavier MC, Mhaouty-Kodja S, Michel-Caillet C. Melamine regulatory assessment for endocrine disruption. ENVIRONMENT INTERNATIONAL 2024; 194:109188. [PMID: 39671826 DOI: 10.1016/j.envint.2024.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Melamine has several domestic and industrial uses as a flame retardant or in the manufacture of melamine-formaldehyde resins. Based on available scientific literature data, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) included this substance in the list of "chemicals that may present endocrine disruptor (ED) properties", and the substance was prioritized to assess whether it should be classified as an ED in European Union (EU) regulations for hazard identification. This review reports the assessment of melamine based on relevant studies from the registration dossier under REACH, and peer-reviewed literature. Among the various adverse effects, reproductive, neurodevelopmental, and thyroid effects were analyzed in particular, because they could be the consequence of an endocrine disruption. The different modes of action (endocrine or non-endocrine) potentially leading to these effects were scrutinized to understand whether the WHO definition for ED and the criteria for hazard identification were met. It was concluded that the reproductive effect on spermatogenesis was not a consequence of endocrine activity. A biologically plausible link between this effect and endocrine activity was not established, and other modes of action (oxidative stress or altered energy metabolism) could be involved. Similarly, thyroid and neurodevelopmental effects appeared at higher doses than those leading to renal toxicity. Our assessment confirms that melamine is a reprotoxic substance but does not support ED classification. This assessment illustrates the scientific and regulatory challenges in differentiating specific endocrine disruption from an indirect endocrine effect resulting from non-ED mediated systemic toxicity.
Collapse
Affiliation(s)
- Isabelle Charron
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, Maisons-Alfort 94701, France.
| | | | - René Habert
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université Paris-Cité, Fontenay-aux-Roses 92265, France
| | - Marie-Chantal Canivenc-Lavier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon 21000, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris 75005, France
| | - Cécile Michel-Caillet
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, Maisons-Alfort 94701, France
| |
Collapse
|
2
|
Chen HC, Feng WW, Audira G, Kurnia KA, Hung SH, Castillo AL, Roldan MJM, Hsiao CD, Hung CH. Evaluation of sub-chronic toxicity of melamine via systematic or oral delivery in adult zebrafish based on behavioral endpoints. Neurotoxicology 2024; 102:68-80. [PMID: 38599288 DOI: 10.1016/j.neuro.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Melamine-tainted products have been found in the market and raised issues about food safety. Recent studies done in rodents and humans demonstrated the toxicities of melamine, especially in causing kidney damage and bladder stone formation. However, very few studies assessed its behavior toxicity in organisms, including fish. Therefore, in this study, the researchers aim to determine whether sub-chronic exposure to melamine via oral and systematic administration could induce behavioral abnormality in zebrafish. After 14 days of systematic exposure to melamine at doses of 0.1 and 10 ppm levels, zebrafish were subjected to multiple behavioral assays. Results from both exposure routes showed that melamine indeed slightly increased fish locomotion and altered their exploratory behaviors in the novel tank assay. Furthermore, tightened shoaling formation was also displayed by the treated fish in the waterborne exposure group. However, melamine exposure did not cause any obvious alterations in fish behaviors during other behavioral tests. In addition, in comparison with previously published data on the behavior toxicities of several solvents in zebrafish, our phenomic analysis suggests the relatively low behavior toxicities of melamine via either systematic exposure or oral administration to zebrafish compared to those solvents. Nevertheless, our data indicate that the potential neurotoxicity of chronic low-dose melamine should not be ignored.
Collapse
Affiliation(s)
- Hsiu-Chao Chen
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan; Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan; Dr. Feng's Dermatology Clinic, Kaohsiung 811022, Taiwan
| | - Wen-Wei Feng
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan; Department of Dermatology, E-Da Cancer Hospital, Kaohsiung 824005, Taiwan; Dr. Feng's Dermatology Clinic, Kaohsiung 811022, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - San-Ho Hung
- Department of Physical Therapy, Fooyin University, 151 Jinxue Rd., Daliao Dist., Kaohsiung 83102, Taiwan; Department of Radiology, Fooyin University Hospital, No. 5, Zhongshan Road, Donggang Township, Pingtung 92847, Taiwan
| | - Agnes L Castillo
- Faculty of Pharmacy, The Graduate School and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu, Kaohsiung 84001, Taiwan.
| |
Collapse
|
3
|
Cui T, Liu Z, Li Z, Han Y, Xiong W, Qu Z, Zhang X. Serum brain-derived neurotrophic factor concentration is different between autism spectrum disorders and intellectual disability children and adolescents. J Psychiatr Res 2024; 170:355-360. [PMID: 38215646 DOI: 10.1016/j.jpsychires.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
PURPOSE Recent studies showed that mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF are associated with autism spectrum disorders (ASD). Whether their levels are different between ASD and intellectual disability (ID) subjects is not clear. The aim of this study is to compare the serum mBDNF and proBDNF concentration, and mBNDF/proBDNF ratio in ASD and ID volunteers. METHODS Children and adolescents with ASD or ID between the ages of 4 and 22 were recruited in Tianjin, China. Serum mBDNF and proBDNF level were tested and Wechsler Preschool and Primary Scale of Intelligence (WPPSI), Wechsler Intelligence Scale for Children (WISC), and Childhood Autism Rating Scale (CARS) evaluations were conducted. RESULTS Serum mBDNF concentration and the ratio of mBDNF to proBDNF was higher in ASD subjects than that in ID subjects (P = 0.035 and P < 0.001, respectively), while serum proBDNF of ASD participants was lower compared to that of ID participants (P < 0.001). CARS score was positively correlated with serum mBDNF level (r = 0.33, P = 0.004) and m/p ratio (r = 0.39, P < 0.001), and negatively correlated with serum proBDNF level (r = -0.39, <0.001) after adjusting for age and IQ. The AUC of mBDNF, proBDNF, and m/p ratio were 0.741, 0.790, and 0.854, respectively, after adjusted for age and IQ. CONCLUSION Serum mBDNF, proBDNF and m/p ratio were different between ASD and ID group. The three biomarkers displayed good diagnostic values for classification of ASD and ID subjects.
Collapse
Affiliation(s)
- Tingkai Cui
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhao Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Naeimi R, Safarpour F, Askari H, Ghasemi-Kasman M. Current Insights into the Neurotoxicity of Melamine: A Comprehensive Review. Curr Neuropharmacol 2024; 23:20-35. [PMID: 38591198 PMCID: PMC11519818 DOI: 10.2174/1570159x22666240320133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Melamine, a heterocyclic nitrogen-rich triazine chemical compound, is widely used in various household products, including furniture, dinnerware, and kitchen appliances. The unauthorized addition of the mixture to various foodstuffs to misrepresent protein content resulted in catastrophic, frequently life-threatening health consequences for kids as well as canines and has garnered international attention. Numerous primary studies and evaluations have been focused on melamine toxicity's implications on kidney function. Despite the profusion of literature on melamine's nephrotoxicity, evidence regarding its toxicity to other organs remains scarce. A number of recent studies suggest melamine can disrupt central nervous system (CNS) function and bring about cognitive impairments, contradicting the commonly held belief that melamine's detrimental effects are limited to the urinary system. The accumulation of melamine in the body is linked to various adverse effects, including depression, impaired synaptic transmission, oxidative stress, and neurodegenerative diseases. Several mechanisms may lead to such complications. However, numerous safeguards against melamine accumulation have been identified. This review could shed light on the potential neurological effects and mechanisms underlying melamine toxicity. Afterward, we will dive into the body's possible protective mechanisms against melamine-induced toxicity.
Collapse
Affiliation(s)
- Reza Naeimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Habotta OA, Abdeen A, El-Hanafy AA, Yassin N, Elgameel D, Ibrahim SF, Abdelrahaman D, Hasan T, Imbrea F, Ghamry HI, Fericean L, Behairy A, Atwa AM, Abdelkader A, Mahdi MR, El-Mosallamy SA. Sesquiterpene nootkatone counteracted the melamine-induced neurotoxicity via repressing of oxidative stress, inflammatory, and apoptotic trajectories. Biomed Pharmacother 2023; 165:115133. [PMID: 37454594 DOI: 10.1016/j.biopha.2023.115133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Melamine (ML), a chemical substance of high nitrogen content, is used as a food adulterant. Former evidences implied that ML could induce a variety of toxic effects including neurotoxicity and cognitive impairment. Therefore, the aim of this study was to delineate the protective effect of the nootkatone (NK) against ML-induced neural adverse effects. Rats were orally pretreated with NK (5 and 10 mg/kg) prior to the oral administration of ML (700 mg/kg) for a period of 28 days. Our findings unveiled remarkable alleviating effect of NK on MK-induced neurobehavioral disturbance in open field test. Furthermore, NK lessened ML-caused increases in the acetylcholine esterase level in the brain tissue of exposed rats. NK also decreased the neural oxidative stress as represented by elevated levels of SOD, CAT, and GSH along with decreased MDA and NO levels. Upregulated mRNA expression levels of neural NRF-2 and HO-1 were noticed after NK administration. Remarkable anti-inflammatory impact was prominent by decreased neural IL-1β, and TNF-α along with downregulated NF-κB and TLR-4 gene expression levels in NK-treated rats. Noteworthily, pre-treatment with NK decreased the immune reaction of RAGE and HMGB-1 induced by oral ML exposure. Brain histological examination validated the obtained biochemical and molecular results. To sum up, these outcomes reveal that NK successfully alleviated the neural damage induced by ML via blocking of oxidative stress, and inflammatory signaling pathways. Consequently, our study may suggest NK as a new effective therapeutic supplement for treatment of ML-mediated neurotoxicity in rats via inhibition of HMGB-1-RAGE/TLR-4/NF-κB.
Collapse
Affiliation(s)
- Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Aya A El-Hanafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, New Mansoura University, New Mansoura, 35516, Egypt.
| | - Neimet Yassin
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Dina Elgameel
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt.
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Doaa Abdelrahaman
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Florin Imbrea
- Department of Crop Science, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, 119, Calea Aradului, 300645 Timisoara, Romania.
| | - Heba I Ghamry
- Nutrition and Food Sciences, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Liana Fericean
- Department of Biology and Plant protection, Faculty of Agriculture. University of Life Sciences "King Michael I" from Timișoara, Calea Aradului 119, CUI 3487181, Romania.
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt.
| | - Mohamed R Mahdi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
| | - Shaaban A El-Mosallamy
- Department of Forensic Medicine and Clinical toxicology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
6
|
Sun W, Zhao X, Wan Y, Yang Y, Li X, Chen X, Mei Y, An L. Prenatal cyanuric acid exposure induced spatial learning impairments associated with alteration of acetylcholine-mediated neural information flow at the hippocampal CA3-CA1 synapses of male rats. Hum Exp Toxicol 2023; 42:9603271231163477. [PMID: 36890733 DOI: 10.1177/09603271231163477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cyanuric acid (CA) is reported to induce nephrotoxicity but its toxic effect is not fully known. Prenatal CA exposure causes neurodevelopmental deficits and abnormal behavior in spatial learning ability. Dysfunction of the acetyl-cholinergic system in neural information processing is correlated with spatial learning impairment and was found in the previous reports of CA structural analogue melamine. To further investigate the neurotoxic effects and the potential mechanism, the acetylcholine (ACh) level was detected in the rats which were exposed to CA during the whole of gestation. Local field potentials (LFPs) were recorded when rats infused with ACh or cholinergic receptor agonist into hippocampal CA3 or CA1 region were trained in the Y-maze task. We found the expression of ACh in the hippocampus was significantly reduced in dose-dependent manners. Intra-hippocampal infusion of ACh into the CA1 but not the CA3 region could effectively mitigate learning deficits induced by CA exposure. However, activation of cholinergic receptors did not rescue the learning impairments. In the LFP recording, we found that the hippocampal ACh infusions could enhance the values of phase synchronization between CA3 and CA1 regions in theta and alpha oscillations. Meanwhile, the reduction in the coupling directional index and the strength of CA3 driving CA1 in the CA-treated groups was also reversed by the ACh infusions. Our findings are consistent with the hypothesis and provide the first evidence that prenatal CA exposure induced spatial learning defect is attributed to the weakened ACh-mediated neuronal coupling and NIF in the CA3-CA1 pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xuanyin Zhao
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yiwen Wan
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,Department of Rehabilitation Medicine, 70570Shenzhen Bao'an Hospital Affiliated of Southern Medical University, Shenzhen, China
| | - Yang Yang
- Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Xiao Chen
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Yazi Mei
- 47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Sun W, Lu Z, Chen X, Yang, Mei Y, Li X, An L. Aluminum Oxide Nanoparticles Impair Working Memory and Neuronal Activity through the GSK3β/BDNF Signaling Pathway of Prefrontal Cortex in Rats. ACS Chem Neurosci 2022; 13:3352-3361. [PMID: 36444509 DOI: 10.1021/acschemneuro.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies demonstrated that alumina nanoparticles (alumina NPs) impair spatial cognition and hippocampus-dependent synaptic plasticity. Although alumina NPs accumulate in the prefrontal cortex (PFC), their effects on PFC-mediated neuronal and cognitive function have been not yet documented. Here, alumina NPs (10 or 20 μg/kg of body weight) were bilaterally injected into the medial PFC (mPFC) of adult rats, and the levels of glycogen synthase kinase 3β (GSK3β) and the brain-derived neurotrophic factor (BDNF) were detected. The PFC-dependent working memory task with one-minute or three-minute delay time was conducted. Meanwhile, the neuronal correlates of working memory performance were recorded. The specific expression of neuronal BDNF was assessed by colabeled BDNF expression with the neuronal nuclear antigen (NeuN). Whole-cell patch-clamp recordings were employed to detect neuronal excitability. Intra-mPFC alumina NP infusions significantly enhanced the expression of GSK3β but reduced the phosphorylation of GSK3β (pGSK3β) and BDNF levels more severely at a dose of 20 μg/kg. Alumina NPs acted in a dose-dependent manner to impair working memory. The neuronal expression of BDNF in the 20 μg/kg group was markedly declined compared with the 10 μg/kg group. During the delay time, the neuronal frequency of pyramidal cells but not interneurons was significantly weakened. Furthermore, both the frequency and amplitude of the excitatory postsynaptic currents (EPSCs) were descended in the mPFC slices. Additionally, the infusion of GSK3β inhibitor SB216763 or BDNF could effectively attenuate the impairments in neuronal correlate, neuronal activity, and working memory. From the perspective of the identified GSK3β/BDNF pathway, these findings demonstrated for the first time that alumina NPs exposure can be a risk factor for prefrontal neuronal and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zhenzhong Lu
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Xiao Chen
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| |
Collapse
|
8
|
Sun W, Chen X, Mei Y, Li X, Yang Y, An L. Co-exposure of melamine and cyanuric acid as a risk factor for oxidative stress and energy metabolism: Adverse effects on hippocampal neuronal and synaptic function induced by excessive ROS production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114230. [PMID: 36306617 DOI: 10.1016/j.ecoenv.2022.114230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Melamine (MEL) and cyanuric acid (CA) alone have relatively low toxicity, but together they may cause serious damage to multiple organs, including the central nervous system, however, the underlying mechanism is unknown. This study aimed to determine and compare the neurotoxic effects of MEL (20 μg/mL), CA (20 μg/mL) and their combination (10 μg/mL MEL and 10 μg/mL CA) on cultured hippocampal neurons. The cell viability, apoptosis, anti-oxidative and energy metabolic indices were detected following 24 h of incubations. The miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and synaptic plasticity in the hippocampal CA1 neurons were recorded. Moreover, ROS scavenger NAC was co-infused to investigate the potential mechanism. We found the complex of MEL and CA but not their alone caused severe cell death and disturbed energy production through activation caspase-3-mediated apoptosis. Meanwhile, the combination significantly reduced the amplitude, decay time and frequency of mEPSCs but not mIPSCs, indicating the pre- and post-synaptic inhibitory actions on neuronal activity. Paired-pulsed ratio (PPR) and long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses were critically depressed. However, the co-application of NAC could effectively mitigate the cellular apoptosis, energy metabolism dysfunction and the impairments in neuronal and synaptic function. Our findings provide the first evidence that the combination of MEL and CA can exert more prominently neurotoxic effects than their alone and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the ROS-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
9
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
10
|
Prenatal cyanuric acid exposure disrupts cognitive flexibility and mGluR1-mediated hippocampal long-term depression in male rats. Toxicol Lett 2022; 370:74-84. [PMID: 36152796 DOI: 10.1016/j.toxlet.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.
Collapse
|
11
|
Sun W, Li J, Li X, Chen X, Mei Y, Yang Y, An L. Aluminium oxide nanoparticles compromise spatial memory performance and proBDNF-mediated neuronal function in the hippocampus of rats. Part Fibre Toxicol 2022; 19:34. [PMID: 35538555 PMCID: PMC9087928 DOI: 10.1186/s12989-022-00477-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Alumina nanoparticles (aluminaNPs), which are widely used in a range of daily and medical fields, have been shown to penetrate blood-brain barrier, and distribute and accumulate in different brain areas. Although oral treatment of aluminaNPs induces hippocampus-dependent learning and memory impairments, characteristic effects and exact mechanisms have not been fully elucidated. Here, male adult rats received a single bilateral infusion of aluminaNPs (10 or 20 µg/kg of body weight) into the hippocampal region, and their behavioral performance and neural function were assessed. Results The results indicated that the intra-hippocampus infusions at both doses of aluminaNPs did not cause spatial learning inability but memory deficit in the water maze task. This impairment was attributed to the effects of aluminaNP on memory consolidation phase through activation of proBDNF/RhoA pathway. Inhibition of the increased proBDNF by hippocampal infusions of p75NTR antagonist could effectively rescue the memory impairment. Incubation of aluminaNPs exaggerated GluN2B-dependent LTD induction with no effects on LTD expression in hippocampal slices. AluminaNP could also depress the amplitude of NMDA-GluN2B EPSCs. Meanwhile, increased reactive oxygen specie production was reduced by blocking proBDNF-p75NTR pathway in the hippocampal homogenates. Furthermore, the neuronal correlate of memory behavior was drastically weakened in the aluminaNP-infused groups. The dysfunction of synaptic and neuronal could be obviously mitigated by blocking proBDNF receptor p75NTR, implying the involvement of proBDNF signaling in aluminaNP-impaired memory process. Conclusions Taken together, our findings provide the first evidence that the accumulation of aluminaNPs in the hippocampus exaggeratedly activates proBDNF signaling, which leads to neural and memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Xiao Chen
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Sun W, Yang Y, Mei Y, Wu Y, Chen X, An L. Prenatal cyanuric acid exposure depresses hippocampal synaptic plasticity and induces spatial learning and memory deficits. Toxicol Lett 2021; 354:24-32. [PMID: 34757177 DOI: 10.1016/j.toxlet.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/23/2023]
Abstract
The infant and fetus may be exposed to cyanuric acid (CA) via several different routes into the diet or milk product as well as deliberate contamination. Previous findings indicated chronic CA treatment caused neurotransmission and synaptic impairment in the early developing hippocampus. This study was designed to characterize the effects of different doses (10 mg/kg, 20 mg/kg and 40 mg/kg) of CA exposure on the developing fetus. Pregnant rats were intraperitoneally exposed to CA during the entire period of gestation and male offspring were selected for water maze task, neural recording and N-methyl-d-aspartate (NMDA) receptor detection around the eighth postnatal week. We found that CA exposure impaired the learning and memory function in a dose-dependent manner. The paired-pulse ratio (PPR) and GluN2A-dependent long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway were affected in CA-exposed rats. Remarkably, hippocampal levels of NMDA-GluN2A, but not NMDA-GluN2B, were significantly decreased. Meanwhile, the spine density of hippocampal CA1 neurons was not altered by the CA exposure. Our findings are consistent with the hypothesis that CA treatment during the prenatal period produces deficits in spatial cognition by disrupting hippocampal synaptic function.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China.
| |
Collapse
|
13
|
Sun W, Tang D, Yang Y, Wu Z, Li X, An L. Melamine impairs working memory and reduces prefrontal activity associated with inhibition of AMPA receptor GluR2/3 subunit expression. Toxicol Lett 2021; 350:171-184. [PMID: 34280503 DOI: 10.1016/j.toxlet.2021.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have reported that melamine can accumulate in several regions of the brain including the medial prefrontal cortex (mPFC). Although melamine accumulation in the hippocampus has been verified to induce cognitive impairments, whether it can cause mPFC-dependent working memory deficits is still unknown. After chronic treatment with melamine (150 (Mel(150)) or 300 (Mel(300)) mg/kg), rats were tested during both delay nonmatching-to-sample spatial and odor discrimination tasks. Levels of AMPA receptor subunits in the mPFC were detected using western blotting. To further explore the mechanism at the cellular level, prefrontal activity was recorded during the odor discrimination. The working memory of Mel(150) rats was found to be significantly impaired in a 3-minute delay odor discrimination task (control: n = 6, Mel(150): n = 6; P < 0.05). Compared with the control group (n = 6), rats in the 300 mg/kg Mel(300)-treated group (n = 8) displayed working memory deficits in 60-second delay Y-maze task (P < 0.05), 1-minute and 3-minute delay odor discrimination tasks (both P < 0.05). The levels of AMPA receptor mGluR2/3 subunit were significantly decreased in rats of the Mel(150) (n = 7) and Mel(300) (n = 7) groups (both P < 0.05). Exposure to 150 (n = 7) or 300 mg/kg (n = 7) melamine resulted in significant inhibition of the regular-spiking neuron activity during the delay period of the memory test (both P < 0.05). Intraperitoneal (n = 7) and intra-mPFC (n = 6) infusions of GluR2/3 agonists, effectively enhanced the neural correlate (both P < 0.05) while rescuing cognitive deficits in Mel(300)-treated rats (both P < 0.05). Collectively, these findings suggested that melamine could induce prefrontal dysfunction and cause cognitive impairments.
Collapse
Affiliation(s)
- Wei Sun
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Dongxin Tang
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zexiang Wu
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
14
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|