1
|
Diekhorst L, Gómez-de Frutos MC, Laso-García F, Otero-Ortega L, Fuentes B, Jolkkonen J, Detante O, Moisan A, Leyva L, Martínez-Arroyo A, Díez-Tejedor E, Gutiérrez-Fernández M. Mesenchymal Stem Cells From Adipose Tissue Do not Improve Functional Recovery After Ischemic Stroke in Hypertensive Rats. Stroke 2019; 51:342-346. [PMID: 31694504 DOI: 10.1161/strokeaha.119.027133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Hypertension is the most frequent comorbidity in stroke.The purpose of this study was to evaluate whether hypertension alters the response to treatment with adipose tissue-derived mesenchymal stem cells (ADMSCs) after an ischemic stroke in rats. Methods- Ischemic stroke was induced in male normotensive or hypertensive rats. Either vehicle or 1×106 ADMSC was intravenously administered at 48 hours poststroke. Functional outcome, lesion size and volume, and markers of brain repair (GFAP [glial fibrillary acidic protein], doublecortin, CD-31, α-smooth muscle actin) were evaluated. Results- Hypertensive rats had larger lesions, higher apparent diffusion coefficients (ADC) and worse functional outcomes than normotensive rats. Hypertension increased GFAP and vascular markers (CD-31 and α-smooth muscle actin). The hypertensive rats treated with ADMSC did not show any significant improvement in functional recovery, lesion size, ADC values, or histological markers compared with those which received the vehicle. Conclusions- ADMSC did not reverse the hypertension-induced increase in lesion severity or functional impairment. Gliosis, neurogenesis, or vascular markers were not affected by ADMSC in hypertensive rats. Hypertension has a negative impact on the therapeutic effect of ADMSC after an ischemic stroke.
Collapse
Affiliation(s)
- Luke Diekhorst
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Mari Carmen Gómez-de Frutos
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Fernando Laso-García
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Laura Otero-Ortega
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Blanca Fuentes
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio University Hospital (J.J.)
| | - Olivier Detante
- Stroke Unit, Neurology Department, Grenoble Hospital, France (O.D.).,Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, France (O.D., A.M.)
| | - Anaick Moisan
- Grenoble Institute of Neurosciences, Inserm U1216, Grenoble Alpes University, France (O.D., A.M.).,Cell Therapy and Engineering Unit, EFS Auvergne Rhône Alpes, Saint-Ismier, France (A.M.)
| | - Laura Leyva
- Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, Spain (L.L.)
| | - Arturo Martínez-Arroyo
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - Exuperio Díez-Tejedor
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | - María Gutiérrez-Fernández
- From the Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid (UAM), Madrid, Spain (L.D., M.C.G.-d.F., F.L.-G., L.O.-O., B.F., A.M.-A., E.D.-T., M.G.-F.)
| | | |
Collapse
|
2
|
Mangin G, Cogo A, Moisan A, Bonnin P, Maïer B, Kubis N. Intravenous Administration of Human Adipose Derived-Mesenchymal Stem Cells Is Not Efficient in Diabetic or Hypertensive Mice Subjected to Focal Cerebral Ischemia. Front Neurosci 2019; 13:718. [PMID: 31379478 PMCID: PMC6646672 DOI: 10.3389/fnins.2019.00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
As the second cause of death and cognitive decline in industrialized countries, stroke is a major burden for society. Vascular risks factors such as hypertension and diabetes are involved in most stroke patients, aggravate stroke severity, but are still poorly taken into account in preclinical studies. Microangiopathy and sustained inflammation are exacerbated, likely explaining the severity of stroke in those patients. We sought to demonstrate that intravenous administration of human adipose derived-mesenchymal stem cells (hADMSC) that have immunomodulatory properties, could accelerate sensorimotor recovery, prevent long-term spatial memory impairment and promote neurogenesis, in diabetic or hypertensive mice, subjected to permanent middle cerebral artery occlusion (pMCAo). Diabetic (streptozotocin IP) or hypertensive (L-NAME in drinking water) male C57Bl6 mice subjected to pMCAo, were treated by hADMSC (500,000 cells IV) 2 days after cerebral ischemia induction. Infarct volume, neurogenesis, microglial/macrophage density, T-lymphocytes density, astrocytes density, and vessel density were monitored 7 days after cells injection and at 6 weeks. Neurological sensorimotor deficit and spatial memory were assessed until 6 weeks post-stroke. Whatever the vascular risk factor, hADMSC showed no effect on functional sensorimotor recovery or cognitive decline prevention at short or long-term assessment, nor significantly modified neurogenesis, microglial/macrophage, T-lymphocytes, astrocytes, and vessel density. This work is part of a European program (H2020, RESSTORE). We discuss the discrepancy of our results with those obtained in rats and the optimal cell injection time frame, source and type of cells according to the species stroke model. A comprehensive understanding of the mechanisms preventing recovery should help for successful clinical translation, but first could allow identifying good and bad responders to cell therapy in stroke.
Collapse
Affiliation(s)
| | - Adrien Cogo
- INSERM, U965, CART, Paris, France.,INSERM, U1148, Laboratory for Vascular and Translational Science, Universite de Paris, Paris, France
| | - Anaïck Moisan
- Unité de Thérapie et d'Ingénierie Cellulaire, EFS Auvergne Rhône Alpes, Saint-Ismier, France
| | - Philippe Bonnin
- INSERM, U965, CART, Paris, France.,INSERM, U1148, Laboratory for Vascular and Translational Science, Universite de Paris, Paris, France.,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, Paris, France
| | | | - Nathalie Kubis
- INSERM, U965, CART, Paris, France.,INSERM, U1148, Laboratory for Vascular and Translational Science, Universite de Paris, Paris, France.,Service de Physiologie Clinique-Explorations Fonctionnelles, AP-HP, Hôpital Lariboisière, Paris, France
| | | |
Collapse
|
3
|
Redondo-Castro E, Cunningham C, Miller J, Martuscelli L, Aoulad-Ali S, Rothwell NJ, Kielty CM, Allan SM, Pinteaux E. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Res Ther 2017; 8:79. [PMID: 28412968 PMCID: PMC5393041 DOI: 10.1186/s13287-017-0531-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/25/2022] Open
Abstract
Background Inflammation is a key contributor to central nervous system (CNS) injury such as stroke, and is a major target for therapeutic intervention. Effective treatments for CNS injuries are limited and applicable to only a minority of patients. Stem cell-based therapies are increasingly considered for the treatment of CNS disease, because they can be used as in-situ regulators of inflammation, and improve tissue repair and recovery. One promising option is the use of bone marrow-derived mesenchymal stem cells (MSCs), which can secrete anti-inflammatory and trophic factors, can migrate towards inflamed and injured sites or can be implanted locally. Here we tested the hypothesis that pre-treatment with inflammatory cytokines can prime MSCs towards an anti-inflammatory and pro-trophic phenotype in vitro. Methods Human MSCs from three different donors were cultured in vitro and treated with inflammatory mediators as follows: interleukin (IL)-1α, IL-1β, tumour necrosis factor alpha (TNF-α) or interferon-γ. After 24 h of treatment, cell supernatants were analysed by ELISA for expression of granulocyte-colony stimulating factor (G-CSF), IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), IL-1 receptor antagonist (IL-1Ra) and vascular endothelial growth factor (VEGF). To confirm the anti-inflammatory potential of MSCs, immortalised mouse microglial BV2 cells were treated with bacterial lipopolysaccharide (LPS) and exposed to conditioned media (CM) of naïve or IL-1-primed MSCs, and levels of secreted microglial-derived inflammatory mediators including TNF-α, IL-10, G-CSF and IL-6 were measured by ELISA. Results Unstimulated MSCs constitutively expressed anti-inflammatory cytokines and trophic factors (IL-10, VEGF, BDNF, G-CSF, NGF and IL-1Ra). MSCs primed with IL-1α or IL-1β showed increased secretion of G-CSF, which was blocked by IL-1Ra. Furthermore, LPS-treated BV2 cells secreted less inflammatory and apoptotic markers, and showed increased secretion of the anti-inflammatory IL-10 in response to treatment with CM of IL-1-primed MSCs compared with CM of unprimed MSCs. Conclusions Our results demonstrate that priming MSCs with IL-1 increases expression of trophic factor G-CSF through an IL-1 receptor type 1 (IL-1R1) mechanism, and induces a reduction in the secretion of inflammatory mediators in LPS-activated microglial cells. The results therefore support the potential use of preconditioning treatments of stem cells in future therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0531-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Redondo-Castro
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonjo Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Licia Martuscelli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Aoulad-Ali
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nancy J Rothwell
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cay M Kielty
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Möller K, Pösel C, Kranz A, Schulz I, Scheibe J, Didwischus N, Boltze J, Weise G, Wagner DC. Arterial Hypertension Aggravates Innate Immune Responses after Experimental Stroke. Front Cell Neurosci 2015; 9:461. [PMID: 26640428 PMCID: PMC4661280 DOI: 10.3389/fncel.2015.00461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023] Open
Abstract
Arterial hypertension is not only the leading risk factor for stroke, but also attributes to impaired recovery and poor outcome. The latter could be explained by hypertensive vascular remodeling that aggravates perfusion deficits and blood–brain barrier disruption. However, besides vascular changes, one could hypothesize that activation of the immune system due to pre-existing hypertension may negatively influence post-stroke inflammation and thus stroke outcome. To test this hypothesis, male adult spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (WKYs) were subjected to photothrombotic stroke. One and 3 days after stroke, infarct volume and functional deficits were evaluated by magnetic resonance imaging and behavioral tests. Expression levels of adhesion molecules and chemokines along with the post-stroke inflammatory response were analyzed by flow cytometry, quantitative real-time PCR and immunohistochemistry in rat brains 4 days after stroke. Although comparable at day 1, lesion volumes were significantly larger in SHR at day 3. The infarct volume showed a strong correlation with the amount of CD45 highly positive leukocytes present in the ischemic hemispheres. Functional deficits were comparable between SHR and WKY. Brain endothelial expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and P-selectin (CD62P) was neither increased by hypertension nor by stroke. However, in SHR, brain infiltrating myeloid leukocytes showed significantly higher surface expression of ICAM-1 which may augment leukocyte transmigration by leukocyte–leukocyte interactions. The expression of chemokines that primarily attract monocytes and granulocytes was significantly increased by stroke and, furthermore, by hypertension. Accordingly, ischemic hemispheres of SHR contain considerably higher numbers of monocytes, macrophages and granulocytes. Exacerbated brain inflammation in SHR may finally be responsible for larger infarct volumes. These findings provide an immunological explanation for the epidemiological observation that existing hypertension negatively affects stroke outcome and mortality.
Collapse
Affiliation(s)
- Karoline Möller
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Claudia Pösel
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Isabell Schulz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Johanna Scheibe
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Nadine Didwischus
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Research Group Human Biology, Institute of Biology, University of Leipzig Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck Lübeck, Germany
| | - Gesa Weise
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Department of Neurology, University of Leipzig Leipzig, Germany
| | | |
Collapse
|
5
|
Doeppner TR, Hermann DM. Editorial: Stem cells and progenitor cells in ischemic stroke-fashion or future? Front Cell Neurosci 2015; 9:334. [PMID: 26379504 PMCID: PMC4548157 DOI: 10.3389/fncel.2015.00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School Essen, Germany
| |
Collapse
|
6
|
Abstract
During aging, many neurodegenerative disorders are associated with reduced neurogenesis and a decline in the proliferation of stem/progenitor cells. The development of the stem cell (SC), the regenerative therapy field, gained tremendous expectations in the diseases that suffer from the lack of treatment options. Stem cell based therapy is a promising approach to promote neuroregeneration after brain injury and can be potentiated when combined with supportive pharmacological drug treatment, especially in the aged. However, the mechanism of action for a particular grafted cell type, the optimal delivery route, doses, or time window of administration after lesion is still under debate. Today, it is proved that these protections are most likely due to modulatory mechanisms rather than the expected cell replacement. Our group proved that important differences appear in the aged brain compared with young one, that is, the accelerated progression of ischemic area, or the delayed initiation of neurological recovery. In this light, these age-related aspects should be carefully evaluated in the clinical translation of neurorestorative therapies. This review is focused on the current perspectives and suitable sources of stem cells (SCs), mechanisms of action, and the most efficient delivery routes in neurorestoration therapies in the poststroke aged environment.
Collapse
|