1
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Ver Hoef L, Lubin FD. Alterations in DNA 5-hydroxymethylation patterns in the hippocampus of an experimental model of chronic epilepsy. Neurobiol Dis 2024; 200:106638. [PMID: 39142613 DOI: 10.1016/j.nbd.2024.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal, SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65, TLR4, and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
Affiliation(s)
- Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Rebecca M Hauser
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Richard G Sánchez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Silvienne Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Lara Ianov
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Remy J Stuckey
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - R Ryley Parrish
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States of America.
| | - Lawrence Ver Hoef
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
2
|
Egido-Betancourt HX, Strowd III RE, Raab-Graham KF. Potential roles of voltage-gated ion channel disruption in Tuberous Sclerosis Complex. Front Mol Neurosci 2024; 17:1404884. [PMID: 39253727 PMCID: PMC11381416 DOI: 10.3389/fnmol.2024.1404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 09/11/2024] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a lynchpin disorder, as it results in overactive mammalian target of rapamycin (mTOR) signaling, which has been implicated in a multitude of disease states. TSC is an autosomal dominant disease where 90% of affected individuals develop epilepsy. Epilepsy results from aberrant neuronal excitability that leads to recurring seizures. Under neurotypical conditions, the coordinated activity of voltage-gated ion channels keep neurons operating in an optimal range, thus providing network stability. Interestingly, loss or gain of function mutations in voltage-gated potassium, sodium, or calcium channels leads to altered excitability and seizures. To date, little is known about voltage-gated ion channel expression and function in TSC. However, data is beginning to emerge on how mTOR signaling regulates voltage-gated ion channel expression in neurons. Herein, we provide a comprehensive review of the literature describing common seizure types in patients with TSC, and suggest possible parallels between acquired epilepsies with known voltage-gated ion channel dysfunction. Furthermore, we discuss possible links toward mTOR regulation of voltage-gated ion channels expression and channel kinetics and the underlying epileptic manifestations in patients with TSC.
Collapse
Affiliation(s)
- Hailey X. Egido-Betancourt
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Roy E. Strowd III
- Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kimberly F. Raab-Graham
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
Lacroix G, Bhat S, Shafia Z, Blunck R. KCNG4 Genetic Variant Linked to Migraine Prevents Expression of KCNB1. Int J Mol Sci 2024; 25:8960. [PMID: 39201645 PMCID: PMC11354983 DOI: 10.3390/ijms25168960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Migraines are a common type of headache affecting around 15% of the population. The signalling pathways leading to migraines have not been fully understood, but neuronal voltage-gated ion channels, such as KCNG4, have been linked to this pathology. KCNG4 (Kv6.4) is a silent member of the superfamily of voltage-gated potassium (Kv) channels, which expresses in heterotetramers with members of the KCNB (Kv2) family. The genetic variant Kv6.4-L360P has previously been linked to migraines, but their mode of action remains unknown. Here, we characterized the molecular characteristics of Kv6.4-L360P when co-expressed with Kv2.1. We found that Kv6.4-L360P almost completely abolishes Kv2 currents, and we propose that this mechanism in the trigeminal system, linked to the initiation of migraine, leads to the pathology.
Collapse
Affiliation(s)
- Gabriel Lacroix
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Shreyas Bhat
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Zerghona Shafia
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Interdisciplinary Research Center on Brain and Learning (CIRCA), Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Yu XY, Sun QM, Lu RP, Wei B, Wang XY, Pan LH. Clinical features and genetic analysis of developmental and epileptic encephalopathy caused by biallelic variants of CACNA1B. Heliyon 2024; 10:e32693. [PMID: 39005920 PMCID: PMC11239463 DOI: 10.1016/j.heliyon.2024.e32693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Objective To analyze the clinical features and genetic etiology of a patient with developmental and epileptic encephalopathy. Methods The clinical information and peripheral blood of the patient and their family members were collected before the whole exome sequencing analysis was performed and Sanger sequencing was employed to verify the potential variant. Results The patient presented with epilepsy and cerebral palsy with his parents, brother, and sister being all healthy. Whole exome sequencing analysis revealed that the child carried the paternal c.823del (p. R275Gfs*31) heterozygous variant and the maternal c.2456del (p.V819Gfs*190) heterozygous variant of the CACNA1B gene. Pedigree verification found that the elder brother and amniotic fluid of fetus in womb carried the paternal c.823del heterozygous variant, and the elder sister carried the maternal c.2456del heterozygous variant, which conformed to the law of autosomal recessive inheritance. Neither of these two variants has been reported in the literature and has not been included in the Genomic Mutation Frequency Database (gnomAD); according to the American Academy of Medical Genetics and Genomics Variation Grading Guidelines (ACMG), both variants are classified as pathogenic variants (PVS1+PM2-Supporting + PM3). Conclusion This study reported the first case of a child with neurodevelopmental disorder and epilepsy caused by a new compound heterozygous variant of the CACNA1B gene in China, clarified its genetic etiology, enriched the mutation spectrum and disease spectrum of CACNA1B gene, and provided a basis for prenatal diagnosis of the family.
Collapse
Affiliation(s)
- Xin-you Yu
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Qing-mei Sun
- Gansu Province Maternal and Child Health Care Hospital, Lan'zhou, Gansu, 730000, China
| | - Rui-ping Lu
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Bo Wei
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Xiao-yan Wang
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| | - Li-hua Pan
- Gerneral Hospital of Ningxia Medical University, Yin'chuan, Ningxia, 750004, China
| |
Collapse
|
5
|
Di Matteo F, Mancuso F, Turcio R, Ciaglia T, Stagno C, Di Chio C, Campiglia P, Bertamino A, Giofrè SV, Ostacolo C, Iraci N. KCNT1 Channel Blockers: A Medicinal Chemistry Perspective. Molecules 2024; 29:2940. [PMID: 38931004 PMCID: PMC11206332 DOI: 10.3390/molecules29122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.
Collapse
Affiliation(s)
- Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Rita Turcio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy (R.T.); (T.C.)
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Deehan MA, Kothuis JM, Sapp E, Chase K, Ke Y, Seeley C, Iuliano M, Kim E, Kennington L, Miller R, Boudi A, Shing K, Li X, Pfister E, Anaclet C, Brodsky M, Kegel-Gleason K, Aronin N, DiFiglia M. Nacc1 Mutation in Mice Models Rare Neurodevelopmental Disorder with Underlying Synaptic Dysfunction. J Neurosci 2024; 44:e1610232024. [PMID: 38388424 PMCID: PMC10993038 DOI: 10.1523/jneurosci.1610-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
A missense mutation in the transcription repressor Nucleus accumbens-associated 1 (NACC1) gene at c.892C>T (p.Arg298Trp) on chromosome 19 causes severe neurodevelopmental delay ( Schoch et al., 2017). To model this disorder, we engineered the first mouse model with the homologous mutation (Nacc1+/R284W ) and examined mice from E17.5 to 8 months. Both genders had delayed weight gain, epileptiform discharges and altered power spectral distribution in cortical electroencephalogram, behavioral seizures, and marked hindlimb clasping; females displayed thigmotaxis in an open field. In the cortex, NACC1 long isoform, which harbors the mutation, increased from 3 to 6 months, whereas the short isoform, which is not present in humans and lacks aaR284 in mice, rose steadily from postnatal day (P) 7. Nuclear NACC1 immunoreactivity increased in cortical pyramidal neurons and parvalbumin containing interneurons but not in nuclei of astrocytes or oligodendroglia. Glial fibrillary acidic protein staining in astrocytic processes was diminished. RNA-seq of P14 mutant mice cortex revealed over 1,000 differentially expressed genes (DEGs). Glial transcripts were downregulated and synaptic genes upregulated. Top gene ontology terms from upregulated DEGs relate to postsynapse and ion channel function, while downregulated DEGs enriched for terms relating to metabolic function, mitochondria, and ribosomes. Levels of synaptic proteins were changed, but number and length of synaptic contacts were unaltered at 3 months. Homozygosity worsened some phenotypes including postnatal survival, weight gain delay, and increase in nuclear NACC1. This mouse model simulates a rare form of autism and will be indispensable for assessing pathophysiology and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A Deehan
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Josine M Kothuis
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kathryn Chase
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Connor Seeley
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Maria Iuliano
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Emily Kim
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Lori Kennington
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Rachael Miller
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Kai Shing
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Edith Pfister
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Christelle Anaclet
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, California 95817
| | - Michael Brodsky
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Kimberly Kegel-Gleason
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Neil Aronin
- Department of Medicine, UMass Chan Medical School, Worcester, Massachusetts 01655
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
7
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
8
|
Li D, Shi D, Wang L. Structural insights in the permeation mechanism of an activated GIRK2 channel. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184231. [PMID: 37739205 DOI: 10.1016/j.bbamem.2023.184231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels play a significant role in physiopathology by the regulation of cell excitability. This regulation depends on the K+ ion conduction induced by structural constrictions: the selectivity filters (SFs), helix bundle crossings (HBCs), and G-loop gates. To explore why no permeation occurred when the constrictions were kept in the open state, a 4-K+-related occupancy mechanism was proposed. Unfortunately, this hypothesis was neither assessed, nor was the energetic characteristics presented. To identify the permeation mechanism on an atomic level, all-atom molecular dynamic (MD) simulations and a coupled quantum mechanics and molecular mechanics (QM/MM) method were used for the GIRK2 mutant R201A. It was found that the R201A had a moderate conductive capability in the presence of PIP2. Furthermore, the 4-K+ group of ions was found to dominate the conduction through the activated HBC gate. This shielding-like mechanism was assessed by the potential energy barrier along the conduction pathway. Mutation studies did further support the assumption that E152 was responsible for the mechanism. Moreover, E152 was most probably facilitating the inflow of ions from the SF to the cavity. On the contrary, N184 had no remarkable effect on this mechanism, except for the conduction efficiency. These findings highlighted the necessity of a multi-ion distribution for the conduction to take place, and indicated that the K+ migration was not only determined by the channel conductive state in the GIRK channel. The here presented multi-ion permeation mechanism may help to provide an effective way to regulate the channelopathies.
Collapse
Affiliation(s)
- Dailin Li
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen 361005, China.
| | - Dingyuan Shi
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen 361005, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen 361005, China
| |
Collapse
|
9
|
Witczyńska A, Alaburda A, Grześk G, Nowaczyk J, Nowaczyk A. Unveiling the Multifaceted Problems Associated with Dysrhythmia. Int J Mol Sci 2023; 25:263. [PMID: 38203440 PMCID: PMC10778936 DOI: 10.3390/ijms25010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Dysrhythmia is a term referring to the occurrence of spontaneous and repetitive changes in potentials with parameters deviating from those considered normal. The term refers to heart anomalies but has a broader meaning. Dysrhythmias may concern the heart, neurological system, digestive system, and sensory organs. Ion currents conducted through ion channels are a universal phenomenon. The occurrence of channel abnormalities will therefore result in disorders with clinical manifestations depending on the affected tissue, but phenomena from other tissues and organs may also manifest themselves. A similar problem concerns the implementation of pharmacotherapy, the mechanism of which is related to the impact on various ion currents. Treatment in this case may cause unfavorable effects on other tissues and organs. Drugs acting through the modulation of ion currents are characterized by relatively low tissue specificity. To assess a therapy's efficacy and safety, the risk of occurrences in other tissues with similar mechanisms of action must be considered. In the present review, the focus is shifted prominently onto a comparison of abnormal electrical activity within different tissues and organs. This review includes an overview of the types of dysrhythmias and the basic techniques of clinical examination of electrophysiological disorders. It also presents a concise overview of the available pharmacotherapy in particular diseases. In addition, the authors review the relevant ion channels and their research technique based on patch clumping.
Collapse
Affiliation(s)
- Adrianna Witczyńska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Aidas Alaburda
- Department of Neurobiology and Biophysics, Institute of Bioscience, Vilnius University Saulėtekio Ave. 7, LT-10257 Vilnius, Lithuania;
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| |
Collapse
|
10
|
Skrabak D, Bischof H, Pham T, Ruth P, Ehinger R, Matt L, Lukowski R. Slack K + channels limit kainic acid-induced seizure severity in mice by modulating neuronal excitability and firing. Commun Biol 2023; 6:1029. [PMID: 37821582 PMCID: PMC10567740 DOI: 10.1038/s42003-023-05387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.
Collapse
Affiliation(s)
- David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
12
|
Kjær C, Palasca O, Barzaghi G, Bak LK, Durhuus RKJ, Jakobsen E, Pedersen L, Bartels ED, Woldbye DPD, Pinborg LH, Jensen LJ. Differential Expression of the β3 Subunit of Voltage-Gated Ca 2+ Channel in Mesial Temporal Lobe Epilepsy. Mol Neurobiol 2023; 60:5755-5769. [PMID: 37341859 PMCID: PMC10471638 DOI: 10.1007/s12035-023-03426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
The purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD). Next, we attempted to validate lead targets using qPCR, immunohistochemistry, and Western blot on hippocampal and temporal lobe neocortical tissue from mTLE patients and non-epilepsy controls, respectively. Here we created a robust, unbiased list of 113 consensus DEGs starting from two lists of 3040 and 5523 mTLE significant DEGs, respectively, and identified five lead targets. Next, we showed that CACNB3, a voltage-gated Ca2+ channel subunit, was significantly regulated in mTLE at both mRNA and protein level. Considering the key role of Ca2+ currents in regulating neuronal excitability, this suggested a role for CACNB3 in seizure generation. This is the first time changes in CACNB3 expression have been associated with drug-resistant epilepsy in humans, and since efficient therapeutic strategies for the treatment of drug-resistant mTLE are lacking, our finding might represent a step toward designing such new treatment strategies.
Collapse
Affiliation(s)
- Christina Kjær
- Biomedical Laboratory Science, Department of Technology, Faculty of Health and Technology, University College Copenhagen, Sigurdsgade 26, 1St, 2200 Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Oana Palasca
- Disease Systems Biology Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Guido Barzaghi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Heidelberg, Germany
| | - Lasse K. Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
| | - Rúna K. J. Durhuus
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Specific Pharma A/S, Borgmester Christiansens Gade 40, 2450 Copenhagen, SV Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Takeda Pharma A/S, Delta Park 45, 2665 Vallensbaek Strand, Denmark
| | - Louise Pedersen
- Biomedical Laboratory Science, Department of Technology, Faculty of Health and Technology, University College Copenhagen, Sigurdsgade 26, 1St, 2200 Copenhagen, Denmark
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
| | - Emil D. Bartels
- Dept. of Clinical Biochemistry, 2600 RigshospitaletCopenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - David P. D. Woldbye
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lars H. Pinborg
- Epilepsy Clinic & Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Juhl Jensen
- Disease Systems Biology Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Roles of Potassium and Calcium Currents in the Bistable Firing Transition. Brain Sci 2023; 13:1347. [PMID: 37759949 PMCID: PMC10527161 DOI: 10.3390/brainsci13091347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slow-wave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking (RS) cells with frequency adaptation and do not exhibit bursts in current-clamp experiments (in vitro). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings (gsyn) and external current inputs (I). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to the bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold (IL) and low-threshold (IT) ion channels play a role in increasing and decreasing the parameter conditions (gsyn and I) in which bistable dynamics occur, respectively. For high values of IL conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance IT increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S. Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil
| | | | - Diogo L. M. Souza
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Conrado F. Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Enrique C. Gabrick
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - Lucas E. Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
| | - José D. Szezech
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Antonio M. Batista
- Graduate Program in Science, State University of Ponta Grossa, Ponta Grossa 84010-330, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Iberê L. Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-090, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Rodrigo F. O. Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Gunes SO, Calisici E, Arslan M, Akin O, Karagol BS. Transient Neonatal Diabetes Mellitus and Seizure with an Unknown Etiology. J Pediatr Genet 2023; 12:242-245. [PMID: 37575648 PMCID: PMC10421686 DOI: 10.1055/s-0041-1727175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/11/2021] [Indexed: 10/21/2022]
Abstract
Neonatal diabetes mellitus (NDM) is a monogenic form of diabetes, usually occurring in the first 6 months of life. Here, we present a newborn, which was admitted with epileptic seizure on the postnatal second day of life. Sepsis and meningitis were ruled out. Cranial imaging and electroencephalography revealed normal. She developed transient NDM on the follow-up and was diagnosed to carry an ABCC8 mutation. Although the neurological features are more common in patients with KCJN11 mutations, patients with ABCC8 mutations could also represent with subtle neurodevelopmental changes or even with epileptic seizures. The genetic testing and appropriate therapy is important in this patient group for predicting clinical course and possible additional features.
Collapse
Affiliation(s)
- Sevinc Odabasi Gunes
- Department of Pediatric Endocrinology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Erhan Calisici
- Department of Neonatology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Mutluay Arslan
- Department of Pediatric Neurology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Onur Akin
- Department of Pediatric Endocrinology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| | - Belma Saygili Karagol
- Department of Neonatology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Türkiye
| |
Collapse
|
15
|
Giussani G, Falcicchio G, La Neve A, Costagliola G, Striano P, Scarabello A, Mostacci B, Beghi E. Sudden unexpected death in epilepsy: A critical view of the literature. Epilepsia Open 2023; 8:728-757. [PMID: 36896633 PMCID: PMC10472423 DOI: 10.1002/epi4.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a sudden, unexpected, witnessed or unwitnessed, non-traumatic and non-drowning death, occurring in benign circumstances, in an individual with epilepsy, with or without evidence for a seizure and excluding documented status epilepticus in which postmortem examination does not reveal other causes of death. Lower diagnostic levels are assigned when cases met most or all of these criteria, but data suggested more than one possible cause of death. The incidence of SUDEP ranged from 0.09 to 2.4 per 1000 person-years. Differences can be attributed to the age of the study populations (with peaks in the 20-40-year age group) and the severity of the disease. Young age, disease severity (in particular, a history of generalized TCS), having symptomatic epilepsy, and the response to antiseizure medications (ASMs) are possible independent predictors of SUDEP. The pathophysiological mechanisms are not fully known due to the limited data available and because SUDEP is not always witnessed and has been electrophysiologically monitored only in a few cases with simultaneous assessment of respiratory, cardiac, and brain activity. The pathophysiological basis of SUDEP may vary according to different circumstances that make that particular seizure, in that specific moment and in that patient, a fatal event. The main hypothesized mechanisms, which could contribute to a cascade of events, are cardiac dysfunction (included potential effects of ASMs, genetically determined channelopathies, acquired heart diseases), respiratory dysfunction (included postictal arousal deficit for the respiratory mechanism, acquired respiratory diseases), neuromodulator dysfunction, postictal EEG depression and genetic factors.
Collapse
Affiliation(s)
- Giorgia Giussani
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| | - Giovanni Falcicchio
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | - Angela La Neve
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
| | | | - Pasquale Striano
- IRCCS Istituto “Giannina Gaslini”GenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenovaGenovaItaly
| | - Anna Scarabello
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Ettore Beghi
- Laboratory of Neurological Disorders, Mario Negri Institute for Pharmacological Research IRCCSMilanItaly
| |
Collapse
|
16
|
Borges FS, Protachevicz PR, Souza DLM, Bittencourt CF, Gabrick EC, Bentivoglio LE, Szezech JD, Batista AM, Caldas IL, Dura-Bernal S, Pena RFO. The Role of Potassium and Calcium Currents in the Bistable Firing Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553625. [PMID: 37645875 PMCID: PMC10462112 DOI: 10.1101/2023.08.16.553625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Healthy brains display a wide range of firing patterns, from synchronized oscillations during slowwave sleep to desynchronized firing during movement. These physiological activities coexist with periods of pathological hyperactivity in the epileptic brain, where neurons can fire in synchronized bursts. Most cortical neurons are pyramidal regular spiking cells (RS) with frequency adaptation and do not exhibit bursts in current-clamp experiments ( in vitro ). In this work, we investigate the transition mechanism of spike-to-burst patterns due to slow potassium and calcium currents, considering a conductance-based model of a cortical RS cell. The joint influence of potassium and calcium ion channels on high synchronous patterns is investigated for different synaptic couplings ( g syn ) and external current inputs ( I ). Our results suggest that slow potassium currents play an important role in the emergence of high-synchronous activities, as well as in the spike-to-burst firing pattern transitions. This transition is related to bistable dynamics of the neuronal network, where physiological asynchronous states coexist with pathological burst synchronization. The hysteresis curve of the coefficient of variation of the inter-spike interval demonstrates that a burst can be initiated by firing states with neuronal synchronization. Furthermore, we notice that high-threshold ( I L ) and low-threshold ( I T ) ion channels play a role in increasing and decreasing the parameter conditions ( g syn and I ) in which bistable dynamics occur, respectively. For high values of I L conductance, a synchronous burst appears when neurons are weakly coupled and receive more external input. On the other hand, when the conductance I T increases, higher coupling and lower I are necessary to produce burst synchronization. In light of our results, we suggest that channel subtype-specific pharmacological interactions can be useful to induce transitions from pathological high bursting states to healthy states.
Collapse
Affiliation(s)
- Fernando S Borges
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, 09606-045 São Bernardo do Campo, SP, Brazil
| | | | - Diogo L M Souza
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Conrado F Bittencourt
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Enrique C Gabrick
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Lucas E Bentivoglio
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - José D Szezech
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Antonio M Batista
- Graduate Program in Science, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
- Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, USA
- Center for Biomedical Imaging and Neuromodulation, The Nathan S. Kline Institute for Psychiatric Research, New York, USA
| | - Rodrigo F O Pena
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
17
|
Wu LY, Song YJ, Zhang CL, Liu J. K V Channel-Interacting Proteins in the Neurological and Cardiovascular Systems: An Updated Review. Cells 2023; 12:1894. [PMID: 37508558 PMCID: PMC10377897 DOI: 10.3390/cells12141894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KV channel-interacting proteins (KChIP1-4) belong to a family of Ca2+-binding EF-hand proteins that are able to bind to the N-terminus of the KV4 channel α-subunits. KChIPs are predominantly expressed in the brain and heart, where they contribute to the maintenance of the excitability of neurons and cardiomyocytes by modulating the fast inactivating-KV4 currents. As the auxiliary subunit, KChIPs are critically involved in regulating the surface protein expression and gating properties of KV4 channels. Mechanistically, KChIP1, KChIP2, and KChIP3 promote the translocation of KV4 channels to the cell membrane, accelerate voltage-dependent activation, and slow the recovery rate of inactivation, which increases KV4 currents. By contrast, KChIP4 suppresses KV4 trafficking and eliminates the fast inactivation of KV4 currents. In the heart, IKs, ICa,L, and INa can also be regulated by KChIPs. ICa,L and INa are positively regulated by KChIP2, whereas IKs is negatively regulated by KChIP2. Interestingly, KChIP3 is also known as downstream regulatory element antagonist modulator (DREAM) because it can bind directly to the downstream regulatory element (DRE) on the promoters of target genes that are implicated in the regulation of pain, memory, endocrine, immune, and inflammatory reactions. In addition, all the KChIPs can act as transcription factors to repress the expression of genes involved in circadian regulation. Altered expression of KChIPs has been implicated in the pathogenesis of several neurological and cardiovascular diseases. For example, KChIP2 is decreased in failing hearts, while loss of KChIP2 leads to increased susceptibility to arrhythmias. KChIP3 is increased in Alzheimer's disease and amyotrophic lateral sclerosis, but decreased in epilepsy and Huntington's disease. In the present review, we summarize the progress of recent studies regarding the structural properties, physiological functions, and pathological roles of KChIPs in both health and disease. We also summarize the small-molecule compounds that regulate the function of KChIPs. This review will provide an overview and update of the regulatory mechanism of the KChIP family and the progress of targeted drug research as a reference for researchers in related fields.
Collapse
Affiliation(s)
- Le-Yi Wu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yu-Juan Song
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Jie Liu
- Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
18
|
Zhang LM, Chen L, Zhao YF, Duan WM, Zhong LM, Liu MW. Identification of key potassium channel genes of temporal lobe epilepsy by bioinformatics analyses and experimental verification. Front Neurol 2023; 14:1175007. [PMID: 37483435 PMCID: PMC10361730 DOI: 10.3389/fneur.2023.1175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
One of the most prevalent types of epilepsy is temporal lobe epilepsy (TLE), which has unknown etiological factors and drug resistance. The detailed mechanisms underlying potassium channels in human TLE have not yet been elucidated. Hence, this study aimed to mine potassium channel genes linked to TLE using a bioinformatic approach. The results found that Four key TLE-related potassium channel genes (TERKPCGs) were identified: potassium voltage-gated channel subfamily E member (KCNA) 1, KCNA2, potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11), and KCNS1. A protein-protein interaction (PPI) network was constructed to analyze the relationship between TERKPCGs and other key module genes. The results of gene set enrichment analysis (GSEA) for a single gene indicated that the four TERKPCGs were highly linked to the cation channel, potassium channel, respiratory chain, and oxidative phosphorylation. The mRNA-TF network was established using four mRNAs and 113 predicted transcription factors. A ceRNA network containing seven miRNAs, two mRNAs, and 244 lncRNAs was constructed based on the TERKPCGs. Three common small-molecule drugs (enflurane, promethazine, and miconazole) target KCNA1, KCNA2, and KCNS1. Ten small-molecule drugs (glimepiride, diazoxide, levosimendan, and thiamylal et al.) were retrieved for KCNJ11. Compared to normal mice, the expression of KCNA1, KCNA2, KCNJ11, and KCNS1 was downregulated in the brain tissue of the epilepsy mouse model at both the transcriptional and translational levels, which was consistent with the trend of human data from the public database. The results indicated that key potassium channel genes linked to TLE were identified based on bioinformatics analysis to investigate the potential significance of potassium channel genes in the development and treatment of TLE.
Collapse
Affiliation(s)
- Lin-ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Yi-fei Zhao
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Wei-mei Duan
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Lian-mei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
19
|
Younes S, Mourad N, Salla M, Rahal M, Hammoudi Halat D. Potassium Ion Channels in Glioma: From Basic Knowledge into Therapeutic Applications. MEMBRANES 2023; 13:434. [PMID: 37103862 PMCID: PMC10144598 DOI: 10.3390/membranes13040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Ion channels, specifically those controlling the flux of potassium across cell membranes, have recently been shown to exhibit an important role in the pathophysiology of glioma, the most common primary central nervous system tumor with a poor prognosis. Potassium channels are grouped into four subfamilies differing by their domain structure, gating mechanisms, and functions. Pertinent literature indicates the vital functions of potassium channels in many aspects of glioma carcinogenesis, including proliferation, migration, and apoptosis. The dysfunction of potassium channels can result in pro-proliferative signals that are highly related to calcium signaling as well. Moreover, this dysfunction can feed into migration and metastasis, most likely by increasing the osmotic pressure of cells allowing the cells to initiate the "escape" and "invasion" of capillaries. Reducing the expression or channel blockage has shown efficacy in reducing the proliferation and infiltration of glioma cells as well as inducing apoptosis, priming several approaches to target potassium channels in gliomas pharmacologically. This review summarizes the current knowledge on potassium channels, their contribution to oncogenic transformations in glioma, and the existing perspectives on utilizing them as potential targets for therapy.
Collapse
Affiliation(s)
- Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
| | - Nisreen Mourad
- Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban (INSPECT-LB), Beirut 1103, Lebanon;
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa 146404, Lebanon;
| | - Mohamad Rahal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa 146404, Lebanon; (M.R.)
- Academic Quality Department, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
20
|
Li K, Figarella K, Su X, Kovalchuk Y, Gorzolka J, Neher JJ, Mojtahedi N, Casadei N, Hedrich UBS, Garaschuk O. Endogenous but not sensory-driven activity controls migration, morphogenesis and survival of adult-born juxtaglomerular neurons in the mouse olfactory bulb. Cell Mol Life Sci 2023; 80:98. [PMID: 36932186 PMCID: PMC10023654 DOI: 10.1007/s00018-023-04753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.
Collapse
Affiliation(s)
- Kaizhen Li
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Xin Su
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jessika Gorzolka
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Chang YT, Hong SY, Lin WD, Lin CH, Lin SS, Tsai FJ, Chou IC. Genetic Testing in Children with Developmental and Epileptic Encephalopathies: A Review of Advances in Epilepsy Genomics. CHILDREN 2023; 10:children10030556. [PMID: 36980114 PMCID: PMC10047509 DOI: 10.3390/children10030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Advances in disease-related gene discovery have led to tremendous innovations in the field of epilepsy genetics. Identification of genetic mutations that cause epileptic encephalopathies has opened new avenues for the development of targeted therapies. Clinical testing using extensive gene panels, exomes, and genomes is currently accessible and has resulted in higher rates of diagnosis and better comprehension of the disease mechanisms underlying the condition. Children with developmental disabilities have a higher risk of developing epilepsy. As our understanding of the mechanisms underlying encephalopathies and epilepsies improves, there may be greater potential to develop innovative therapies tailored to an individual’s genotype. This article provides an overview of the significant progress in epilepsy genomics in recent years, with a focus on developmental and epileptic encephalopathies in children. The aim of this review is to enhance comprehension of the clinical utilization of genetic testing in this particular patient population. The development of effective and precise therapeutic strategies for epileptic encephalopathies may be facilitated by a comprehensive understanding of their molecular pathogenesis.
Collapse
Affiliation(s)
- Yu-Tzu Chang
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Syuan-Yu Hong
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
| | - Wei-De Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chien-Heng Lin
- Division of Pediatric Pulmonology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medial University, Taichung 40447, Taiwan
| | - Sheng-Shing Lin
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung 40447, Taiwan; (Y.-T.C.)
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Division of Genetics and Metabolism, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 40447, Taiwan
| | - I-Ching Chou
- Division of Pediatric Neurology, China Medical University Children’s Hospital, Taichung 40447, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Correspondence: ; Tel.: +886-4-22052121
| |
Collapse
|
22
|
Kochetkova TO, Maslennikov DN, Tolmacheva ER, Shubina J, Bolshakova AS, Suvorova DI, Degtyareva AV, Orlovskaya IV, Kuznetsova MV, Rachkova AA, Sukhikh GT, Rebrikov DV, Trofimov DY. De Novo Variant in the KCNJ9 Gene as a Possible Cause of Neonatal Seizures. Genes (Basel) 2023; 14:genes14020366. [PMID: 36833293 PMCID: PMC9956824 DOI: 10.3390/genes14020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The reduction in next-generation sequencing (NGS) costs allows for using this method for newborn screening for monogenic diseases (MDs). In this report, we describe a clinical case of a newborn participating in the EXAMEN project (ClinicalTrials.gov Identifier: NCT05325749). METHODS The child presented with convulsive syndrome on the third day of life. Generalized convulsive seizures were accompanied by electroencephalographic patterns corresponding to epileptiform activity. Proband WES expanded to trio sequencing was performed. RESULTS A differential diagnosis was made between symptomatic (dysmetabolic, structural, infectious) neonatal seizures and benign neonatal seizures. There were no data in favor of the dysmetabolic, structural, or infectious nature of seizures. Molecular karyotyping and whole exome sequencing were not informative. Trio WES revealed a de novo variant in the KCNJ9 gene (1:160087612T > C, p.Phe326Ser, NM_004983), for which, according to the OMIM database, no association with the disease has been described to date. Three-dimensional modeling was used to predict the structure of the KCNJ9 protein using the known structure of its homologs. According to the predictions, Phe326Ser change possibly disrupts the hydrophobic contacts with the valine side chain. Destabilization of the neighboring structures may undermine the formation of GIRK2/GIRK3 tetramers necessary for their proper functioning. CONCLUSIONS We believe that the identified variant may be the cause of the disease in this patient but further studies, including the search for other patients with the KCNJ9 variants, are needed.
Collapse
|
23
|
Rychkov GY, Shaukat Z, Lim CX, Hussain R, Roberts BJ, Bonardi CM, Rubboli G, Meaney BF, Whitney R, Møller RS, Ricos MG, Dibbens LM. Functional Effects of Epilepsy Associated KCNT1 Mutations Suggest Pathogenesis via Aberrant Inhibitory Neuronal Activity. Int J Mol Sci 2022; 23:ijms232315133. [PMID: 36499459 PMCID: PMC9740882 DOI: 10.3390/ijms232315133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
KCNT1 (K+ channel subfamily T member 1) is a sodium-activated potassium channel highly expressed in the nervous system which regulates neuronal excitability by contributing to the resting membrane potential and hyperpolarisation following a train of action potentials. Gain of function mutations in the KCNT1 gene are the cause of neurological disorders associated with different forms of epilepsy. To gain insights into the underlying pathobiology we investigated the functional effects of 9 recently published KCNT1 mutations, 4 previously studied KCNT1 mutations, and one previously unpublished KCNT1 variant of unknown significance. We analysed the properties of KCNT1 potassium currents and attempted to find a correlation between the changes in KCNT1 characteristics due to the mutations and severity of the neurological disorder they cause. KCNT1 mutations identified in patients with epilepsy were introduced into the full length human KCNT1 cDNA using quick-change site-directed mutagenesis protocol. Electrophysiological properties of different KCNT1 constructs were investigated using a heterologous expression system (HEK293T cells) and patch clamping. All mutations studied, except T314A, increased the amplitude of KCNT1 currents, and some mutations shifted the voltage dependence of KCNT1 open probability, increasing the proportion of channels open at the resting membrane potential. The T314A mutation did not affect KCNT1 current amplitude but abolished its voltage dependence. We observed a positive correlation between the severity of the neurological disorder and the KCNT1 channel open probability at resting membrane potential. This suggests that gain of function KCNT1 mutations cause epilepsy by increasing resting potassium conductance and suppressing the activity of inhibitory neurons. A reduction in action potential firing in inhibitory neurons due to excessively high resting potassium conductance leads to disinhibition of neural circuits, hyperexcitability and seizures.
Collapse
Affiliation(s)
- Grigori Y. Rychkov
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
- Correspondence:
| | - Zeeshan Shaukat
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Chiao Xin Lim
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Ben J. Roberts
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Claudia M. Bonardi
- Department of Woman’s and Child’s Health, Padua University Hospital, 35128 Padua, Italy
- The Danish Epilepsy Centre, 4293 Dianalund, Denmark
| | - Guido Rubboli
- Denmark Department of Clinical Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Brandon F. Meaney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON 8SL 4L8, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON 8SL 4L8, Canada
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, 4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Michael G. Ricos
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| | - Leanne M. Dibbens
- Clinical and Health Sciences, Australian Centre for Precision Health, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
24
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
25
|
Gao K, Lin Z, Wen S, Jiang Y. Potassium channels and epilepsy. Acta Neurol Scand 2022; 146:699-707. [PMID: 36225112 DOI: 10.1111/ane.13695] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023]
Abstract
With the development and application of next-generation sequencing technology, the aetiological diagnosis of genetic epilepsy is rapidly becoming easier and less expensive. Additionally, there is a growing body of research into precision therapy based on genetic diagnosis. The numerous genes in the potassium ion channel family constitute the largest family of ion channels: this family is divided into different subtypes. Potassium ion channels play a crucial role in the electrical activity of neurons and are directly involved in the mechanism of epileptic seizures. In China, scientific research on genetic diagnosis and studies of precision therapy for genetic epilepsy are progressing rapidly. Many cases of epilepsy caused by mutation of potassium channel genes have been identified, and several potassium channel gene targets and drug candidates have been discovered. The purpose of this review is to briefly summarize the progress of research on the precise diagnosis and treatment of potassium ion channel-related genetic epilepsy, especially the research conducted in China. Here in, we review several large cohort studies on the genetic diagnosis of epilepsy in China in recent years, summarized the proportion of potassium channel genes. We focus on the progress of precison therapy on some hot epilepsy related potassium channel genes: KCNA1, KCNA2, KCNB1, KCNC1, KCND2, KCNQ2, KCNQ3, KCNMA1, and KCNT1.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Zehong Lin
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Sijia Wen
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.,Children Epilepsy Center, Peking University First Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
26
|
Yerlikaya S, Djamgoz MB. Oleamide, a Sleep-Inducing Compound: Effects on Ion Channels and Cancer. Bioelectricity 2022. [DOI: 10.1089/bioe.2022.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Serife Yerlikaya
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa B.A. Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Biotechnology Research Center, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
27
|
Palmitoylation of Voltage-Gated Ion Channels. Int J Mol Sci 2022; 23:ijms23169357. [PMID: 36012639 PMCID: PMC9409123 DOI: 10.3390/ijms23169357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Protein lipidation is one of the most common forms of posttranslational modification. This alteration couples different lipids, such as fatty acids, phospho- and glycolipids and sterols, to cellular proteins. Lipidation regulates different aspects of the protein’s physiology, including structure, stability and affinity for cellular membranes and protein–protein interactions. In this scenario, palmitoylation is the addition of long saturated fatty acid chains to amino acid residues of the proteins. The enzymes responsible for this modification are acyltransferases and thioesterases, which control the protein’s behavior by performing a series of acylation and deacylation cycles. These enzymes target a broad repertoire of substrates, including ion channels. Thus, protein palmitoylation exhibits a pleiotropic role by differential modulation of the trafficking, spatial organization and electrophysiological properties of ion channels. Considering voltage-gated ion channels (VGICs), dysregulation of lipidation of both the channels and the associated ancillary subunits correlates with the development of various diseases, such as cancer or mental disorders. Therefore, a major role for protein palmitoylation is currently emerging, affecting not only the dynamism and differential regulation of a moiety of cellular proteins but also linking to human health. Therefore, palmitoylation of VGIC, as well as related enzymes, constitutes a novel pharmacological tool for drug development to target related pathologies.
Collapse
|
28
|
Garofalo B, Bonvin AM, Bosin A, Di Giorgio FP, Ombrato R, Vargiu AV. Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine. Front Mol Biosci 2022; 9:839249. [PMID: 35309507 PMCID: PMC8927717 DOI: 10.3389/fmolb.2022.839249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/11/2022] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels.
Collapse
Affiliation(s)
| | - Alexandre M.J.J. Bonvin
- Faculty of Science—Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Rosella Ombrato
- Angelini Pharma S.p.A., Rome, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Cagliari, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| |
Collapse
|
29
|
Melge AR, Parate S, Pavithran K, Koyakutty M, Mohan CG. Discovery of Anticancer Hybrid Molecules by Supervised Machine Learning Models and in Vitro Validation in Drug Resistant Chronic Myeloid Leukemia Cells. J Chem Inf Model 2022; 62:1126-1146. [PMID: 35172577 DOI: 10.1021/acs.jcim.1c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The concept of hybrid drugs for targeting multiple aberrant pathways of cancer, by combining the key pharmacophores of clinically approved single-targeted drugs, has emerged as a promising approach for overcoming drug-resistance. Here, we report the design of unique hybrid molecules by combining the two pharmacophores of clinically approved BCR-ABL inhibitor (ponatinib) and HDAC inhibitor (vorinostat) and results of in vitro studies in drug-resistant CML cells. Robust 2D-QSAR and 3D-pharmacophore machine learning supervised models were developed for virtual screening of the hybrid molecules based on their predicted BCR-ABL and HDAC inhibitory activity. The developed 2D-QSAR model showed five information rich molecular descriptors while the 3D-pharmacophore model of BCR-ABL showed five different chemical features (hydrogen bond acceptor, donor, hydrophobic group, positive ion group, and aromatic rings) and the HDAC model showed four different chemical features (hydrogen bond acceptor, donor, positive ion group, and aromatic rings) for potent BCR-ABL and HDAC inhibition. Virtual screening of the 16 designed hybrid molecules identified FP7 and FP10 with better potential of inhibitory activity. FP7 was the most effective molecule with predicted IC50 using the BCR-ABL based 2D-QSAR model of 0.005 μM and that of the HDAC model of 0.153 μM, and that using the BCR-ABL based 3D-pharmacophore model was 0.02 μM and that with HDAC model was 0.014 μM. In vitro study (dose-response relationship) of FP7 in wild type and imatinib-resistant CML cell lines harboring Thr315Ile or Tyr253His mutations showed growth inhibitory IC50 values of 0.000 16, 0.0039, and 0.01 μM, respectively. This molecule also showed better biocompatibility when tested in whole blood and in PBMCs as compared to ponatinib or vorinostat.
Collapse
Affiliation(s)
- Anu R Melge
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Shraddha Parate
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Keechilat Pavithran
- Department of Oncology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| | - C Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala 682041, India
| |
Collapse
|
30
|
Ren Q, Gao D, Mou L, Zhang S, Zhang M, Li N, Sik A, Jin M, Liu K. Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish. Eur J Pharmacol 2021; 912:174589. [PMID: 34699755 DOI: 10.1016/j.ejphar.2021.174589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023]
Abstract
Epilepsy is one of common neurological disorders, greatly distresses the well-being of the sufferers. Melatonin has been used in clinical anti-epileptic studies, but its effect on epileptic comorbidities is unknown, and the underlying mechanism needs further investigation. Herein, by generating PTZ-induced zebrafish seizure model, we carried out interdisciplinary research using neurobehavioral assays, bioelectrical detection, molecular biology, and network pharmacology to investigate the activity of melatonin as well as its pharmacological mechanisms. We found melatonin suppressed seizure-like behavior by using zebrafish regular locomotor assays. Zebrafish freezing and bursting activity assays revealed the ameliorative effect of melatonin on comorbidity-like symptoms. The preliminary screening results of neurobehavioral assays were further verified by the expression of key genes involved in neuronal activity, neurodevelopment, depression and anxiety, as well as electrical signal recording from the midbrain of zebrafish. Subsequently, network pharmacology was introduced to identify potential targets of melatonin and its pathways. Real-time qPCR and protein-protein interaction (PPI) were conducted to confirm the underlying mechanisms associated with glutathione metabolism. We also found that melatonin receptors were involved in this process, which were regulated in response to melatonin exposure before PTZ treatment. The antagonists of melatonin receptors affected anticonvulsant activity of melatonin. Overall, current study revealed the considerable ameliorative effects of melatonin on seizure and epileptic comorbidity-like symptoms and unveiled the underlying mechanism. This study provides an animal model for the clinical application of melatonin in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Mengqi Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
31
|
Cocozza G, Garofalo S, Capitani R, D’Alessandro G, Limatola C. Microglial Potassium Channels: From Homeostasis to Neurodegeneration. Biomolecules 2021; 11:1774. [PMID: 34944418 PMCID: PMC8698630 DOI: 10.3390/biom11121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022] Open
Abstract
The growing interest in the role of microglia in the progression of many neurodegenerative diseases is developing in an ever-expedited manner, in part thanks to emergent new tools for studying the morphological and functional features of the CNS. The discovery of specific biomarkers of the microglia phenotype could find application in a wide range of human diseases, and creates opportunities for the discovery and development of tailored therapeutic interventions. Among these, recent studies highlight the pivotal role of the potassium channels in regulating microglial functions in physiological and pathological conditions such as Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. In this review, we summarize the current knowledge of the involvement of the microglial potassium channels in several neurodegenerative diseases and their role as modulators of microglial homeostasis and dysfunction in CNS disorders.
Collapse
Affiliation(s)
- Germana Cocozza
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Riccardo Capitani
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Giuseppina D’Alessandro
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy; (S.G.); (R.C.)
| | - Cristina Limatola
- Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy; (G.C.); (G.D.)
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
32
|
Casalia ML, Casabona JC, García C, Cavaliere Candedo V, Quintá HR, Farías MI, Gonzalez J, Gonzalez Morón D, Córdoba M, Consalvo D, Mostoslavsky G, Urbano FJ, Pasquini J, Murer MG, Rela L, Kauffman MA, Pitossi FJ. A familiar study on self-limited childhood epilepsy patients using hIPSC-derived neurons shows a bias towards immaturity at the morphological, electrophysiological and gene expression levels. Stem Cell Res Ther 2021; 12:590. [PMID: 34823607 PMCID: PMC8620942 DOI: 10.1186/s13287-021-02658-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background Self-limited Childhood Epilepsies are the most prevalent epileptic syndrome in children. Its pathogenesis is unknown. In this disease, symptoms resolve spontaneously in approximately 50% of patients when maturity is reached, prompting to a maturation problem. The purpose of this study was to understand the molecular bases of this disease by generating and analyzing induced pluripotent stem cell-derived neurons from a family with 7 siblings, among whom 4 suffer from this disease.
Methods Two affected siblings and, as controls, a healthy sister and the unaffected mother of the family were studied. Using exome sequencing, a homozygous variant in the FYVE, RhoGEF and PH Domain Containing 6 gene was identified in the patients as a putative genetic factor that could contribute to the development of this familial disorder. After informed consent was signed, skin biopsies from the 4 individuals were collected, fibroblasts were derived and reprogrammed and neurons were generated and characterized by markers and electrophysiology. Morphological, electrophysiological and gene expression analyses were performed on these neurons. Results Bona fide induced pluripotent stem cells and derived neurons could be generated in all cases. Overall, there were no major shifts in neuronal marker expression among patient and control-derived neurons. Compared to two familial controls, neurons from patients showed shorter axonal length, a dramatic reduction in synapsin-1 levels and cytoskeleton disorganization. In addition, neurons from patients developed a lower action potential threshold with time of in vitro differentiation and the amount of current needed to elicit an action potential (rheobase) was smaller in cells recorded from NE derived from patients at 12 weeks of differentiation when compared with shorter times in culture. These results indicate an increased excitability in patient cells that emerges with the time in culture. Finally, functional genomic analysis showed a biased towards immaturity in patient-derived neurons. Conclusions We are reporting the first in vitro model of self-limited childhood epilepsy, providing the cellular bases for future in-depth studies to understand its pathogenesis. Our results show patient-specific neuronal features reflecting immaturity, in resonance with the course of the disease and previous imaging studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02658-2.
Collapse
Affiliation(s)
| | | | - Corina García
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | | | - Héctor Ramiro Quintá
- CONICET and Laboratorio de Medicina Experimental "Dr. J Toblli", Hospital Alemán, Buenos Aires, Argentina
| | | | - Joaquín Gonzalez
- Institute Leloir Foundation- IIBBA-CONICET, Buenos Aires, Argentina
| | - Dolores Gonzalez Morón
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Marta Córdoba
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Damian Consalvo
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina
| | - Gustavo Mostoslavsky
- Center For Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, USA
| | - Francisco J Urbano
- Department of Physiology, Molecular and Cellular Biology "Dr. Héctor Maldonado", Faculty of Exact and Natural Sciences, University of Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - Juana Pasquini
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina.,Universidad de Buenos Aires - CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO), Buenos Aires, Argentina
| | - Marcelo A Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" Facultad de Medicina, UBA & Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral-CONICET, Buenos Aires, Argentina.
| | | |
Collapse
|
33
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
34
|
Binaafar S, Garshasbi M, Tavasoli AR, Badv RS, Hosseiny SMM, Samanta D, Rabbani B, Mahdieh N. Nonsyndromic Early-Onset Epileptic Encephalopathies: Two Novel KCTD7 Pathogenic Variants and a Literature Review. Dev Neurosci 2021; 43:348-357. [PMID: 34469883 DOI: 10.1159/000519318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Early-onset epileptic encephalopathies (EOEE) affect cognitive, sensory, and motor development. Genetic variations are among the identifiable primary causes of these syndromes. However, some patients have been reported to be affected by EOEE without any other clinical symptoms and signs. We study the genotype and phenotype of patients with nonsyndromic early-onset epileptic encephalopathy (NSEOEE) and report 2 novel patients from Iran. A comprehensive search was conducted in PubMed, John Willy, Springer, Elsevier, and Google Scholar databases to collect related information of all the previously reported cases with KCTD7 mutations. Fifty-four patients (from 40 families) were investigated. Using trio-whole-exome sequencing (trio-WES) and Sanger sequencing, the possible genetic causes of the disorder were checked. The probable impacts of the identified variants on the KCTD7 protein structure and function were predicted. This study provided a detailed overview of all published KCTD7 mutations and 2 de novo ones. We identified 2 novel homozygous variants of uncertain significance, c.458 G > A p. Arg153His and c.529C > T (p.Arg177Cys), in KCTD7 (NM_153033.4) (Chr7(GRCh37)). There is a significant wide distribution of the KCTD7 gene causing NSEOEE among different populations. In conclusion, KCTD7 mutations demonstrate a diverse geographical distribution alongside a wide range of ethnicities. This highlights the importance of careful consideration in the WES data analysis. Mutations of this gene may be a common cause of NSEOEE. Also, this study imprints targeted therapeutic opportunities for potassium channelepsies such as KCTD7-related NSEOEE.
Collapse
Affiliation(s)
- Sima Binaafar
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Hospital Center, Pediatric Center of Excellence, Tehran University of Medical Center, Tehran, Iran
| | - Seyyed Mohammad Mahdi Hosseiny
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bahareh Rabbani
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Newkirk GS, Guan D, Dembrow N, Armstrong WE, Foehring RC, Spain WJ. Kv2.1 Potassium Channels Regulate Repetitive Burst Firing in Extratelencephalic Neocortical Pyramidal Neurons. Cereb Cortex 2021; 32:1055-1076. [PMID: 34435615 DOI: 10.1093/cercor/bhab266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/14/2022] Open
Abstract
Coincidence detection and cortical rhythmicity are both greatly influenced by neurons' propensity to fire bursts of action potentials. In the neocortex, repetitive burst firing can also initiate abnormal neocortical rhythmicity (including epilepsy). Bursts are generated by inward currents that underlie a fast afterdepolarization (fADP) but less is known about outward currents that regulate bursting. We tested whether Kv2 channels regulate the fADP and burst firing in labeled layer 5 PNs from motor cortex of the Thy1-h mouse. Kv2 block with guangxitoxin-1E (GTx) converted single spike responses evoked by dendritic stimulation into multispike bursts riding on an enhanced fADP. Immunohistochemistry revealed that Thy1-h PNs expressed Kv2.1 (not Kv2.2) channels perisomatically (not in the dendrites). In somatic macropatches, GTx-sensitive current was the largest component of outward current with biophysical properties well-suited for regulating bursting. GTx drove ~40% of Thy1 PNs stimulated with noisy somatic current steps to repetitive burst firing and shifted the maximal frequency-dependent gain. A network model showed that reduction of Kv2-like conductance in a small subset of neurons resulted in repetitive bursting and entrainment of the circuit to seizure-like rhythmic activity. Kv2 channels play a dominant role in regulating onset bursts and preventing repetitive bursting in Thy1 PNs.
Collapse
Affiliation(s)
- Greg S Newkirk
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Nikolai Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William E Armstrong
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.,Epilepsy Center of Excellence, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| |
Collapse
|
36
|
Auzmendi J, Akyuz E, Lazarowski A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav 2021; 121:106590. [PMID: 31706919 DOI: 10.1016/j.yebeh.2019.106590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death that affects patients with epilepsy. The risk of SUDEP increases according to the frequency and severity of uncontrolled seizures; therefore, SUDEP risk is higher in patients with refractory epilepsy (RE), in whom most antiepileptic drugs (AEDs) are ineffective for both seizure control and SUDEP prevention. Consequently, RE and SUDEP share a multidrug resistance (MDR) phenotype, which is mainly associated with brain overexpression of ABC-transporters such as P-glycoprotein (P-gp). The activity of P-gp can also contribute to membrane depolarization and affect the normal function of neurons and cardiomyocytes. Other molecular regulators of membrane potential are the inwardly rectifying potassium channels (Kir), whose genetic variants have been related to both epilepsy and heart dysfunctions. Although it has been suggested that dysfunctions of the cardiac, respiratory, and brainstem arousal systems are the causes of SUDEP, the molecular basis for explaining its dysfunctions remain unknown. In rats, repetitive seizures or status epilepticus induced high expression of P-gp and loss Kir expression in the brain and heart, and promoted membrane depolarization, malignant bradycardia, and the high rate of mortality. Here we reviewed clinical and experimental evidences suggesting that abnormal expression of depolarizing/repolarizing factors as P-gp and Kir could favor persistent depolarization of membranes without any rapid functional recovery capacity. This condition induced by convulsive stress could be the molecular mechanism leading to acquired severe bradycardia, as an ineffective heart response generating the appropriate scenario for SUDEP development. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Jerónimo Auzmendi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Enes Akyuz
- Yozgat Bozok University, Medical Faculty, Department of Biophysics, Erdoğan Akdağ Yerleşkesi, 66100 Yozgat, Turkey
| | - Alberto Lazarowski
- INFIBIOC, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
37
|
Srivastava A, Kumar K, Banerjee J, Tripathi M, Dubey V, Sharma D, Yadav N, Sharma MC, Lalwani S, Doddamani R, Chandra PS, Dixit AB. Transcriptomic profiling of high- and low-spiking regions reveals novel epileptogenic mechanisms in focal cortical dysplasia type II patients. Mol Brain 2021; 14:120. [PMID: 34301297 PMCID: PMC8305866 DOI: 10.1186/s13041-021-00832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of the cerebral cortex with poorly-defined epileptogenic zones (EZs), and poor surgical outcome in FCD is associated with inaccurate localization of the EZ. Hence, identifying novel epileptogenic markers to aid in the localization of EZ in patients with FCD is very much needed. High-throughput gene expression studies of FCD samples have the potential to uncover molecular changes underlying the epileptogenic process and identify novel markers for delineating the EZ. For this purpose, we, for the first time performed RNA sequencing of surgically resected paired tissue samples obtained from electrocorticographically graded high (MAX) and low spiking (MIN) regions of FCD type II patients and autopsy controls. We identified significant changes in the MAX samples of the FCD type II patients when compared to non-epileptic controls, but not in the case of MIN samples. We found significant enrichment for myelination, oligodendrocyte development and differentiation, neuronal and axon ensheathment, phospholipid metabolism, cell adhesion and cytoskeleton, semaphorins, and ion channels in the MAX region. Through the integration of both MAX vs non-epileptic control and MAX vs MIN RNA sequencing (RNA Seq) data, PLP1, PLLP, UGT8, KLK6, SOX10, MOG, MAG, MOBP, ANLN, ERMN, SPP1, CLDN11, TNC, GPR37, SLC12A2, ABCA2, ABCA8, ASPA, P2RX7, CERS2, MAP4K4, TF, CTGF, Semaphorins, Opalin, FGFs, CALB2, and TNC were identified as potential key regulators of multiple pathways related to FCD type II pathology. We have identified novel epileptogenic marker elements that may contribute to epileptogenicity in patients with FCD and could be possible markers for the localization of EZ.
Collapse
Affiliation(s)
| | - Krishan Kumar
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | | | | | - Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | - Devina Sharma
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India
| | - Nitin Yadav
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - M C Sharma
- Department of Pathology, AIIMS, New Delhi, India
| | - Sanjeev Lalwani
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - P Sarat Chandra
- Department of Neurosurgery, AIIMS, New Delhi, 110029, India.
| | - Aparna Banerjee Dixit
- Dr B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
38
|
Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Pharmacological Approaches to Studying Potassium Channels. Handb Exp Pharmacol 2021; 267:83-111. [PMID: 34195873 DOI: 10.1007/164_2021_502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we consider the pharmacology of potassium channels from the perspective of these channels as therapeutic targets. Firstly, we describe the three main families of potassium channels in humans and disease states where they are implicated. Secondly, we describe the existing therapeutic agents which act on potassium channels and outline why these channels represent an under-exploited therapeutic target with potential for future drug development. Thirdly, we consider the evidence desired in order to embark on a drug discovery programme targeting a particular potassium channel. We have chosen two "case studies": activators of the two-pore domain potassium (K2P) channel TREK-2 (K2P10.1), for the treatment of pain and inhibitors of the voltage-gated potassium channel KV1.3, for use in autoimmune diseases such as multiple sclerosis. We describe the evidence base to suggest why these are viable therapeutic targets. Finally, we detail the main technical approaches available to characterise the pharmacology of potassium channels and identify novel regulatory compounds. We draw particular attention to the Comprehensive in vitro Proarrhythmia Assay initiative (CiPA, https://cipaproject.org ) project for cardiac safety, as an example of what might be both desirable and possible in the future, for ion channel regulator discovery projects.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Kent, UK. .,Medway School of Pharmacy, University of Greenwich, London, UK. .,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, UK.
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Yvonne Walsh
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| |
Collapse
|
39
|
Gong P, Jiao X, Yu D, Yang Z. Case Report: Causative De novo Variants of KCNT2 for Developmental and Epileptic Encephalopathy. Front Genet 2021; 12:649556. [PMID: 34276763 PMCID: PMC8277933 DOI: 10.3389/fgene.2021.649556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
Objective:KCNT2 gene mutations had been described to cause developmental and epileptic encephalopathies (DEEs). In this study, we presented the detailed clinical features and genetic analysis of two unrelated patients carrying two de novo variants in KCNT2 and reviewed eight different cases available in publications. Methods: Likely pathogenic variants were identified by whole exome sequencing; clinical data of the patients were retrospectively collected and analyzed. Results: Our two unrelated patients were diagnosed with Ohtahara syndrome followed by infantile spasms (IS) and possibly the epilepsy of infancy with migrating focal seizures (EIMFS), respectively. They both manifested dysmorphic features with hirsute arms, thick hair, prominent eyebrows, long and thick eyelashes, a broad nasal tip, and short and smooth philtrum. In the eight patients reported previously, two was diagnosed with IS carrying a ‘change-of-function' mutation and a gain-of-function mutation, respectively, two with EIMFS-like carrying a gain-of-function mutation and a loss-of-function mutation, respectively, one with EIMFS carrying a loss-of-function mutation, three with DEE without functional analysis. Among them, two patients with gain-of-function mutations both exhibited dysmorphic features and presented epilepsy phenotype, which was similar to our patients. Conclusion: Overall, the most common phenotypes associated with KCNT2 mutation were IS and EIMFS. Epilepsy phenotype associated with gain- and loss-of-function mutations could overlap. Additional KCNT2 cases will help to make genotype-phenotype correlations clearer.
Collapse
Affiliation(s)
- Pan Gong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xianru Jiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
40
|
Miljanovic N, Hauck SM, van Dijk RM, Di Liberto V, Rezaei A, Potschka H. Proteomic signature of the Dravet syndrome in the genetic Scn1a-A1783V mouse model. Neurobiol Dis 2021; 157:105423. [PMID: 34144125 DOI: 10.1016/j.nbd.2021.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dravet syndrome is a rare, severe pediatric epileptic encephalopathy associated with intellectual and motor disabilities. Proteomic profiling in a mouse model of Dravet syndrome can provide information about the molecular consequences of the genetic deficiency and about pathophysiological mechanisms developing during the disease course. METHODS A knock-in mouse model of Dravet syndrome with Scn1a haploinsufficiency was used for whole proteome, seizure, and behavioral analysis. Hippocampal tissue was dissected from two- (prior to epilepsy manifestation) and four- (following epilepsy manifestation) week-old male mice and analyzed using LC-MS/MS with label-free quantification. Proteomic data sets were subjected to bioinformatic analysis including pathway enrichment analysis. The differential expression of selected proteins was confirmed by immunohistochemical staining. RESULTS The findings confirmed an increased susceptibility to hyperthermia-associated seizures, the development of spontaneous seizures, and behavioral alterations in the novel Scn1a-A1873V mouse model of Dravet syndrome. As expected, proteomic analysis demonstrated more pronounced alterations following epilepsy manifestation. In particular, proteins involved in neurotransmitter dynamics, receptor and ion channel function, synaptic plasticity, astrogliosis, neoangiogenesis, and nitric oxide signaling showed a pronounced regulation in Dravet mice. Pathway enrichment analysis identified several significantly regulated pathways at the later time point, with pathways linked to synaptic transmission and glutamatergic signaling dominating the list. CONCLUSION In conclusion, the whole proteome analysis in a mouse model of Dravet syndrome demonstrated complex molecular alterations in the hippocampus. Some of these alterations may have an impact on excitability or may serve a compensatory function, which, however, needs to be further confirmed by future investigations. The proteomic data indicate that, due to the molecular consequences of the genetic deficiency, the pathophysiological mechanisms may become more complex during the course of the disease. As a result, the management of Dravet syndrome may need to consider further molecular and cellular alterations. Ensuing functional follow-up studies, this data set may provide valuable guidance for the future development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Germany
| | - R Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ali Rezaei
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
41
|
Cole BA, Clapcote SJ, Muench SP, Lippiat JD. Targeting K Na1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci 2021; 42:700-713. [PMID: 34074526 DOI: 10.1016/j.tips.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known potassium channel subunit, KNa1.1, are associated with developmental and epileptic encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking hyperexcitable KNa1.1 channels with quinidine, a class I antiarrhythmic drug, has shown variable success in patients in part because of dose-limiting off-target effects, poor blood-brain barrier (BBB) penetration, and low potency. In recent years, high-resolution cryogenic electron microscopy (cryo-EM) structures of the chicken KNa1.1 channel in different activation states have been determined, and animal models of the diseases have been generated. Alongside increasing information about the functional effects of GOF pathogenic variants on KNa1.1 channel behaviour and how they lead to hyperexcitability, these tools will facilitate the development of more effective treatment strategies. We review the range of KCNT1 variants and their functional effects, the challenges posed by current treatment strategies, and recent advances in finding more potent and selective therapeutic interventions for KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
42
|
Havali C, Ekici A, Dorum S, Görükmez Ö, Topak A. Recently defined epileptic encephalopathy related to WWOX gene mutation: six patients and new mutations. Neurol Res 2021; 43:744-750. [PMID: 34034642 DOI: 10.1080/01616412.2021.1932173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: Pathogenic variants of the WWOX gene have been linked to sexual differentiation disorders, spinocerebellar ataxia, and epileptic encephalopathy (EE). We evaluated the clinical and molecular data from six newly diagnosed patients with WWOX-related EE.Methods: Clinical and molecular findings in six patients with EE were investigated, and biallelic pathogenic variants in the WWOX gene were identified. Clinical exome sequencing and Sanger sequencing were performed.Results: Three variations, as well as two novel mutations, in the WWOX gene were detected.Conclusion: Pathogenic WWOX mutations are associated with early-onset EE. Here, we report the case of six children with WWOX-related EE.
Collapse
Affiliation(s)
- Cengiz Havali
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Arzu Ekici
- Department of Pediatrics, Division of Neurology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Pediatrics, Division of Pediatric Metabolic Disorders, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özlem Görükmez
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Ali Topak
- Department of Medical Genetics, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
43
|
Weaver CD, Denton JS. Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. Am J Physiol Cell Physiol 2021; 320:C1125-C1140. [PMID: 33826405 DOI: 10.1152/ajpcell.00548.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.
Collapse
Affiliation(s)
- C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
44
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
45
|
Ahras-Sifi N, Laraba-Djebari F. Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol 2021; 355:577549. [PMID: 33839521 DOI: 10.1016/j.jneuroim.2021.577549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
The pathophysiology of neurological diseases related to potassium-channel dysfunction such as epilepsy is increasingly linked to immune system modulation. However, there are limited reports of which interleukin-4 (IL-4) can act on the neuroinflammatory response after seizure. Hence, we evaluated the effect of IL-4 in murine model of neuroexcitotoxcity using kaliotoxin (KTx), a potassium-channel blocker. Results showed that IL-4 treatment can significantly reduce the neuronal death induced by KTx. Probably by decreasing mitochondria swelling, reversing oxidative damage and enhancing Bcl-2 expression. Furthermore, IL-4 treatment significantly reduced TNF-α expression and enhanced GFAP and IL-10 expressions in the brain. IL-4 can be neuroprotective in epileptogenesis.
Collapse
Affiliation(s)
- Nesrine Ahras-Sifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria.
| |
Collapse
|
46
|
Latorre A, Rocchi L, Magrinelli F, Mulroy E, Berardelli A, Rothwell JC, Bhatia KP. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 2021; 143:2653-2663. [PMID: 32417917 DOI: 10.1093/brain/awaa129] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cortical tremor is a fine rhythmic oscillation involving distal upper limbs, linked to increased sensorimotor cortex excitability, as seen in cortical myoclonus. Cortical tremor is the hallmark feature of autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE), a syndrome not yet officially recognized and characterized by clinical and genetic heterogeneity. Non-coding repeat expansions in different genes have been recently recognized to play an essential role in its pathogenesis. Cortical tremor is considered a rhythmic variant of cortical myoclonus and is part of the 'spectrum of cortical myoclonus', i.e. a wide range of clinical motor phenomena, from reflex myoclonus to myoclonic epilepsy, caused by abnormal sensorimotor cortical discharges. The aim of this update is to provide a detailed analysis of the mechanisms defining cortical tremor, as seen in FCMTE. After reviewing the clinical and genetic features of FCMTE, we discuss the possible mechanisms generating the distinct elements of the cortical myoclonus spectrum, and how cortical tremor fits into it. We propose that the spectrum is due to the evolution from a spatially limited focus of excitability to recruitment of more complex mechanisms capable of sustaining repetitive activity, overcoming inhibitory mechanisms that restrict excitatory bursts, and engaging wide areas of cortex. Finally, we provide evidence for a possible common denominator of the elements of the spectrum, i.e. the cerebellum, and discuss its role in FCMTE, according to recent genetic findings.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
47
|
Fry AE, Marra C, Derrick AV, Pickrell WO, Higgins AT, Te Water Naude J, McClatchey MA, Davies SJ, Metcalfe KA, Tan HJ, Mohanraj R, Avula S, Williams D, Brady LI, Mesterman R, Tarnopolsky MA, Zhang Y, Yang Y, Wang X, Rees MI, Goldfarb M, Chung SK. Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic encephalopathy. Am J Hum Genet 2021; 108:176-185. [PMID: 33245860 PMCID: PMC7820623 DOI: 10.1016/j.ajhg.2020.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Anna V Derrick
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - William O Pickrell
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Neurology department, Morriston Hospital, Swansea Bay University Hospital Health Board, Swansea SA6 6NL, UK
| | - Adam T Higgins
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Johann Te Water Naude
- Paediatric Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Martin A McClatchey
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Hui Jeen Tan
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Denise Williams
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Lauren I Brady
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Ronit Mesterman
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | | | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Faculty of Medicine and Health, Camperdown, University of Sydney, NSW 2006, Australia
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Kids Neuroscience Centre, Kids Research, Children Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, NSW 2050, Australia
| |
Collapse
|
48
|
Garcia-Rosa S, de Freitas Brenha B, Felipe da Rocha V, Goulart E, Araujo BHS. Personalized Medicine Using Cutting Edge Technologies for Genetic Epilepsies. Curr Neuropharmacol 2021; 19:813-831. [PMID: 32933463 PMCID: PMC8686309 DOI: 10.2174/1570159x18666200915151909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is the most common chronic neurologic disorder in the world, affecting 1-2% of the population. Besides, 30% of epilepsy patients are drug-resistant. Genomic mutations seem to play a key role in its etiology and knowledge of strong effect mutations in protein structures might improve prediction and the development of efficacious drugs to treat epilepsy. Several genetic association studies have been undertaken to examine the effect of a range of candidate genes for resistance. Although, few studies have explored the effect of the mutations into protein structure and biophysics in the epilepsy field. Much work remains to be done, but the plans made for exciting developments will hold therapeutic potential for patients with drug-resistance. In summary, we provide a critical review of the perspectives for the development of individualized medicine for epilepsy based on genetic polymorphisms/mutations in light of core elements such as transcriptomics, structural biology, disease model, pharmacogenomics and pharmacokinetics in a manner to improve the success of trial designs of antiepileptic drugs.
Collapse
Affiliation(s)
- Sheila Garcia-Rosa
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Bianca de Freitas Brenha
- Laboratory of Embryonic Genetic Regulation, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Vinicius Felipe da Rocha
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| | - Ernesto Goulart
- Human Genome and Stem-Cell Research Center (HUG-CEL), Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, SP, Brazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Center for Research in Energy and Material (CNPEM), Campinas, SP, Brazil
| |
Collapse
|
49
|
Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, Bostick CD, Beaumont MA, Williams D, Khodagholy D, Yang M, Lutz CM, Peng Y, Gelinas JN, Goldstein DB, Boland MJ, Frankel WN, Weston MC. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Cell Rep 2020; 33:108303. [PMID: 33113364 PMCID: PMC7712469 DOI: 10.1016/j.celrep.2020.108303] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - William F Tobin
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin R Cullen
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Soledad Dominguez
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Michael A Beaumont
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Axion BioSystems, Atlanta, GA 30309, USA
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10032, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Matthew C Weston
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
50
|
Bleakley LE, Soh MS, Bagnall RD, Sadleir LG, Gooley S, Semsarian C, Scheffer IE, Berkovic SF, Reid CA. Are Variants Causing Cardiac Arrhythmia Risk Factors in Sudden Unexpected Death in Epilepsy? Front Neurol 2020; 11:925. [PMID: 33013630 PMCID: PMC7505992 DOI: 10.3389/fneur.2020.00925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of premature mortality in individuals with epilepsy. Acute and adaptive changes in heart rhythm in epilepsy implicate cardiac dysfunction as a potential pathogenic mechanism in SUDEP. Furthermore, variants in genes associated with Long QT syndrome (LQTS) have been identified in patients with SUDEP. LQTS is a cardiac arrhythmia condition that causes sudden cardiac death with strong similarities to SUDEP. Here, we discuss the possibility of an additive risk of death due to the functional consequences of a pathogenic variant in an LQTS gene interacting with seizure-mediated changes in cardiac function. Extending this general concept, we propose a hypothesis that common variants in LQTS genes, which cause a subtle impact on channel function and would not normally be considered risk factors for cardiac disease, may increase the risk of sudden death when combined with epilepsy. A greater understanding of the interaction between epilepsy, cardiac arrhythmia, and SUDEP will inform our understanding of SUDEP risk and subsequent potential prophylactic treatment.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ming S Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Samuel Gooley
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia.,Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|