1
|
Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Effects of transcranial direct current stimulation and transcranial random noise stimulation on working memory and task-related EEG in major depressive disorder. Brain Cogn 2023; 173:106105. [PMID: 37963422 DOI: 10.1016/j.bandc.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVE To compare effects of transcranial direct current stimulation (tDCS) and transcranial random noise stimulation with a direct-current offset (tRNS + DC-offset) on working memory (WM) performance and task-related electroencephalography (EEG) in individuals with Major Depressive Disorder (MDD). METHODS Using a sham-controlled, parallel-groups design, 49 participants with MDD received either anodal tDCS (N = 16), high-frequency tRNS + DC-offset (N = 16), or sham stimulation (N = 17) to the left dorsolateral prefrontal cortex (DLPFC) for 20-minutes. The Sternberg WM task was completed with concurrent EEG recording before and at 5- and 25-minutes post-stimulation. Event-related synchronisation/desynchronisation (ERS/ERD) was calculated for theta, upper alpha, and gamma oscillations during WM encoding and maintenance. RESULTS tDCS significantly increased parieto-occipital upper alpha ERS/ERD during WM maintenance, observed on EEG recorded 5- and 25-minutes post-stimulation. tRNS + DC-offset did not significantly alter WM-related oscillatory activity when compared to sham stimulation. Neither tDCS nor tRNS + DC-offset improved WM performance to a significantly greater degree than sham stimulation. CONCLUSIONS Although tDCS induced persistent effects on WM-related oscillatory activity, neither tDCS nor tRNS + DC-offset enhanced WM performance in MDD. SIGNIFICANCE This reflects the first sham-controlled comparison of tDCS and tRNS + DC-offset in MDD. These findings directly contrast with evidence of tRNS-induced enhancements in WM in healthy individuals.
Collapse
Affiliation(s)
- O W Murphy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia.
| | - K E Hoy
- Central Clinical School, Monash University, Clayton, VIC, Australia; Bionics Institute, East Melbourne, VIC, Australia
| | - D Wong
- School of Psychology and Public Health, La Trobe University, Bundoora, VIC, Australia
| | - N W Bailey
- Central Clinical School, Monash University, Clayton, VIC, Australia; Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - P B Fitzgerald
- Monarch Research Institute Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, Australian National University, Canberra, ACT, Australia
| | - R A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Boetzel C, Stecher HI, Herrmann CS. ERP-aligned delta transcranial alternating current stimulation modulates the P3 amplitude. Int J Psychophysiol 2023; 193:112247. [PMID: 37769997 DOI: 10.1016/j.ijpsycho.2023.112247] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
The underlying mechanisms of the event-related potential (ERP) generation are still under debate. One popular model considers the ERP as a superposition of phase-resets of ongoing endogenous oscillations of different frequencies. Brain oscillations have been shown to be modulated by transcranial alternating current stimulation (tACS). Thus, it seems feasible, that an ERP could be altered by modulating the contributing oscillations using tACS. One possible approach would be to target a frequency-matched stimulation signal to a specific ERP-component. One possible target for such an approach is the P3, which appears as delta/theta oscillations in the frequency-domain. Thus, an ERP-aligned stimulation in the delta/theta-range might be suitable to force synchronization in the stimulated frequency band and thus increase the amplitude of the P3 component. Building on an existing paradigm, in the present study 21 healthy participants received individualized ERP-aligned delta tACS and control stimulation while performing a visual task. The visual stimulation was matched to the continuous tACS in order to align the tACS peak with the P3 peak. Both the P3 amplitude and the evoked delta power were significantly increased after ERP-aligned tACS but not after control stimulation. The investigated behavioral parameter showed no stimulation dependent effect. Our results may provide new insights into the debate on the contribution of phase-reset mechanisms to the generation of ERPs and offer new opportunities for clinical trials.
Collapse
Affiliation(s)
- Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Heiko I Stecher
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster for Excellence "Hearing for All", Carl von Ossietzky University, Oldenburg, Germany; Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
3
|
van Bueren NER, van der Ven SHG, Hochman S, Sella F, Cohen Kadosh R. Human neuronal excitation/inhibition balance explains and predicts neurostimulation induced learning benefits. PLoS Biol 2023; 21:e3002193. [PMID: 37651315 PMCID: PMC10470965 DOI: 10.1371/journal.pbio.3002193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 09/02/2023] Open
Abstract
Previous research has highlighted the role of the excitation/inhibition (E/I) ratio for typical and atypical development, mental health, cognition, and learning. Other research has highlighted the benefits of high-frequency transcranial random noise stimulation (tRNS)-an excitatory form of neurostimulation-on learning. We examined the E/I as a potential mechanism and studied whether tRNS effect on learning depends on E/I as measured by the aperiodic exponent as its putative marker. In addition to manipulating E/I using tRNS, we also manipulated the level of learning (learning/overlearning) that has been shown to influence E/I. Participants (n = 102) received either sham stimulation or 20-minute tRNS over the dorsolateral prefrontal cortex (DLPFC) during a mathematical learning task. We showed that tRNS increased E/I, as reflected by the aperiodic exponent, and that lower E/I predicted greater benefit from tRNS specifically for the learning task. In contrast to previous magnetic resonance spectroscopy (MRS)-based E/I studies, we found no effect of the level of learning on E/I. A further analysis using a different data set suggest that both measures of E/I (EEG versus MRS) may reflect, at least partly, different biological mechanisms. Our results highlight the role of E/I as a marker for neurostimulation efficacy and learning. This mechanistic understanding provides better opportunities for augmented learning and personalized interventions.
Collapse
Affiliation(s)
- Nienke E. R. van Bueren
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | | | - Shachar Hochman
- School of Psychology, University of Surrey, Guildford, United Kingdom
| | - Francesco Sella
- Centre for Mathematical Cognition, Loughborough University, Loughborough, United Kingdom
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
4
|
Medeiros W, Barros T, Caixeta FV. Bibliometric mapping of non-invasive brain stimulation techniques (NIBS) for fluent speech production. Front Hum Neurosci 2023; 17:1164890. [PMID: 37425291 PMCID: PMC10323431 DOI: 10.3389/fnhum.2023.1164890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Language production is a finely regulated process, with many aspects which still elude comprehension. From a motor perspective, speech involves over a hundred different muscles functioning in coordination. As science and technology evolve, new approaches are used to study speech production and treat its disorders, and there is growing interest in the use of non-invasive modulation by means of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Methods Here we analyzed data obtained from Scopus (Elsevier) using VOSViewer to provide an overview of bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling of non-invasive brain stimulation (NIBS) use in speech research. Results In total, 253 documents were found, being 55% from only three countries (USA, Germany and Italy), with emerging economies such as Brazil and China becoming relevant in this topic recently. Most documents were published in this last decade, with 2022 being the most productive yet, showing brain stimulation has untapped potential for the speech research field. Discussion Keyword analysis indicates a move away from basic research on the motor control in healthy speech, toward clinical applications such as stuttering and aphasia treatment. We also observe a recent trend in cerebellar modulation for clinical treatment. Finally, we discuss how NIBS have established over the years and gained prominence as tools in speech therapy and research, and highlight potential methodological possibilities for future research.
Collapse
|
5
|
Transcranial high-frequency random noise stimulation does not modulate Nogo N2 and Go/Nogo reaction times in somatosensory and auditory modalities. Sci Rep 2023; 13:3014. [PMID: 36810889 PMCID: PMC9944265 DOI: 10.1038/s41598-023-30261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Transcranial random noise stimulation (tRNS) of the primary sensory or motor cortex can improve sensorimotor functions by enhancing circuit excitability and processing fidelity. However, tRNS is reported to have little effect on higher brain functions, such as response inhibition when applied to associated supramodal regions. These discrepancies suggest differential effects of tRNS on the excitability of the primary and supramodal cortex, although this has not been directly demonstrated. This study examined the effects of tRNS on supramodal brain regions on somatosensory and auditory Go/Nogo task performance, a measure of inhibitory executive function, while simultaneously recording event-related potentials (ERPs). Sixteen participants received sham or tRNS stimulation of the dorsolateral prefrontal cortex in a single-blind crossover design study. Neither sham nor tRNS altered somatosensory and auditory Nogo N2 amplitudes, Go/Nogo reaction times, or commission error rates. The results suggest that current tRNS protocols are less effective at modulating neural activity in higher-order cortical regions than in the primary sensory and motor cortex. Further studies are required to identify tRNS protocols that effectively modulate the supramodal cortex for cognitive enhancement.
Collapse
|
6
|
Leite Filho CA, Rocha-Muniz CN, Pereira LD, Schochat E. Auditory temporal resolution and backward masking in musicians with absolute pitch. Front Neurosci 2023; 17:1151776. [PMID: 37139520 PMCID: PMC10149789 DOI: 10.3389/fnins.2023.1151776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Among the many questions regarding the ability to effortlessly name musical notes without a reference, also known as absolute pitch, the neural processes by which this phenomenon operates are still a matter of debate. Although a perceptual subprocess is currently accepted by the literature, the participation of some aspects of auditory processing still needs to be determined. We conducted two experiments to investigate the relationship between absolute pitch and two aspects of auditory temporal processing, namely temporal resolution and backward masking. In the first experiment, musicians were organized into two groups according to the presence of absolute pitch, as determined by a pitch identification test, and compared regarding their performance in the Gaps-in-Noise test, a gap detection task for assessing temporal resolution. Despite the lack of statistically significant difference between the groups, the Gaps-in-Noise test measures were significant predictors of the measures for pitch naming precision, even after controlling for possible confounding variables. In the second experiment, another two groups of musicians with and without absolute pitch were submitted to the backward masking test, with no difference between the groups and no correlation between backward masking and absolute pitch measures. The results from both experiments suggest that only part of temporal processing is involved in absolute pitch, indicating that not all aspects of auditory perception are related to the perceptual subprocess. Possible explanations for these findings include the notable overlap of brain areas involved in both temporal resolution and absolute pitch, which is not present in the case of backward masking, and the relevance of temporal resolution to analyze the temporal fine structure of sound in pitch perception.
Collapse
Affiliation(s)
- Carlos Alberto Leite Filho
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Alberto Leite Filho,
| | - Caroline Nunes Rocha-Muniz
- Speech-Language Pathology Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Liliane Desgualdo Pereira
- Neuroaudiology Lab, Department of Speech Therapy, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Eliane Schochat
- Auditory Processing Lab, Department of Physical Therapy, Speech-Language Pathology and Occupational Therapy, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Mosilhy EA, Alshial EE, Eltaras MM, Rahman MMA, Helmy HI, Elazoul AH, Hamdy O, Mohammed HS. Non-invasive transcranial brain modulation for neurological disorders treatment: A narrative review. Life Sci 2022; 307:120869. [DOI: 10.1016/j.lfs.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
|
8
|
JA R, Lovelace JW, Kokash J, Hussain A, KA R. Nicotine reduces age-related changes in cortical neural oscillations without affecting auditory brainstem responses. Neurobiol Aging 2022; 120:10-26. [DOI: 10.1016/j.neurobiolaging.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
|
9
|
Dakwar-Kawar O, Berger I, Barzilay S, Grossman ES, Cohen Kadosh R, Nahum M. Examining the Effect of Transcranial Electrical Stimulation and Cognitive Training on Processing Speed in Pediatric Attention Deficit Hyperactivity Disorder: A Pilot Study. Front Hum Neurosci 2022; 16:791478. [PMID: 35966992 PMCID: PMC9363890 DOI: 10.3389/fnhum.2022.791478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveProcessing Speed (PS), the ability to perceive and react fast to stimuli in the environment, has been shown to be impaired in children with attention deficit hyperactivity disorder (ADHD). However, it is unclear whether PS can be improved following targeted treatments for ADHD. Here we examined potential changes in PS following application of transcranial electric stimulation (tES) combined with cognitive training (CT) in children with ADHD. Specifically, we examined changes in PS in the presence of different conditions of mental fatigue.MethodsWe used a randomized double-blind active-controlled crossover study of 19 unmedicated children with ADHD. Participants received either anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (dlPFC) or transcranial random noise stimulation (tRNS), while completing CT, and the administration order was counterbalanced. PS was assessed before and after treatment using the MOXO-CPT, which measures PS in the presence of various conditions of mental fatigue and cognitive load.ResultstRNS combined with CT yielded larger improvements in PS compared to tDCS combined with CT, mainly under condition of increased mental fatigue. Further improvements in PS were also seen in a 1-week follow up testing.ConclusionThis study provides initial support for the efficacy of tRNS combined with CT in improving PS in the presence of mental fatigue in pediatric ADHD.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Paul Baerwald School of Social Work and Social Welfare, Hebrew University, Jerusalem, Israel
| | - Snir Barzilay
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephraim S. Grossman
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mor Nahum
- School of Occupational Therapy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Mor Nahum,
| |
Collapse
|
10
|
Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neurosci Biobehav Rev 2022; 138:104702. [PMID: 35595071 DOI: 10.1016/j.neubiorev.2022.104702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/12/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022]
Abstract
Van der Groen, O., Potok, W., Wenderoth, N., Edwards, G., Mattingley, J.B. and Edwards, D. Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. NEUROSCI BIOBEHAV REV X (X) XXX-XXX 2021.- Transcranial random noise stimulation (tRNS) is a non-invasive electrical brain stimulation method that is increasingly employed in studies of human brain function and behavior, in health and disease. tRNS is effective in modulating perception acutely and can improve learning. By contrast, its effectiveness for modulating higher cognitive processes is variable. Prolonged stimulation with tRNS, either as one longer application, or multiple shorter applications, may engage plasticity mechanisms that can result in long-term benefits. Here we provide an overview of the current understanding of the effects of tRNS on the brain and behavior and provide some specific recommendations for future research.
Collapse
|
11
|
Patel P, Khalighinejad B, Herrero JL, Bickel S, Mehta AD, Mesgarani N. Improved Speech Hearing in Noise with Invasive Electrical Brain Stimulation. J Neurosci 2022; 42:3648-3658. [PMID: 35347046 PMCID: PMC9053855 DOI: 10.1523/jneurosci.1468-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Speech perception in noise is a challenging everyday task with which many listeners have difficulty. Here, we report a case in which electrical brain stimulation of implanted intracranial electrodes in the left planum temporale (PT) of a neurosurgical patient significantly and reliably improved subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech in noise perception. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. The receptive fields of the PT sites whose stimulation improved speech perception were tuned to spectrally broad and rapidly changing sounds. Corticocortical evoked potential analysis revealed that the PT sites were located between the sites in Heschl's gyrus and the superior temporal gyrus. Moreover, the discriminability of speech from nonspeech sounds increased in population neural responses from Heschl's gyrus to the PT to the superior temporal gyrus sites. These findings causally implicate the PT in background noise suppression and may point to a novel potential neuroprosthetic solution to assist in the challenging task of speech perception in noise.SIGNIFICANCE STATEMENT Speech perception in noise remains a challenging task for many individuals. Here, we present a case in which the electrical brain stimulation of intracranially implanted electrodes in the planum temporale of a neurosurgical patient significantly improved both the subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech perception in noise. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. Our local and network-level functional analyses placed the planum temporale sites in between the sites in the primary auditory areas in Heschl's gyrus and nonprimary auditory areas in the superior temporal gyrus. These findings causally implicate planum temporale in acoustic scene analysis and suggest potential neuroprosthetic applications to assist hearing in noise.
Collapse
Affiliation(s)
- Prachi Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Bahar Khalighinejad
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Jose L Herrero
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Stephan Bickel
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Ashesh D Mehta
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
12
|
Centanni TM, Beach SD, Ozernov-Palchik O, May S, Pantazis D, Gabrieli JDE. Categorical perception and influence of attention on neural consistency in response to speech sounds in adults with dyslexia. ANNALS OF DYSLEXIA 2022; 72:56-78. [PMID: 34495457 PMCID: PMC8901776 DOI: 10.1007/s11881-021-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Developmental dyslexia is a common neurodevelopmental disorder that is associated with alterations in the behavioral and neural processing of speech sounds, but the scope and nature of that association is uncertain. It has been proposed that more variable auditory processing could underlie some of the core deficits in this disorder. In the current study, magnetoencephalography (MEG) data were acquired from adults with and without dyslexia while they passively listened to or actively categorized tokens from a /ba/-/da/ consonant continuum. We observed no significant group difference in active categorical perception of this continuum in either of our two behavioral assessments. During passive listening, adults with dyslexia exhibited neural responses that were as consistent as those of typically reading adults in six cortical regions associated with auditory perception, language, and reading. However, they exhibited significantly less consistency in the left supramarginal gyrus, where greater inconsistency correlated significantly with worse decoding skills in the group with dyslexia. The group difference in the left supramarginal gyrus was evident only when neural data were binned with a high temporal resolution and was only significant during the passive condition. Interestingly, consistency significantly improved in both groups during active categorization versus passive listening. These findings suggest that adults with dyslexia exhibit typical levels of neural consistency in response to speech sounds with the exception of the left supramarginal gyrus and that this consistency increases during active versus passive perception of speech sounds similarly in the two groups.
Collapse
Affiliation(s)
- T M Centanni
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Psychology, Texas Christian University, Fort Worth, TX, USA.
| | - S D Beach
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA, USA
| | - O Ozernov-Palchik
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - S May
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Boston College, Boston, MA, USA
| | - D Pantazis
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J D E Gabrieli
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Nooristani M, Augereau T, Moïn-Darbari K, Bacon BA, Champoux F. Using Transcranial Electrical Stimulation in Audiological Practice: The Gaps to Be Filled. Front Hum Neurosci 2021; 15:735561. [PMID: 34887736 PMCID: PMC8650084 DOI: 10.3389/fnhum.2021.735561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The effects of transcranial electrical stimulation (tES) approaches have been widely studied for many decades in the motor field, and are well known to have a significant and consistent impact on the rehabilitation of people with motor deficits. Consequently, it can be asked whether tES could also be an effective tool for targeting and modulating plasticity in the sensory field for therapeutic purposes. Specifically, could potentiating sensitivity at the central level with tES help to compensate for sensory loss? The present review examines evidence of the impact of tES on cortical auditory excitability and its corresponding influence on auditory processing, and in particular on hearing rehabilitation. Overall, data strongly suggest that tES approaches can be an effective tool for modulating auditory plasticity. However, its specific impact on auditory processing requires further investigation before it can be considered for therapeutic purposes. Indeed, while it is clear that electrical stimulation has an effect on cortical excitability and overall auditory abilities, the directionality of these effects is puzzling. The knowledge gaps that will need to be filled are discussed.
Collapse
Affiliation(s)
- Mujda Nooristani
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Thomas Augereau
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Karina Moïn-Darbari
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | | | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Ghin F, O'Hare L, Pavan A. Electrophysiological aftereffects of high-frequency transcranial random noise stimulation (hf-tRNS): an EEG investigation. Exp Brain Res 2021; 239:2399-2418. [PMID: 34105019 PMCID: PMC8354881 DOI: 10.1007/s00221-021-06142-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/24/2021] [Indexed: 12/02/2022]
Abstract
There is evidence that high-frequency transcranial random noise stimulation (hf-tRNS) is effective in improving behavioural performance in several visual tasks. However, so far there has been limited research into the spatial and temporal characteristics of hf-tRNS-induced facilitatory effects. In the present study, electroencephalogram (EEG) was used to investigate the spatial and temporal dynamics of cortical activity modulated by offline hf-tRNS on performance on a motion direction discrimination task. We used EEG to measure the amplitude of motion-related VEPs over the parieto-occipital cortex, as well as oscillatory power spectral density (PSD) at rest. A time-frequency decomposition analysis was also performed to investigate the shift in event-related spectral perturbation (ERSP) in response to the motion stimuli between the pre- and post-stimulation period. The results showed that the accuracy of the motion direction discrimination task was not modulated by offline hf-tRNS. Although the motion task was able to elicit motion-dependent VEP components (P1, N2, and P2), none of them showed any significant change between pre- and post-stimulation. We also found a time-dependent increase of the PSD in alpha and beta bands regardless of the stimulation protocol. Finally, time-frequency analysis showed a modulation of ERSP power in the hf-tRNS condition for gamma activity when compared to pre-stimulation periods and Sham stimulation. Overall, these results show that offline hf-tRNS may induce moderate aftereffects in brain oscillatory activity.
Collapse
Affiliation(s)
- Filippo Ghin
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK.
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, Schubertstraße 42, 01309, Dresden, Germany.
| | - Louise O'Hare
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK
- Division of Psychology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK
| | - Andrea Pavan
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln, LN5 7AY, UK
- Department of Psychology, University of Bologna, Viale Berti Pichat, 5, 40127, Bologna, Italy
| |
Collapse
|
15
|
Preisig BC, Riecke L, Sjerps MJ, Kösem A, Kop BR, Bramson B, Hagoort P, Hervais-Adelman A. Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proc Natl Acad Sci U S A 2021; 118:e2015488118. [PMID: 33568530 PMCID: PMC7896308 DOI: 10.1073/pnas.2015488118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain connectivity plays a major role in the encoding, transfer, and integration of sensory information. Interregional synchronization of neural oscillations in the γ-frequency band has been suggested as a key mechanism underlying perceptual integration. In a recent study, we found evidence for this hypothesis showing that the modulation of interhemispheric oscillatory synchrony by means of bihemispheric high-density transcranial alternating current stimulation (HD-TACS) affects binaural integration of dichotic acoustic features. Here, we aimed to establish a direct link between oscillatory synchrony, effective brain connectivity, and binaural integration. We experimentally manipulated oscillatory synchrony (using bihemispheric γ-TACS with different interhemispheric phase lags) and assessed the effect on effective brain connectivity and binaural integration (as measured with functional MRI and a dichotic listening task, respectively). We found that TACS reduced intrahemispheric connectivity within the auditory cortices and antiphase (interhemispheric phase lag 180°) TACS modulated connectivity between the two auditory cortices. Importantly, the changes in intra- and interhemispheric connectivity induced by TACS were correlated with changes in perceptual integration. Our results indicate that γ-band synchronization between the two auditory cortices plays a functional role in binaural integration, supporting the proposed role of interregional oscillatory synchrony in perceptual integration.
Collapse
Affiliation(s)
- Basil C Preisig
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands;
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
| | - Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Matthias J Sjerps
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Anne Kösem
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Lyon Neuroscience Research Center, Cognition Computation and Neurophysiology Team, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Benjamin R Kop
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Bob Bramson
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6500 HB Nijmegen, The Netherlands
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Alexis Hervais-Adelman
- Department of Psychology, Neurolinguistics, University of Zurich, 8050 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
16
|
Schoisswohl S, Langguth B, Gebel N, Poeppl TB, Kreuzer PM, Schecklmann M. Electrophysiological evaluation of high and low-frequency transcranial random noise stimulation over the auditory cortex. PROGRESS IN BRAIN RESEARCH 2020; 263:95-108. [PMID: 34243893 DOI: 10.1016/bs.pbr.2020.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transcranial random noise stimulation (tRNS) is a non-invasive brain stimulation technique which uses electrical alternating currents applied at random frequencies. Besides the ability to alter cortical excitability, past research demonstrated that high-frequency tRNS over the auditory cortex can modulate both spontaneous and auditory evoked oscillatory brain activity. OBJECTIVES The aim of the present study was to examine the effects of high- and low-frequency auditory tRNS on EEG power and evoked activity. METHODS Low-frequency (0.1-100Hz), high-frequency (100-640Hz) and sham tRNS were administered for a stimulation over the auditory cortex in 22 healthy subjects. Before and after tRNS stimulation auditory steady state responses (ASSR) of 20 and 40Hz stimuli as well as oscillatory brain activity were recorded with electroencephalography (EEG). RESULTS Stimulation of both verum tRNS protocols revealed no significant changes either in ASSR or in resting state EEG activity. Unexpectedly, sham tRNS resulted in a significant decrease in 20Hz ASSR and an increase in the alpha frequency band (8-12.5Hz). CONCLUSION We were not able to replicate previous findings of a modulation of resting state EEG activity and ASSR by tRNS.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Nikolaus Gebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Timm B Poeppl
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Peter M Kreuzer
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Effects of Transcranial Electrical Stimulation on Human Auditory Processing and Behavior-A Review. Brain Sci 2020; 10:brainsci10080531. [PMID: 32784358 PMCID: PMC7464917 DOI: 10.3390/brainsci10080531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Transcranial electrical stimulation (tES) can adjust the membrane potential by applying a weak current on the scalp to change the related nerve activity. In recent years, tES has proven its value in studying the neural processes involved in human behavior. The study of central auditory processes focuses on the analysis of behavioral phenomena, including sound localization, auditory pattern recognition, and auditory discrimination. To our knowledge, studies on the application of tES in the field of hearing and the electrophysiological effects are limited. Therefore, we reviewed the neuromodulatory effect of tES on auditory processing, behavior, and cognitive function and have summarized the physiological effects of tES on the auditory cortex.
Collapse
|
18
|
Nikolin S, Alonzo A, Martin D, Gálvez V, Buten S, Taylor R, Goldstein J, Oxley C, Hadzi-Pavlovic D, Loo CK. Transcranial Random Noise Stimulation for the Acute Treatment of Depression: A Randomized Controlled Trial. Int J Neuropsychopharmacol 2020; 23:146-156. [PMID: 31899509 PMCID: PMC7171931 DOI: 10.1093/ijnp/pyz072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/31/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transcranial electrical stimulation has broad potential as a treatment for depression. Transcranial random noise stimulation, which delivers randomly fluctuating current intensities, may have greater cortical excitatory effects compared with other forms of transcranial electrical stimulation. We therefore aimed to investigate the antidepressant efficacy of transcranial random noise stimulation. METHODS Depressed participants were randomly assigned by computer number generator to receive 20 sessions of either active or sham transcranial random noise stimulation over 4 weeks in a double-blinded, parallel group randomized-controlled trial. Transcranial random noise stimulation was delivered for 30 minutes with a direct current offset of 2 mA and a random noise range of 2 mA. Primary analyses assessed changes in depression severity using the Montgomery-Asperg Depression Rating Scale. Neuroplasticity, neuropsychological, and safety outcomes were analyzed as secondary measures. RESULTS Sixty-nine participants were randomized, of which 3 discontinued treatment early, leaving 66 (sham n = 34, active n = 32) for per-protocol analysis. Depression severity scores reduced in both groups (Montgomery-Asperg Depression Rating Scale reduction in sham = 7.0 [95% CI = 5.0-8.9]; and active = 5.2 [95% CI = 3.2-7.3]). However, there were no differences between active and sham groups in the reduction of depressive symptoms or the number of participants meeting response (sham = 14.7%; active = 3.1%) and remission criteria (sham = 5.9%; active = 0%). Erythema, paresthesia, fatigue, and dizziness/light-headedness occurred more frequently in the active transcranial random noise stimulation group. Neuroplasticity, neuropsychological, and acute cognitive effects were comparable between groups. CONCLUSION Our results do not support the use of transcranial random noise stimulation with the current stimulation parameters as a therapeutic intervention for the treatment of depression. CLINICAL TRIAL REGISTRATION AT CLINICALTRIALS gov/NCT01792414.
Collapse
Affiliation(s)
- Stevan Nikolin
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Angelo Alonzo
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Donel Martin
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Veronica Gálvez
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Mental Health Department, Parc Taulí University Hospital, Institut d’Investigació I Innovació Sanitària Parc Taulí (I3PT), Barcelona, Spain
| | - Sara Buten
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Prince of Wales Hospital, Sydney, Australia
| | - Rohan Taylor
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Concord Centre for Mental Health, Concord, Australia
| | | | - Cristal Oxley
- Department of Child and Adolescent Psychiatry, Michael Rutter Centre – South London and Maudsley NHS Foundation Trust, UK
| | | | - Colleen K Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- St. George Hospital, Sydney, Australia
| |
Collapse
|
19
|
Inconsistent effects of stochastic resonance on human auditory processing. Sci Rep 2020; 10:6419. [PMID: 32286448 PMCID: PMC7156366 DOI: 10.1038/s41598-020-63332-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
It has been demonstrated that, while otherwise detrimental, noise can improve sensory perception under optimal conditions. The mechanism underlying this improvement is stochastic resonance. An inverted U-shaped relationship between noise level and task performance is considered as the signature of stochastic resonance. Previous studies have proposed the existence of stochastic resonance also in the human auditory system. However, the reported beneficial effects of noise are small, based on a small sample, and do not confirm the proposed inverted U-shaped function. Here, we investigated in two separate studies whether stochastic resonance may be present in the human auditory system by applying noise of different levels, either acoustically or electrically via transcranial random noise stimulation, while participants had to detect acoustic stimuli adjusted to their individual hearing threshold. We find no evidence for behaviorally relevant effects of stochastic resonance. Although detection rate for near-threshold acoustic stimuli appears to vary in an inverted U-shaped manner for some subjects, it varies in a U-shaped manner or in other manners for other subjects. Our results show that subjects do not benefit from noise, irrespective of its modality. In conclusion, our results question the existence of stochastic resonance in the human auditory system.
Collapse
|
20
|
Rufener KS, Krauel K, Meyer M, Heinze HJ, Zaehle T. Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimul 2019; 12:930-937. [DOI: 10.1016/j.brs.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 11/29/2022] Open
|
21
|
Contemori G, Trotter Y, Cottereau BR, Maniglia M. tRNS boosts perceptual learning in peripheral vision. Neuropsychologia 2019; 125:129-136. [DOI: 10.1016/j.neuropsychologia.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
|
22
|
Remedios L, Mabil P, Flores-Hernández J, Torres-Ramírez O, Huidobro N, Castro G, Cervantes L, Tapia JA, De la Torre Valdovinos B, Manjarrez E. Effects of Short-Term Random Noise Electrical Stimulation on Dissociated Pyramidal Neurons from the Cerebral Cortex. Neuroscience 2019; 404:371-386. [PMID: 30703508 DOI: 10.1016/j.neuroscience.2019.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Transcranial random noise electrical stimulation (tRNS) of the human brain is a non-invasive technique that can be employed to increase the excitability of the cerebral cortex; however, the physiological mechanisms remain unclear. Here we report for the first time the effects of short-term (250 ms) random noise electrical stimulation (RNS) on in-vitro acutely-isolated brain pyramidal neurons from the somatosensory and auditory cerebral cortex. We analyzed the correlation between the peak amplitude of the Na+ current and its latency for different levels of RNS. We found three groups of neurons. The first group exhibited a positive correlation, the second, a negative correlation, and the third group of neurons did not exhibit correlation. In the first group, both the peak amplitude of a TTX-sensitive Na+ current and its inverse of latency followed similar inverted U-like functions relative to the electrical RNS level. In this group, the RNS levels in which the maximal values of the inverted U-like functions occurred were the same. In the second group, the maximal values of the inverted U-like functions occurred at different levels. In the third group, only the peak amplitude of the Na+ current exhibited a clear inverted U-like function, but the inverse of the latency versus the electrical RNS, did not exhibit a clear inverted U-like function. A Hodgkin-Huxley neuron model reproduces our experimental results and shows that the observed behavior in the Na+ current could be due to the impact of RNS on the kinetics of activation and inactivation of the Na+ channels.
Collapse
Affiliation(s)
- Leonardo Remedios
- Facultad de Cs. Físico-Matemáticas, Av. San Claudio y 18 sur, Ciudad Universitaria, CP 72570, Puebla, Pue., Mexico
| | - Pedro Mabil
- Laboratorio de Neurofisiología Integrativa, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Jorge Flores-Hernández
- Laboratorio de Neuromodulación, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Oswaldo Torres-Ramírez
- Laboratorio de Neuromodulación, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Nayeli Huidobro
- Laboratorio de Neurofisiología Integrativa, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Gerardo Castro
- Laboratorio de Neurofisiología Integrativa, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico
| | - Lucia Cervantes
- Facultad de Cs. Físico-Matemáticas, Av. San Claudio y 18 sur, Ciudad Universitaria, CP 72570, Puebla, Pue., Mexico
| | - Jesus A Tapia
- Escuela de Biología, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
| | | | - Elias Manjarrez
- Laboratorio de Neurofisiología Integrativa, Instituto de Fisiología, 14 sur 6301, Col. San Manuel, C.P. 72570, Puebla, Pue., Mexico.
| |
Collapse
|
23
|
No Modulatory Effects when Stimulating the Right Inferior Frontal Gyrus with Continuous 6 Hz tACS and tRNS on Response Inhibition: A Behavioral Study. Neural Plast 2018; 2018:3156796. [PMID: 30425735 PMCID: PMC6218719 DOI: 10.1155/2018/3156796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022] Open
Abstract
Response inhibition is the cognitive process required to cancel an intended action. During that process, a “go” reaction is intercepted particularly by the right inferior frontal gyrus (rIFG) and presupplementary motor area (pre-SMA). After the commission of inhibition errors, theta activity (4–8 Hz) is related to the adaption processes. In this study, we intend to examine whether the boosting of theta activity by electrical stimulation over rIFG reduces the number of errors and the reaction times in a response inhibition task (Go/NoGo paradigm) during and after stimulation. 23 healthy right-handed adults participated in the study. In three separate sessions, theta tACS at 6 Hz, transcranial random noise (tRNS) as a second stimulation condition, and sham stimulation were applied for 20 minutes. Based on behavioral data, this study could not show any effects of 6 Hz tACS as well as full spectrum tRNS on response inhibition in any of the conditions. Since many findings support the relevance of the rIFG for response inhibition, this could mean that 6 Hz activity is not important for response inhibition in that structure. Reasons for our null findings could also lie in the stimulation parameters, such as the electrode montage or the stimulation frequency, which are discussed in this article in more detail. Sharing negative findings will have (1) positive impact on future research questions and study design and will improve (2) knowledge acquisition of noninvasive transcranial brain stimulation techniques.
Collapse
|
24
|
Rufener KS, Geyer U, Janitzky K, Heinze H, Zaehle T. Modulating auditory selective attention by non‐invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation. Eur J Neurosci 2018; 48:2301-2309. [DOI: 10.1111/ejn.14128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Katharina S. Rufener
- Department of NeurologyOtto‐von‐Guericke University Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
| | - Ulrike Geyer
- Department of NeurologyOtto‐von‐Guericke University Magdeburg Germany
| | | | - Hans‐Jochen Heinze
- Department of NeurologyOtto‐von‐Guericke University Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
| | - Tino Zaehle
- Department of NeurologyOtto‐von‐Guericke University Magdeburg Germany
- Center for Behavioral Brain Sciences Magdeburg Germany
| |
Collapse
|
25
|
Reed T, Cohen Kadosh R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherit Metab Dis 2018; 41:10.1007/s10545-018-0181-4. [PMID: 30006770 PMCID: PMC6326965 DOI: 10.1007/s10545-018-0181-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 11/29/2022]
Abstract
In this review, we describe transcranial electrical stimulation (tES) techniques currently being used in neuroscientific research, including transcranial direct current (tDCS), alternating current (tACS) and random noise (tRNS) stimulation techniques. We explain how these techniques are used and summarise the proposed mechanisms of action for each technique. We continue by describing how each method has been used to alter endogenous neuronal oscillations and connectivity between brain regions, and we conclude by highlighting the varying effects of stimulation and discussing the future direction of these stimulation techniques in research.
Collapse
Affiliation(s)
- Thomas Reed
- Department of Experimental Psychology, University of Oxford, New Richards Building, 71-73 Old Road, Oxford, OX3 7LA, UK.
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, New Richards Building, 71-73 Old Road, Oxford, OX3 7LA, UK
| |
Collapse
|
26
|
Prete G, D'Anselmo A, Tommasi L, Brancucci A. Modulation of the dichotic right ear advantage during bilateral but not unilateral transcranial random noise stimulation. Brain Cogn 2018; 123:81-88. [DOI: 10.1016/j.bandc.2018.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/28/2018] [Accepted: 03/09/2018] [Indexed: 10/17/2022]
|
27
|
Wöstmann M, Vosskuhl J, Obleser J, Herrmann CS. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul 2018; 11:752-758. [PMID: 29656907 DOI: 10.1016/j.brs.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spatial attention relatively increases the power of neural 10-Hz alpha oscillations in the hemisphere ipsilateral to attention, and decreases alpha power in the contralateral hemisphere. For gamma oscillations (>40 Hz), the opposite effect has been observed. The functional roles of lateralised oscillations for attention are currently unclear. HYPOTHESIS If lateralised oscillations are functionally relevant for attention, transcranial stimulation of alpha versus gamma oscillations in one hemisphere should differentially modulate the accuracy of spatial attention to the ipsi-versus contralateral side. METHODS 20 human participants performed a dichotic listening task under continuous transcranial alternating current stimulation (tACS, vs sham) at alpha (10 Hz) or gamma (47 Hz) frequency. On each trial, participants attended to four spoken numbers on the left or right ear, while ignoring numbers on the other ear. In order to stimulate a left temporo-parietal cortex region, which is known to show marked modulations of alpha power during auditory spatial attention, tACS (1 mA peak-to-peak amplitude) was applied at electrode positions TP7 and FC5 over the left hemisphere. RESULTS As predicted, unihemispheric alpha-tACS relatively decreased the recall of targets contralateral to stimulation, but increased recall of ipsilateral targets. Importantly, this spatial pattern of results was reversed for gamma-tACS. CONCLUSIONS Results provide a proof of concept that transcranially stimulated oscillations can enhance spatial attention and facilitate attentional selection of speech. Furthermore, opposite effects of alpha versus gamma stimulation support the view that states of high alpha are incommensurate with active neural processing as reflected by states of high gamma.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|