1
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Akyazı O, Korkmaz D, Cevher SC. Experimental Parkinson models and green chemistry approach. Behav Brain Res 2024; 471:115092. [PMID: 38844056 DOI: 10.1016/j.bbr.2024.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Collapse
Affiliation(s)
- Ozge Akyazı
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Dılara Korkmaz
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey
| | - Sule Coskun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
3
|
Zhang H, Yang J, Guo Y, Lü P, Gong X, Chen K, Li X, Tang M. Rotenone-induced PINK1/Parkin-mediated mitophagy: establishing a silkworm model for Parkinson's disease potential. Front Mol Neurosci 2024; 17:1359294. [PMID: 38706874 PMCID: PMC11066238 DOI: 10.3389/fnmol.2024.1359294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/22/2024] [Indexed: 05/07/2024] Open
Abstract
Parkinson's disease (PD), ranking as the second most prevalent neurodegenerative disorder globally, presents a pressing need for innovative animal models to deepen our understanding of its pathophysiology and explore potential therapeutic interventions. The development of such animal models plays a pivotal role in unraveling the complexities of PD and investigating promising treatment avenues. In this study, we employed transcriptome sequencing on BmN cells treated with 1 μg/ml rotenone, aiming to elucidate the underlying toxicological mechanisms. The investigation brought to light a significant reduction in mitochondrial membrane potential induced by rotenone, subsequently triggering mitophagy. Notably, the PTEN induced putative kinase 1 (PINK1)/Parkin pathway emerged as a key player in the cascade leading to rotenone-induced mitophagy. Furthermore, our exploration extended to silkworms exposed to 50 μg/ml rotenone, revealing distinctive motor dysfunction as well as inhibition of Tyrosine hydroxylase (TH) gene expression. These observed effects not only contribute valuable insights into the impact and intricate mechanisms of rotenone exposure on mitophagy but also provide robust scientific evidence supporting the utilization of rotenone in establishing a PD model in the silkworm. This comprehensive investigation not only enriches our understanding of the toxicological pathways triggered by rotenone but also highlights the potential of silkworms as a valuable model organism for PD research.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinyue Yang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Yinglu Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xun Gong
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiubin Li
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
4
|
Wal A, Wal P, Vig H, Samad A, Khandai M, Tyagi S. A Systematic Review of Various In-vivo Screening Models as well as the Mechanisms Involved in Parkinson's Disease Screening Procedures. Curr Rev Clin Exp Pharmacol 2024; 19:124-136. [PMID: 35796452 DOI: 10.2174/2772432817666220707101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Parkinson's disease is the second most common neurological ailment. It is also known that it affects practically all other brain components, although only gradually. Animal models are mostly used to test the efficacy of treatment against a specific enzyme and aid in creating a new drug dose. OBJECTIVE The purpose of this review is to highlight in vivo Parkinson's disease screening approaches, as well as the mechanism of action of each drug involved in Parkinson's disease development, and discuss the limitations of each model. In addition, it also sheds light on Parkinson's disease genetic models. METHODS The data for the publication was gathered from databases, such as PubMed, Bentham Science, Elsevier, Springer Nature, Wiley, and Research Gate, after a thorough examination of diverse research findings linked to Parkinson's disease and its screening models. RESULTS Each chemical or drug has a unique mechanism for causing disease, whether through the production of reactive oxygen species or the blockage of the dopamine receptor. Almost every disease symptom, whether physical or behavioral, is covered by each of the constructed models' unique set of indicators and symptoms. CONCLUSION Animal models are typically used to assess a medicine's activity against a specific enzyme and aid in the creation of a new drug dose. The process, restrictions, and mechanisms interfering with the screening, as well as the level of animal suffering, must all be thoroughly reviewed before any model for screening for Parkinson's disease can be implemented.
Collapse
Affiliation(s)
- Ankita Wal
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Himangi Vig
- Pranveer Singh Institute of Technology (Pharmacy), Kanpur, India
| | - Abdul Samad
- Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Sachin Tyagi
- Bharat Institute of Technology, School of Pharmacy, Meerut, Uttar Pradesh, India
| |
Collapse
|
5
|
Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21:422-433. [PMID: 33357211 PMCID: PMC8292858 DOI: 10.17305/bjbms.2020.5181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
Among the popular animal models of Parkinson's disease (PD) commonly used in research are those that employ neurotoxins, especially 1-methyl- 4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). This neurotoxin exerts it neurotoxicity by causing a barrage of insults, such as oxidative stress, mitochondrial apoptosis, inflammation, excitotoxicity, and formation of inclusion bodies acting singly and in concert, ultimately leading to dopaminergic neuronal damage in the substantia nigra pars compacta and striatum. The selective neurotoxicity induced by MPTP in the nigrostriatal dopaminergic neurons of the mouse brain has led to new perspectives on PD. For decades, the MPTP-induced mouse model of PD has been the gold standard in PD research even though it does not fully recapitulate PD symptomatology, but it does have the advantages of simplicity, practicability, affordability, and fewer ethical considerations and greater clinical correlation than those of other toxin models of PD. The model has rejuvenated PD research and opened new frontiers in the quest for more novel therapeutic and adjuvant agents for PD. Hence, this review summarizes the role of MPTP in producing Parkinson-like symptoms in mice and the experimental role of the MPTP-induced mouse model. We discussed recent developments of more promising PD therapeutics to enrich our existing knowledge about this neurotoxin using this model.
Collapse
Affiliation(s)
- Musa Mustapha
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
- Department of Human Anatomy, Faculty of Basic Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor (Darul Ehsan), Malaysia
| |
Collapse
|
6
|
Pütz SM, Kram J, Rauh E, Kaiser S, Toews R, Lueningschroer-Wang Y, Rieger D, Raabe T. Loss of p21-activated kinase Mbt/PAK4 causes Parkinson-like phenotypes in Drosophila. Dis Model Mech 2021; 14:dmm047811. [PMID: 34125184 PMCID: PMC8246267 DOI: 10.1242/dmm.047811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.
Collapse
Affiliation(s)
- Stephanie M. Pütz
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Jette Kram
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Elisa Rauh
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Sophie Kaiser
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Romy Toews
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Yi Lueningschroer-Wang
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| | - Thomas Raabe
- Medical Radiation and Cell Research, Biocenter, Am Hubland, University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
7
|
Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020. [DOI: 10.3390/ijms21176312
expr 858053618 + 832508766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
|
8
|
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia A, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6312. [PMID: 32878220 PMCID: PMC7504559 DOI: 10.3390/ijms21176312] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain;
- R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain
| | | | - Alejandro Lucia
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
- Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Petridi S, Middleton CA, Ugbode C, Fellgett A, Covill L, Elliott CJH. In Vivo Visual Screen for Dopaminergic Rab ↔ LRRK2-G2019S Interactions in Drosophila Discriminates Rab10 from Rab3. G3 (BETHESDA, MD.) 2020; 10:1903-1914. [PMID: 32321836 PMCID: PMC7263684 DOI: 10.1534/g3.120.401289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
LRRK2 mutations cause Parkinson's, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson's.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - C Adam Middleton
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Chris Ugbode
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Alison Fellgett
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Laura Covill
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Christopher J H Elliott
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| |
Collapse
|
10
|
Rhooms SK, Murari A, Goparaju NSV, Vilanueva M, Owusu-Ansah E. Insights from Drosophila on mitochondrial complex I. Cell Mol Life Sci 2020; 77:607-618. [PMID: 31485716 PMCID: PMC7289077 DOI: 10.1007/s00018-019-03293-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/28/2019] [Indexed: 12/26/2022]
Abstract
NADH:ubiquinone oxidoreductase, more commonly referred to as mitochondrial complex I (CI), is the largest discrete enzyme of the oxidative phosphorylation system (OXPHOS). It is localized to the mitochondrial inner membrane. CI oxidizes NADH generated from the tricarboxylic acid cycle to NAD+, in a series of redox reactions that culminates in the reduction of ubiquinone, and the transport of protons from the matrix across the inner membrane to the intermembrane space. The resulting proton-motive force is consumed by ATP synthase to generate ATP, or harnessed to transport ions, metabolites and proteins into the mitochondrion. CI is also a major source of reactive oxygen species. Accordingly, impaired CI function has been associated with a host of chronic metabolic and degenerative disorders such as diabetes, cardiomyopathy, Parkinson's disease (PD) and Leigh syndrome. Studies on Drosophila have contributed to our understanding of the multiple roles of CI in bioenergetics and organismal physiology. Here, we explore and discuss some of the studies on Drosophila that have informed our understanding of this complex and conclude with some of the open questions about CI that can be resolved by studies on Drosophila.
Collapse
Affiliation(s)
- Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Naga Sri Vidya Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Maximino Vilanueva
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, 10032, USA.
- The Robert N. Butler Columbia Aging Center, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Liu M, Yu S, Wang J, Qiao J, Liu Y, Wang S, Zhao Y. Ginseng protein protects against mitochondrial dysfunction and neurodegeneration by inducing mitochondrial unfolded protein response in Drosophila melanogaster PINK1 model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112213. [PMID: 31562951 DOI: 10.1016/j.jep.2019.112213] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Historical literature and pharmacological studies demonstrate that ginseng, one of the most popular herbal medicines in China, holds potential benefits for Parkinson's disease (PD). AIM OF THE STUDY Studies in Drosophila melanogaster (Dm) have highlighted mitochondrial dysfunction upon loss of PTEN-induced putative kinase 1 (PINK1) as a central mechanism of PD pathogenesis. Using PINK1B9 mutant Dm, we aimed to explore the therapeutic action of ginseng total protein (GTP) on PD and provide in-depth scientific interpretation about the traditional efficacy of ginseng. MATERIALS AND METHODS We first used gel chromatography to purify GTP and confirmed its molecular weight by SDS-PAGE. Effects of GTP on PINK1B9 mutants, which were supplied with standard diet from larvae to adult stages, were assayed in flies aged 3-6 (I), 10-15 (II), and 20-25 (III) days. Parkinson-like phenotypes were analyzed by evaluating lifespan, dopaminergic neurons, dopamine levels, and locomotor ability. Mitochondrial function was assessed by evaluating ATP production, respirometry, and mitochondrial DNA. In addition, reactive oxygen species were measured using dihydroethidium and 2',7'-dichlorodihydrofluorescein diacetate staining. PD-related oxidative stress was simulated by paraquat and rotenone, and mitochondrial membrane potential was measured using JC-10 reagent. Protein and mRNA expression was detected by Western blot and real-time quantitative reverse transcription polymerase chain reaction, respectively. RESULTS This study demonstrates for the first time that GTP treatment delays the onset of a Parkinson-like phenotype in PINK1B9 Dm, including prolongation of lifespan and rescue of climbing ability, as well as rescue of the progressive loss of a cluster of dopaminergic neurons in the protocerebral posterior lateral 1 region, which was accompanied by a significant increase of dopamine content in the brain. In addition, GTP notably reduced the penetrance of abnormal wing position, indicating a strong inhibitory effect on indirect flight muscle degeneration. We further showed that GTP could promote maintenance of mitochondrial function and protect mitochondria from PD-associated oxidative stress by activating the mitochondrial unfolded protein response (UPRmt). CONCLUSIONS GTP protected against mitochondrial dysfunction and neurodegeneration by inducing UPRmt in the Dm PINK1B9 model of PD. Our results suggest that GTP is a promising candidate for PD, and reveal a new mechanism by which ginseng is neuroprotective.
Collapse
Affiliation(s)
- Meichen Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Shiting Yu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Jiawen Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Juhui Qiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Siming Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
12
|
Dai C, Wang X, Wu Y, Xu Y, Zhuo S, Qi M, Ji W, Zhan L. Polarity Protein AF6 Controls Hepatic Glucose Homeostasis and Insulin Sensitivity by Modulating IRS1/AKT Insulin Pathway in an SHP2-Dependent Manner. Diabetes 2019; 68:1577-1590. [PMID: 31127058 DOI: 10.2337/db18-0695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Insulin resistance is a major contributing factor in the development of metabolic disease. Although numerous functions of the polarity protein AF6 (afadin and MLLT4) have been identified, a direct effect on insulin sensitivity has not been previously described. We show that AF6 is elevated in the liver tissues of dietary and genetic mouse models of diabetes. We generated liver-specific AF6 knockout mice and show that these animals exhibit enhanced insulin sensitivity and liver glycogen storage, whereas overexpression of AF6 in wild-type mice by adenovirus-expressing AF6 led to the opposite phenotype. Similar observations were obtained from in vitro studies. In addition, we discovered that AF6 directly regulates IRS1/AKT kinase-mediated insulin signaling through its interaction with Src homology 2 domain-containing phosphatase 2 (SHP2) and its regulation of SHP2's tyrosine phosphatase activity. Finally, we show that knockdown of hepatic AF6 ameliorates hyperglycemia and insulin resistance in high-fat diet-fed or db/db diabetic mice. These results demonstrate a novel function for hepatic AF6 in the regulation of insulin sensitivity, providing important insights about the metabolic role of AF6.
Collapse
Affiliation(s)
- Cheng Dai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyu Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyan Qi
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Ji
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Ni Y, Zhang H, Chai C, Peng B, Zhao A, Zhang J, Li L, Zhang C, Ma B, Bai H, Lim K, Huang W. Mitochondria-Targeted Two-Photon Fluorescent Photosensitizers for Cancer Cell Apoptosis via Spatial Selectability. Adv Healthc Mater 2019; 8:e1900212. [PMID: 31081268 DOI: 10.1002/adhm.201900212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Indexed: 12/14/2022]
Abstract
Organelle-targeted photosensitizers have been reported to be effective cell apoptosis agents. Mitochondria is recognized as an ideal target for cancer treatment due to its central role in oxidative metabolism and apoptosis. Meanwhile, two-photon (TP) fluorescence microscopy has become a powerful tool for fluorescence imaging in biological events based on its minimizing photodamage/photobleaching and intrinsic 3D resolution in deep tissues and in vivo. In this study, a series of novel mitochondrial-targeted TP fluorescent photosensitizers (TP-tracers) are designed, synthesized, and systematically investigated. These TP-tracers exhibit extraordinary anti-interference capability among different cations, anions, and amino acids as well as the insensitivity to the changes of pH and complex biological environments. TP-tracers are further used in fluorescence living cells, Drosophila brains, and zebrafish imaging with low cytotoxicity, excellent mitochondria-targeting, and TP properties. The results demonstrate efficient mitochondria-targeting cell selective apoptosis based on TP-activated cancer cells with highly single cell selectivity, and the pharmacokinetic study reveals that MitoY2 does not have accumulation in rats. It is believed that these molecules hold great potential in TP-related smart phototherapy.
Collapse
Affiliation(s)
- Yun Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) Nanjing 210009 P. R. China
| | - Hang Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) Nanjing 210009 P. R. China
| | - Chou Chai
- National Neuroscience Institute Singapore 308433 Singapore
| | - Bo Peng
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) Xi'an 710072 P. R. China
| | - Ang Zhao
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210023 P. R. China
| | - Jie Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210023 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) Nanjing 210009 P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) Nanjing 210009 P. R. China
| | - Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210023 P. R. China
| | - Hua Bai
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) Xi'an 710072 P. R. China
| | - Kah‐Leong Lim
- National Neuroscience Institute Singapore 308433 Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech) Nanjing 210009 P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU) Xi'an 710072 P. R. China
| |
Collapse
|
14
|
Doktór B, Damulewicz M, Pyza E. Overexpression of Mitochondrial Ligases Reverses Rotenone-Induced Effects in a Drosophila Model of Parkinson's Disease. Front Neurosci 2019; 13:94. [PMID: 30837828 PMCID: PMC6382686 DOI: 10.3389/fnins.2019.00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mul1 and Park are two major mitochondrial ligases responsible for mitophagy. Damaged mitochondria that cannot be removed are a source of an increased level of free radicals, which in turn can destructively affect other cell organelles as well as entire cells. One of the toxins that damages mitochondria is rotenone, a neurotoxin that after exposure displays symptoms typical of Parkinson’s disease. In the present study, we showed that overexpressing genes encoding mitochondrial ligases protects neurons during treatment with rotenone. Drosophila strains with overexpressed mul1 or park show a significantly reduced degeneration of dopaminergic neurons, as well as normal motor activity during exposure to rotenone. In the nervous system, rotenone affected synaptic proteins, including Synapsin, Synaptotagmin and Disk Large1, as well as the structure of synaptic vesicles, while high levels of Mul1 or Park suppressed degenerative events at synapses. We concluded that increased levels of mitochondrial ligases are neuroprotective and could be considered in developing new therapies for Parkinson’s disease.
Collapse
Affiliation(s)
- Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Harris G, Eschment M, Orozco SP, McCaffery JM, Maclennan R, Severin D, Leist M, Kleensang A, Pamies D, Maertens A, Hogberg HT, Freeman D, Kirkwood A, Hartung T, Smirnova L. Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Arch Toxicol 2018; 92:2587-2606. [PMID: 29955902 PMCID: PMC6063347 DOI: 10.1007/s00204-018-2250-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023]
Abstract
To date, most in vitro toxicity testing has focused on acute effects of compounds at high concentrations. This testing strategy does not reflect real-life exposures, which might contribute to long-term disease outcome. We used a 3D-human dopaminergic in vitro LUHMES cell line model to determine whether effects of short-term rotenone exposure (100 nM, 24 h) are permanent or reversible. A decrease in complex I activity, ATP, mitochondrial diameter, and neurite outgrowth were observed acutely. After compound removal, complex I activity was still inhibited; however, ATP levels were increased, cells were electrically active and aggregates restored neurite outgrowth integrity and mitochondrial morphology. We identified significant transcriptomic changes after 24 h which were not present 7 days after wash-out. Our results suggest that testing short-term exposures in vitro may capture many acute effects which cells can overcome, missing adaptive processes, and long-term mechanisms. In addition, to study cellular resilience, cells were re-exposed to rotenone after wash-out and recovery period. Pre-exposed cells maintained higher metabolic activity than controls and presented a different expression pattern in genes previously shown to be altered by rotenone. NEF2L2, ATF4, and EAAC1 were downregulated upon single hit on day 14, but unchanged in pre-exposed aggregates. DAT and CASP3 were only altered after re-exposure to rotenone, while TYMS and MLF1IP were downregulated in both single-exposed and pre-exposed aggregates. In summary, our study shows that a human cell-based 3D model can be used to assess cellular adaptation, resilience, and long-term mechanisms relevant to neurodegenerative research.
Collapse
Affiliation(s)
- Georgina Harris
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Melanie Eschment
- Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Perez Orozco
- The Integrated Imaging Center, Department of Biology, Engineering in Oncology Center and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - J Michael McCaffery
- The Integrated Imaging Center, Department of Biology, Engineering in Oncology Center and The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Daniel Severin
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marcel Leist
- Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andre Kleensang
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dana Freeman
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alfredo Kirkwood
- The Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Center for Alternatives to Animal Testing (CAAT) Europe, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Zeng XS, Geng WS, Jia JJ. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro 2018; 10:1759091418777438. [PMID: 29809058 DOI: 10.1177/1759091418777438if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative movement disorder. Pharmacological animal models are invaluable tools to study the pathological mechanisms of PD. Currently, invertebrate and vertebrate animal models have been developed by using several main neurotoxins, such as 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, paraquat, and rotenone. These models achieve to some extent to reproduce the key features of PD, including motor defects, progressive loss of dopaminergic neurons in substantia nigra pars compacta, and the formation of Lewy bodies. In this review, we will highlight the pathogenic mechanisms of those neurotoxins and summarize different neurotoxic animal models with the hope to help researchers choose among them accurately and to promote the development of modeling PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- 1 College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| | - Wen-Shuo Geng
- 1 College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| | - Jin-Jing Jia
- 1 College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| |
Collapse
|
17
|
Zeng XS, Geng WS, Jia JJ. Neurotoxin-Induced Animal Models of Parkinson Disease: Pathogenic Mechanism and Assessment. ASN Neuro 2018; 10:1759091418777438. [PMID: 29809058 PMCID: PMC5977437 DOI: 10.1177/1759091418777438] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative movement disorder. Pharmacological animal models are invaluable tools to study the pathological mechanisms of PD. Currently, invertebrate and vertebrate animal models have been developed by using several main neurotoxins, such as 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, paraquat, and rotenone. These models achieve to some extent to reproduce the key features of PD, including motor defects, progressive loss of dopaminergic neurons in substantia nigra pars compacta, and the formation of Lewy bodies. In this review, we will highlight the pathogenic mechanisms of those neurotoxins and summarize different neurotoxic animal models with the hope to help researchers choose among them accurately and to promote the development of modeling PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, China
| |
Collapse
|