1
|
Li J, Rouse SL, Matthews IR, Park Y, Eltawil Y, Sherr EH, Chan DK. Modulating the unfolded protein response with ISRIB mitigates cisplatin ototoxicity. Sci Rep 2024; 14:22382. [PMID: 39333235 PMCID: PMC11437005 DOI: 10.1038/s41598-024-70561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024] Open
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancy, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin, and UPR marker gene expression and cell death measured. Treatment with ISRIB (Integrated Stress Response InhIBitor), a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested for its ability to reduce apoptosis in HEK cells, hair-cell death in cochlear cultures, and hearing loss using an in vivo mouse model of cisplatin ototoxicity. Finally, to evaluate whether ISRIB might interfere with cisplatin chemoeffectiveness, we tested it in head and neck squamous cell carcinoma (HNSCC) cell-based assays of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact cisplatin's cytotoxic effects on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
Affiliation(s)
- Jiang Li
- Department of Neurology, UCSF, San Francisco, USA
| | - Stephanie L Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
- Department of Neurobiology, Harvard Medical School, Boston, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yesai Park
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA
| | - Elliott H Sherr
- Department of Neurology, UCSF, San Francisco, USA
- Department of Pediatrics, Institute of Human Genetics, Weill Institute for Neurosciences, UCSF, San Francisco, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco (UCSF), 513 Parnassus Ave, Rm 719, San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
3
|
Li J, Rouse SL, Matthews IR, Sherr EH, Chan DK. Modulating the Unfolded Protein Response with ISRIB Mitigates Cisplatin Ototoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562797. [PMID: 37905009 PMCID: PMC10614842 DOI: 10.1101/2023.10.17.562797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cisplatin is a commonly used chemotherapy agent with a nearly universal side effect of sensorineural hearing loss. The cellular mechanisms underlying cisplatin ototoxicity are poorly understood. Efforts in drug development to prevent or reverse cisplatin ototoxicity have largely focused on pathways of oxidative stress and apoptosis. An effective treatment for cisplatin ototoxicity, sodium thiosulfate (STS), while beneficial when used in standard risk hepatoblastoma, is associated with reduced survival in disseminated pediatric malignancies, highlighting the need for more specific drugs without potential tumor protective effects. The unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways have been shown to be involved in the pathogenesis of noise-induced hearing loss and cochlear synaptopathy in vivo, and these pathways have been implicated broadly in cisplatin cytotoxicity. This study sought to determine whether the UPR can be targeted to prevent cisplatin ototoxicity. Neonatal cochlear cultures and HEK cells were exposed to cisplatin and UPR-modulating drugs, and UPR marker gene expression and cell death measured. Treatment with ISRIB, a drug that activates eif2B and downregulates the pro-apoptotic PERK/CHOP pathway of the UPR, was tested in an in vivo mouse model of cisplatin ototoxicity and well as a head and neck squamous cell carcinoma (HNSCC) cell-based assay of cisplatin cytotoxicity. Cisplatin exhibited a biphasic, non-linear dose-response of cell death and apoptosis that correlated with different patterns of UPR marker gene expression in HEK cells and cochlear cultures. ISRIB treatment protected against cisplatin-induced hearing loss and hair-cell death, but did not impact the cytotoxic effects of cisplatin on HNSCC cell viability, unlike STS. These findings demonstrate that targeting the pro-apoptotic PERK/CHOP pathway with ISRIB can mitigate cisplatin ototoxicity without reducing anti-cancer cell effects, suggesting that this may be a viable strategy for drug development.
Collapse
|
4
|
Liu J, Zhu L, Bao Y, Du Z, Shi L, Hong X, Zou Z, Peng G. Injectable dexamethasone-loaded peptide hydrogel for therapy of radiation-induced ototoxicity by regulating the mTOR signaling pathway. J Control Release 2024; 365:729-743. [PMID: 38065412 DOI: 10.1016/j.jconrel.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Radiation-induced ototoxicity is associated with inflammation response and excessive reactive oxygen species in the cochlea. However, the effectiveness of many drugs in clinical settings is limited due to anatomical barriers in the inner ear and pharmacokinetic instability. To address this issue, we developed an injectable hydrogel called RADA32-HRN-dexamethasone (RHD). The RHD hydrogel possesses self-anti-inflammatory properties and can self-assemble into nanofibrous structures, ensuring controlled and sustained release of dexamethasone in the local region. Flow cytometry analysis revealed that the uptake of FITC-conjugated RHD gel by hair cells increased in a time-dependent manner. Compared to free dexamethasone solutions, dexamethasone-loaded RHD gel achieved a longer and more controlled release profile of dexamethasone. Additionally, RHD gel effectively protected against the inflammatory response, reduced excessive reactive oxygen species production, and reversed the decline in mitochondrial membrane potentials induced by ionizing radiation, leading to attenuation of apoptosis and DNA damage. Moreover, RHD gel promoted the recovery of outer hair cells and partially restored auditory function in mice exposed to ionizing radiation. These findings validated the protective effects of RHD gel against radiation-induced ototoxicity in both cell cultures and animal models. Furthermore, RHD gel enhanced the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which was inhibited by ionizing radiation, thereby promoting the survival of hair cells. Importantly, intratympanic injections of RHD gel exhibited excellent biosafety and do not interfere with the anti-tumor effects of radiotherapy. In summary, our study demonstrates the therapeutic potential of injectable dexamethasone-loaded RHD hydrogel for the treatment of radiation-induced hearing loss by regulating the mTOR signaling pathway.
Collapse
Affiliation(s)
- Jingyu Liu
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Lisheng Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yuqing Bao
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhouyuan Du
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Liangliang Shi
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hong
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China
| | - Zhenwei Zou
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| | - Gang Peng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China; Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Finding the balance: The elusive mechanisms underlying auditory hair cell mitochondrial biogenesis and mitophagy. Hear Res 2023; 428:108664. [PMID: 36566644 DOI: 10.1016/j.heares.2022.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In all cell types, mitochondrial biogenesis is balanced with mitophagy to maintain a healthy mitochondrial pool that sustains specific energetic demands. Cell types that have a higher energetic burden, such as skeletal muscle cells and cardiomyocytes, will subsequently develop high mitochondrial volumes. In these cells, calcium influx during activity triggers cascades leading to activation of the co-transcriptional regulation factor PGC-1α, a master regulator of mitochondrial biogenesis, in a well-defined pathway. Despite the advantages in ATP production, high mitochondrial volumes might prove to be perilous, as it increases exposure to reactive oxygen species produced during oxidative phosphorylation. Mechanosensory hair cells are highly metabolically active cells, with high total mitochondrial volumes to meet that demand. However, the mechanisms leading to expansion and maintenance of the hair cell mitochondrial pool are not well defined. Calcium influx during mechanotransduction and synaptic transmission regulate hair cell mitochondria, leading to a possibility that similar to skeletal muscle and cardiomyocytes, intracellular calcium underlies the expansion of the hair cell mitochondrial volume. This review briefly summarizes the potential mechanisms underlying mitochondrial biogenesis in other cell types and in hair cells. We propose that hair cell mitochondrial biogenesis is primarily product of cellular differentiation rather than calcium influx, and that the hair cell high mitochondrial volume renders them more susceptible to reactive oxygen species increased by calcium flux than other cell types.
Collapse
|
6
|
Li Q, Wang L, Ji D, Yu W, Zhang Y, Xiang Y, Zhou C, Wang L, Deng P, Pi H, Lu Y, Ma Q, He M, Zhang L, Yu Z, Deng A. Metformin attenuates cadmium-induced degeneration of spiral ganglion neuron via restoring autophagic flux in primary culture. J Inorg Biochem 2022; 234:111901. [PMID: 35716551 DOI: 10.1016/j.jinorgbio.2022.111901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Cadmium (Cd), a common environmental and occupational toxicant, is an important risk factor for hearing loss. After exposure, Cd accumulates in the inner ear and induces spiral ganglion neuron (SGN) degeneration; however, the underlying mechanisms are poorly understood. Dysfunctional autophagy has been implicated in many neurodegenerative diseases, including Cd-induced neurotoxicity. Metformin has been validated to confer not only anti-hyperglycaemic but also neuroprotective effects. However, the relationship between autophagy dysfunction, SGN degeneration, and the effect of metformin on Cd-induced SGN neurotoxicity has not yet been established. In this study, we demonstrate that metformin notably attenuates Cd-evoked SGN degeneration by restoring impaired autophagy flux, as evidenced by the suppression of Cd-induced elevation of autophagy markers microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and autophagy substrate protein p62 in degenerated SGN. Blockage of autophagy flux by chloroquine abolished metformin-induced neuroprotection against Cd-induced neurotoxicity in SGN. The results of this study reveal that autophagy dysfunction is an important component of Cd-induced SGN degeneration, and metformin may be a potential protective agent for attenuating SGN degeneration following Cd exposure.
Collapse
Affiliation(s)
- Qian Li
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liuqian Wang
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Di Ji
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Yu
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Zhang
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanghong Xiang
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinlong Ma
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mindi He
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Army Medical University (Third Military Medical University), Chongqing, China
| | - Anchun Deng
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
7
|
Cortada M, Levano S, Bodmer D. mTOR Signaling in the Inner Ear as Potential Target to Treat Hearing Loss. Int J Mol Sci 2021; 22:ijms22126368. [PMID: 34198685 PMCID: PMC8232255 DOI: 10.3390/ijms22126368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Hearing loss affects many people worldwide and occurs often as a result of age, ototoxic drugs and/or excessive noise exposure. With a growing number of elderly people, the number of people suffering from hearing loss will also increase in the future. Despite the high number of affected people, for most patients there is no curative therapy for hearing loss and hearing aids or cochlea implants remain the only option. Important treatment approaches for hearing loss include the development of regenerative therapies or the inhibition of cell death/promotion of cell survival pathways. The mammalian target of rapamycin (mTOR) pathway is a central regulator of cell growth, is involved in cell survival, and has been shown to be implicated in many age-related diseases. In the inner ear, mTOR signaling has also started to gain attention recently. In this review, we will emphasize recent discoveries of mTOR signaling in the inner ear and discuss implications for possible treatments for hearing restoration.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.C.); (S.L.)
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Petersgraben 4, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-328-76-03
| |
Collapse
|
8
|
Chen SQ, Li JQ, Wang XQ, Lei WJ, Li H, Wan J, Hu Z, Zou YW, Wu XY, Niu HX. EZH2-inhibitor DZNep enhances apoptosis of renal tubular epithelial cells in presence and absence of cisplatin. Cell Div 2020; 15:8. [PMID: 32508971 PMCID: PMC7249628 DOI: 10.1186/s13008-020-00064-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/29/2020] [Indexed: 01/16/2023] Open
Abstract
Background The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and induces the trimethylation of histone H3 lysine 27 (H3K27me3) in the promoter of many key genes; EZH2 acts as a transcriptional repressor and is an epigenetic regulator for several cancers. However, the role of EZH2 in nonneoplastic diseases, such as kidney diseases, is unknown and has been investigated. Materials and method NRK-52E cells were treated with DZNep, a potent inhibitor of EZH2, with different concentrations and for different times to evaluate the apoptosis level of NRK-52E cells by Western blot and Flow cytometry analysis. The binding of EZH2 to the Deptor promoter was determined by ChIP assay. Results The inhibition of EZH2 with 3-deazaneplanocin A (DZNep), a specific inhibitor of EZH2, led to the apoptosis of NRK-52E cells and the inhibition of mTORC1 and mTORC2 activity. A ChIP assay demonstrated that EZH2 bound the promoter region of Deptor, an endogenous inhibitor of mTORC1 and mTORC2, and regulated the transcription of Deptor by modulating H3K27me3 in its promoter region. Further experiments were performed to examine the effects of EZH2 inhibition on cisplatin-induced injured cells. Cisplatin induced the activation of mTORC1 and mTORC2 and apoptosis in NRK-52E cells, and DZNep inhibited mTORC1 and mTORC2 activity and aggravated cell apoptosis. Conclusions These data suggested that EZH2 inhibition increased the transcription of Deptor by modifying H3K27me3 in its promoter region, subsequently inhibited mTORC1 and mTORC2 activities, downregulated the expression of apoptosis suppressor genes, and finally led to apoptosis in renal tubular cells. The inhibition of EZH2 aggravated the cisplatin-induced injury in renal tubular cells by inactivating the mTOR complexes. The present study provides new insight into renal protection and suggests that EZH2 might be a target.
Collapse
Affiliation(s)
- Si-Qi Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China.,Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangzhou Ave 1838, Guangzhou, 510515 People's Republic of China
| | - Jia-Qi Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Xiao-Qiao Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Wen-Jing Lei
- Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangzhou Ave 1838, Guangzhou, 510515 People's Republic of China
| | - Hao Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangzhou Ave 1838, Guangzhou, 510515 People's Republic of China
| | - Jiao Wan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangzhou Ave 1838, Guangzhou, 510515 People's Republic of China
| | - Zheng Hu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, North Guangzhou Ave 1838, Guangzhou, 510515 People's Republic of China
| | - Yao-Wei Zou
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Xiao-Yu Wu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| | - Hong-Xin Niu
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282 China
| |
Collapse
|
9
|
Ogier JM, Burt RA, Drury HR, Lim R, Nayagam BA. Organotypic Culture of Neonatal Murine Inner Ear Explants. Front Cell Neurosci 2019; 13:170. [PMID: 31130846 PMCID: PMC6509234 DOI: 10.3389/fncel.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.
Collapse
Affiliation(s)
- Jacqueline M. Ogier
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel A. Burt
- Department of Genetics, The Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Department of Genetics, The University of Melbourne, Parkville, VIC, Australia
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
- The Bionics Institute, East Melbourne, VIC, Australia
| |
Collapse
|
10
|
Necroptosis and Apoptosis Contribute to Cisplatin and Aminoglycoside Ototoxicity. J Neurosci 2019; 39:2951-2964. [PMID: 30733218 DOI: 10.1523/jneurosci.1384-18.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Ototoxic side effects of cisplatin and aminoglycosides have been extensively studied, but no therapy is available to date. Sensory hair cells, upon exposure to cisplatin or aminoglycosides, undergo apoptotic and necrotic cell death. Blocking these cell death pathways has therapeutic potential in theory, but incomplete protection and lack of therapeutic targets in the case of necrosis, has hampered the development of clinically applicable drugs. Over the past decade, a novel form of necrosis, termed necroptosis, was established as an alternative cell death pathway. Necroptosis is distinguished from passive necrotic cell death, in that it follows a cellular program, involving the receptor-interacting protein kinase (RIPK) 1 and RIPK3. In this study, we used pharmacological and genetic interventions in the mouse to test the relative contributions of necroptosis and caspase-8-mediated apoptosis toward cisplatin and aminoglycoside ototoxicity. We find that ex vivo, only apoptosis contributes to cisplatin and aminoglycoside ototoxicity, while in vivo, necroptosis as well as apoptosis are involved in both sexes. Inhibition of necroptosis and apoptosis using pharmacological compounds is thus a viable strategy to ameliorate aminoglycoside and cisplatin ototoxicity.SIGNIFICANCE STATEMENT The clinical application of cisplatin and aminoglycosides is limited due to ototoxic side effects. Here, using pharmaceutical and genetic intervention, we present evidence that two types of programmed cell death, apoptosis and necroptosis, contribute to aminoglycoside and cisplatin ototoxicity. Key molecular factors mediating necroptosis are well characterized and druggable, presenting new avenues for pharmaceutical intervention.
Collapse
|
11
|
Quinoxaline protects zebrafish lateral line hair cells from cisplatin and aminoglycosides damage. Sci Rep 2018; 8:15119. [PMID: 30310154 PMCID: PMC6181994 DOI: 10.1038/s41598-018-33520-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023] Open
Abstract
Hair cell (HC) death is the leading cause of hearing and balance disorders in humans. It can be triggered by multiple insults, including noise, aging, and treatment with certain therapeutic drugs. As society becomes more technologically advanced, the source of noise pollution and the use of drugs with ototoxic side effects are rapidly increasing, posing a threat to our hearing health. Although the underlying mechanism by which ototoxins affect auditory function varies, they share common intracellular byproducts, particularly generation of reactive oxygen species. Here, we described the therapeutic effect of the heterocyclic compound quinoxaline (Qx) against ototoxic insults in zebrafish HCs. Animals incubated with Qx were protected against the deleterious effects of cisplatin and gentamicin, and partially against neomycin. In the presence of Qx, there was a reduction in the number of TUNEL-positive HCs. Since Qx did not block the mechanotransduction channels, based on FM1-43 uptake and microphonic potentials, this implies that Qx’s otoprotective effect is at the intracellular level. Together, these results unravel a novel therapeutic role for Qx as an otoprotective drug against the deleterious side effects of cisplatin and aminoglycosides, offering an alternative option for patients treated with these compounds.
Collapse
|