1
|
Kurabi A, Pak K, Lee EJ, Ryan AF. Combinatorial protection of cochlear hair cells: not too little but not too much. Front Cell Neurosci 2024; 18:1458720. [PMID: 39355176 PMCID: PMC11442228 DOI: 10.3389/fncel.2024.1458720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background A number of drugs are toxic to the cochlear sensory cells known as hair cells (HCs), resulting in hearing loss. Treatment with survival-promoting growth factors, antioxidants, and inhibitors of cell death pathways or proteinases have been shown to reduce HC damage in in vivo and/or in vitro animal models. Conversely, translation to humans has often been disappointing. This may be due to the complexity of intracellular damage processes. We hypothesized that combining treatments targeting different cellular processes would be more effective. Methods Using an in vitro model of gentamicin ototoxicity for murine cochlear hair cells, we screened all 56 possible combinations of inhibitors targeting five different cell damage mechanisms, plus the activator of one cell survival pathway, each of which have been shown to be singly effective in preventing HC loss in experimental studies. A high dose of gentamicin (200 μM) was used over three days in culture. All compounds were added at a dosage below that required for significant protection in the assay, and only this single dose was then employed. This was done so that we could more easily detect interactive, as opposed to additive, effects. Results Increasing protection of hair cells was observed as combinations of compounds were increased from two to four factors, although not all combinations were equally protective. The optimal combination of four compounds consisted of an anti-oxidant, an apoptosis inhibitor, an autophagy inhibitor and a protective growth factor. Increasing the number of factors to five or six resulted in decreased protection. Conclusion The results support the hypothesis that targeting multiple cellular damage or survival pathways provides more an effective hair cell protection approach. The results help to identify critical interactions among the cellular processes that operate in gentamicin ototoxicity. They also suggest that inhibiting too many biological processes impairs functions critical to HC survival, resulting in decreased protection.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
| | - Kwang Pak
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
| | - Eun Jung Lee
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
- Department of Otorhinolaryngology-Head & Neck Surgery, Jeonbuk National University School of Medicine, Jeonju, Republic of Korea
| | - Allen F. Ryan
- Department of Otolaryngology, University of California San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
- San Diego Veterans Administration Healthcare System, La Jolla, CA, United States
| |
Collapse
|
2
|
Vijayakumar S, DiGuiseppi JA, Dabestani PJ, Ryan WG, Quevedo RV, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud ARA, Lovas S, McCullumsmith RE, Zallocchi M, Zuo J. In silico transcriptome screens identify epidermal growth factor receptor inhibitors as therapeutics for noise-induced hearing loss. SCIENCE ADVANCES 2024; 10:eadk2299. [PMID: 38896614 PMCID: PMC11186505 DOI: 10.1126/sciadv.adk2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Noise-induced hearing loss (NIHL) is a common sensorineural hearing impairment that lacks U.S. Food and Drug Administration-approved drugs. To fill the gap in effective screening models, we used an in silico transcriptome-based drug screening approach, identifying 22 biological pathways and 64 potential small molecule treatments for NIHL. Two of these, afatinib and zorifertinib [epidermal growth factor receptor (EGFR) inhibitors], showed efficacy in zebrafish and mouse models. Further tests with EGFR knockout mice and EGF-morpholino zebrafish confirmed their protective role against NIHL. Molecular studies in mice highlighted EGFR's crucial involvement in NIHL and the protective effect of zorifertinib. When given orally, zorifertinib was found in the perilymph with favorable pharmacokinetics. In addition, zorifertinib combined with AZD5438 (a cyclin-dependent kinase 2 inhibitor) synergistically prevented NIHL in zebrafish. Our results underscore the potential for in silico transcriptome-based drug screening in diseases lacking efficient models and suggest EGFR inhibitors as potential treatments for NIHL, meriting clinical trials.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joseph A. DiGuiseppi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Parinaz Jila Dabestani
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - William G. Ryan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | - Rene Vielman Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jack Diers
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Shu Tu
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jonathan Fleegel
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Cassidy Nguyen
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Lauren M. Rhoda
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ali Sajid Imami
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
| | | | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Robert E. McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH 43614, USA.
- Neurosciences Institute, ProMedica, Toledo, OH 43606, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Ting Therapeutics, University of California San Diego, 9310 Athena Circle, San Diego, CA 92037, USA
| |
Collapse
|
3
|
Yao Z, Xiao Y, Li W, Kong S, Tu H, Guo S, Liu Z, Ma L, Qiao R, Wang S, Chang M, Zhao X, Zhang Y, Xu L, Sun D, Fu X. FDA-Approved Tedizolid Phosphate Prevents Cisplatin-Induced Hearing Loss Without Decreasing Its Anti-tumor Effect. J Assoc Res Otolaryngol 2024; 25:259-275. [PMID: 38622383 DOI: 10.1007/s10162-024-00945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.
Collapse
Affiliation(s)
- Zhiwei Yao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Yu Xiao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| | - Shuhui Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Hailong Tu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Lushun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Ruifeng Qiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Xiaoxu Zhao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Zhang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China.
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
4
|
Vijayakumar S, DiGuiseppi JA, Dabestani J, Ryan WG, Vielman Quevedo R, Li Y, Diers J, Tu S, Fleegel J, Nguyen C, Rhoda LM, Imami AS, Hamoud AAR, Lovas S, McCullumsmith R, Zallocchi M, Zuo J. In Silico Transcriptome-based Screens Identify Epidermal Growth Factor Receptor Inhibitors as Therapeutics for Noise-induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544128. [PMID: 37333346 PMCID: PMC10274759 DOI: 10.1101/2023.06.07.544128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Noise-Induced Hearing Loss (NIHL) represents a widespread disease for which no therapeutics have been approved by the Food and Drug Administration (FDA). Addressing the conspicuous void of efficacious in vitro or animal models for high throughput pharmacological screening, we utilized an in silico transcriptome-oriented drug screening strategy, unveiling 22 biological pathways and 64 promising small molecule candidates for NIHL protection. Afatinib and zorifertinib, both inhibitors of the Epidermal Growth Factor Receptor (EGFR), were validated for their protective efficacy against NIHL in experimental zebrafish and murine models. This protective effect was further confirmed with EGFR conditional knockout mice and EGF knockdown zebrafish, both demonstrating protection against NIHL. Molecular analysis using Western blot and kinome signaling arrays on adult mouse cochlear lysates unveiled the intricate involvement of several signaling pathways, with particular emphasis on EGFR and its downstream pathways being modulated by noise exposure and Zorifertinib treatment. Administered orally, Zorifertinib was successfully detected in the perilymph fluid of the inner ear in mice with favorable pharmacokinetic attributes. Zorifertinib, in conjunction with AZD5438 - a potent inhibitor of cyclin dependent kinase 2 - produced synergistic protection against NIHL in the zebrafish model. Collectively, our findings underscore the potential application of in silico transcriptome-based drug screening for diseases bereft of efficient screening models and posit EGFR inhibitors as promising therapeutic agents warranting clinical exploration for combatting NIHL. Highlights In silico transcriptome-based drug screens identify pathways and drugs against NIHL.EGFR signaling is activated by noise but reduced by zorifertinib in mouse cochleae.Afatinib, zorifertinib and EGFR knockout protect against NIHL in mice and zebrafish.Orally delivered zorifertinib has inner ear PK and synergizes with a CDK2 inhibitor.
Collapse
|
5
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
6
|
Kenyon EJ, Kirkwood NK, Kitcher SR, Goodyear RJ, Derudas M, Cantillon DM, Baxendale S, de la Vega de León A, Mahieu VN, Osgood RT, Wilson CD, Bull JC, Waddell SJ, Whitfield TT, Ward SE, Kros CJ, Richardson GP. Identification of a series of hair-cell MET channel blockers that protect against aminoglycoside-induced ototoxicity. JCI Insight 2021; 6:145704. [PMID: 33735112 PMCID: PMC8133782 DOI: 10.1172/jci.insight.145704] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.
Collapse
Affiliation(s)
| | | | | | | | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, and
| | - Daire M. Cantillon
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | | | | | | | | | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon J. Waddell
- Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
7
|
Li M, Liu J, Liu D, Duan X, Zhang Q, Wang D, Zheng Q, Bai X, Lu Z. Naringin attenuates cisplatin- and aminoglycoside-induced hair cell injury in the zebrafish lateral line via multiple pathways. J Cell Mol Med 2020; 25:975-989. [PMID: 33274582 PMCID: PMC7812295 DOI: 10.1111/jcmm.16158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Exposure to ototoxic drugs is a significant cause of hearing loss that affects about 30 thousand children with potentially serious physical, social and psychological dysfunctions every year. Cisplatin (CP) and aminoglycosides are effective antineoplastic or bactericidal drugs, and their application has a high probability of ototoxicity which results from the death of hair cells (HCs). Here, we describe the therapeutic effect of the flavonoid compound naringin (Nar) against ototoxic effects of cisplatin and aminoglycosides include gentamicin (GM) and neomycin (Neo) in zebrafish HCs. Animals incubated with Nar (100‐400 μmol/L) were protected against the pernicious effects of CP (150‐250 μmol/L), GM (50‐150 μmol/L) and Neo (50‐150 μmol/L). We also provide evidence for the potential mechanism of Nar against ototoxicity, including antioxidation, anti‐apoptosis, promoting proliferation and hair cell regeneration. We found that mRNA levels of the apoptotic‐ and pyroptosis‐related genes are regulated by Nar both in vivo and in vitro. Finally, by proving that Nar does not affect the anti‐tumour efficacy of CP and antibacterial activity of aminoglycosides in vitro, we highlight its value in clinical application. In conclusion, these results unravel a novel therapeutic role for Nar as an otoprotective drug against the adverse effects of CP and aminoglycosides.
Collapse
Affiliation(s)
- Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingwen Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- College of Life Science, Nantong University, Nantong, China
| | - Xuchu Duan
- College of Life Science, Nantong University, Nantong, China
| | - Qingchen Zhang
- Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Wang
- Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Orthopaedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|