1
|
Noguer-Calabús I, Schäble S, Dören J, Kalenscher T. Oxytocin effects on socially transmitted food preferences are moderated by familiarity between rats. Psychopharmacology (Berl) 2025; 242:361-372. [PMID: 39317769 PMCID: PMC11775072 DOI: 10.1007/s00213-024-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
RATIONALE In the socially transmitted food preference (STFP) paradigm, rats change their preference for food rewards after socially interacting with a conspecific who has been fed with the originally non-preferred food. Here, we asked if oxytocin (OXT), a neuropeptide known for its role in social affiliation and social behavior, plays a role in STFP. Since OXT's influences on social behavior can be familiarity-dependent, we further asked if OXT effects on STFP are moderated by the familiarity between rats. OBJECTIVES Does OXT modulate rats' socially transmitted food choices in a familiarity-dependent way. METHODS We systemically injected either vehicle, low-dose (0.25 mg/kg) of OXT, or large-dose (1.0 mg/kg) of OXT before social interaction with either a familiar cagemate (in-group) or an unfamiliar conspecific from a different cage (out-group). RESULTS We found an intergroup bias in STFP: vehicle-treated rats showed larger socially transmitted changes in food preference in the out-group than the in-group condition. OXT modulated STFP in a familiarity-dependent way: OXT prevented the increase in the consumption of the non-preferred food in the out-group, and decreased the consumption of the preferred food in the in-group. These effects were dose-dependent and observed under acute OXT action, but also on the subsequent day when acute OXT effects dissipated, suggesting long-lasting social learning effects of OXT. Additional analyses suggest that the familiarity and dose-dependent effects of OXT on STFP cannot be attributed to OXT's anorexic actions or differences in the duration of the social interactions. CONCLUSIONS OXT modulates STFP in a familiarity-dependent way.
Collapse
Affiliation(s)
- Irina Noguer-Calabús
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Sandra Schäble
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - José Dören
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Belge JB, Geenen V, Salado AL, Kaschten B, Martin D, Scantamburlo G. Case report: Non-linear evolution of oxytocin informs YBOCS changes post-DBS of the bed nucleus of the stria terminalis for treatment resistant OCD. Front Psychiatry 2025; 15:1473797. [PMID: 39931193 PMCID: PMC11807955 DOI: 10.3389/fpsyt.2024.1473797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is a challenging neuropsychiatric condition with a subset of patients remaining refractory to conventional treatments. Deep brain stimulation (DBS) of the bed nucleus of the stria terminalis (BNST) has shown promise for severe, treatment-resistant OCD. This case report examines the relationship between plasma oxytocin levels and OCD symptom severity following BNST-DBS. Methods A 36-year-old patient with long-standing, treatment-resistant OCD underwent stereotactic implantation of DBS electrodes at the BNST. Postoperative assessments included OCD symptom severity using the Yale-Brown Obsessive Compulsive Scale (YBOCS) and plasma oxytocin levels, measured at 12 time points over three years. Longitudinal and correlational analyses were performed using linear and polynomial regression models. Results Non-linear trends in oxytocin levels were identified, with polynomial regression revealing a significant quadratic term, suggesting a parabolic trend. Strong positive correlations were found between changes in oxytocin levels and YBOCS total, obsession, and compulsion scores. Conclusion The findings suggest a significant non-linear evolution of oxytocin levels and a positive correlation with OCD symptom changes following BNST-DBS. Oxytocin levels could serve as a biomarker for DBS efficacy if this finding is replicated in larger studies.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Liège University Hospital, University of Liège, Liège, Belgium
- Psycho-Neuro-Endocrinology Unit, University of Liège, Liège, Belgium
| | - Vincent Geenen
- GIGA Research Institute, GIGA-Immunity, Inflammation and Infection (GIGA-I3), University of Liège, Liège, Belgium
| | - Anne L. Salado
- Department of Neurosurgery, Liège University Hospital, University of Liège, Liège, Belgium
| | - Bruno Kaschten
- Department of Neurosurgery, Liège University Hospital, University of Liège, Liège, Belgium
| | - Didier Martin
- Department of Neurosurgery, Liège University Hospital, University of Liège, Liège, Belgium
| | - Gabrielle Scantamburlo
- Department of Psychiatry, Liège University Hospital, University of Liège, Liège, Belgium
- Psycho-Neuro-Endocrinology Unit, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Sarahian N, Khodagholi F, Valian N, Ahmadiani A. Interplay of MeCP2/REST/Synaptophysin-BDNF and intranasal oxytocin influence on Aβ-induced memory and cognitive impairments. Behav Brain Res 2025; 476:115235. [PMID: 39236931 DOI: 10.1016/j.bbr.2024.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is linked to the accumulation of Aβ, increased tau hyperphosphorylation, persistent neuroinflammation, and a decline in neurotrophic factors, neurogenesis, and synaptic plasticity. Oxytocin (OT) has a significant impact on memory and learning. We examined the influence of intranasal (IN) OT on synaptic plasticity, neurogenesis, histone acetylation, and spatial and cognitive memories in rats. METHODS Aβ25-35 (5 µg/2.5 µl) was administered bilaterally in the CA1 of male Wistar rats for four consecutive days. After seven days of recovery, OT (2 µg/µl, 10 µl in each nostril) was administered IN for seven consecutive days. Working, spatial, and cognitive memories, and gene expression of neurogenesis- and synaptic plasticity-involved factors were measured in the hippocampus. Histone acetylation (H3K9 and H4K8) was also measured using western blotting. RESULTS IN administration of OT significantly improved working and spatial memory impairment induced by Aβ and increased the factors involved in synaptic plasticity (MeCP2, REST, synaptophysin, and BDNF) and neurogenesis (Ki67 and DCX). We also found an enhancement in the levels of H3K9ac and H4K8ac following OT administration. CONCLUSION These findings indicated that IN OT could improve hippocampus-related behaviors by increasing synaptic plasticity, stimulating neurogenesis, and chromatin plasticity.
Collapse
Affiliation(s)
- Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Tam LM, Hocker K, David T, Williams EM. The Influence of Social Dynamics on Biological Aging and the Health of Historically Marginalized Populations: A Biopsychosocial Model for Health Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:554. [PMID: 38791769 PMCID: PMC11121718 DOI: 10.3390/ijerph21050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Historically marginalized populations are susceptible to social isolation resulting from their unique social dynamics; thus, they incur a higher risk of developing chronic diseases across the course of life. Research has suggested that the cumulative effect of aging trajectories per se, across the lifespan, determines later-in-life disease risks. Emerging evidence has shown the biopsychosocial effects of social stress and social support on one's wellbeing in terms of inflammation. Built upon previous multidisciplinary findings, here, we provide an overarching model that explains how the social dynamics of marginalized populations shape their rate of biological aging through the inflammatory process. Under the framework of social stress and social support theories, this model aims to facilitate our understanding of the biopsychosocial impacts of social dynamics on the wellbeing of historically marginalized individuals, with a special emphasis on biological aging. We leverage this model to advance our mechanistic understanding of the health disparity observed in historically marginalized populations and inform future remediation strategies.
Collapse
Affiliation(s)
- Lok Ming Tam
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA;
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Kristin Hocker
- School of Nursing, University of Rochester, Rochester, NY 14642, USA;
| | - Tamala David
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Nursing, State University of New York Brockport, Brockport, NY 14420, USA
| | - Edith Marie Williams
- Office of Health Equity Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Center for Community Health and Prevention, University of Rochester, 46 Prince St Ste 1001, Rochester, NY 14607, USA
| |
Collapse
|
5
|
Castagno AN, Spaiardi P, Trucco A, Maniezzi C, Raffin F, Mancini M, Nicois A, Cazzola J, Pedrinazzi M, Del Papa P, Pisani A, Talpo F, Biella GR. Oxytocin Modifies the Excitability and the Action Potential Shape of the Hippocampal CA1 GABAergic Interneurons. Int J Mol Sci 2024; 25:2613. [PMID: 38473860 DOI: 10.3390/ijms25052613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.
Collapse
Affiliation(s)
- Antonio Nicolas Castagno
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| | - Arianna Trucco
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alessandro Nicois
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche (CNR), 80078 Pozzuoli, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Jessica Cazzola
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Matilda Pedrinazzi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paola Del Papa
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesca Talpo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
- INFN-Pavia Section, 27100 Pavia, Italy
| |
Collapse
|
6
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
7
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
8
|
Oxytocin-Modulated Ion Channel Ensemble Controls Depolarization, Integration and Burst Firing in CA2 Pyramidal Neurons. J Neurosci 2022; 42:7707-7720. [PMID: 36414006 PMCID: PMC9581561 DOI: 10.1523/jneurosci.0921-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) and OXT receptor (OXTR)-mediated signaling control excitability, firing patterns, and plasticity of hippocampal CA2 pyramidal neurons, which are pivotal in generation of brain oscillations and social memory. Nonetheless, the ionic mechanisms underlying OXTR-induced effects in CA2 neurons are not fully understood. Using slice physiology in a reporter mouse line and interleaved current-clamp and voltage-clamp experiments, we systematically identified the ion channels modulated by OXT signaling in CA2 pyramidal cells (PYRs) in mice of both sexes and explored how changes in channel conductance support altered electrical activity. Activation of OXTRs inhibits an outward potassium current mediated by inward rectifier potassium channels (I Kir) and thus favoring membrane depolarization. Concomitantly, OXT signaling also diminishes inward current mediated by hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels (I h), providing a hyperpolarizing drive. The combined reduction in both I Kir and I h synergistically elevate the membrane resistance and favor dendritic integration while the membrane potential is restrained from quickly depolarizing from rest. As a result, the responsiveness of CA2 PYRs to synaptic inputs is highly sharpened during OXTR activation. Unexpectedly, OXTR signaling also strongly enhances a tetrodotoxin-resistant (TTX-R), voltage-gated sodium current that helps drive the membrane potential to spike threshold and thus promote rhythmic firing. This novel array of OXTR-stimulated ionic mechanisms operates in close coordination and underpins OXT-induced burst firing, a key step in CA2 PYRs' contribution to hippocampal information processing and broader influence on brain circuitry. Our study deepens our understanding of underpinnings of OXT-promoted social memory and general neuropeptidergic control of cognitive states.SIGNIFICANCE STATEMENT Oxytocin (OXT) plays key roles in reproduction, parenting and social and emotional behavior, and deficiency in OXT receptor (OXTR) signaling may contribute to neuropsychiatric disorders. We identified a novel array of OXTR-modulated ion channels that operate in close coordination to retune hippocampal CA2 pyramidal neurons, enhancing responsiveness to synaptic inputs and sculpting output. OXTR signaling inhibits both potassium conductance (I Kir) and mixed cation conductance (I h), engaging opposing influences on membrane potential, stabilizing it while synergistically elevating membrane resistance and electrotonic spread. OXT signaling also facilitates a tetrodotoxin-resistant (TTX-R) Na+ current, not previously described in hippocampus (HP), engaged on further depolarization. This TTX-R current lowers the spike threshold and supports rhythmic depolarization and burst firing, a potent driver of downstream circuitry.
Collapse
|
9
|
Khazen T, Narattil NR, Ferreira G, Maroun M. Hippocampal oxytocin is involved in spatial memory and synaptic plasticity deficits following acute high-fat diet intake in juvenile rats. Cereb Cortex 2022; 33:3934-3943. [PMID: 35989314 DOI: 10.1093/cercor/bhac317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/12/2022] Open
Abstract
The hippocampus undergoes maturation during juvenility, a period of increased vulnerability to environmental challenges. We recently found that acute high-fat diet (HFD) impaired hippocampal long-term potentiation (LTP) and hippocampal-dependent spatial memory. We also recently reported that similar HFD exposure affected prefrontal plasticity and social memory through decreased oxytocin levels in the prefrontal cortex. In the present study, we therefore evaluated whether hippocampal oxytocin levels are also affected by juvenile HFD and could mediate deficits of hippocampal LTP and spatial memory. We found that postweaning HFD decreased oxytocin levels in the CA1 of the dorsal hippocampus. Interestingly, systemic injection of high, but not low, dose of oxytocin rescued HFD-induced LTP impairment in CA1. Moreover, deficits in long-term object location memory (OLM) were prevented by systemic injection of both high and low dose of oxytocin as well as by intra-CA1 infusion of oxytocin receptor agonist. Finally, we found that blocking oxytocin receptors in CA1 impaired long-term OLM in control-fed juvenile rats. These results suggest that acute HFD intake lowers oxytocin levels in the CA1 that lead to CA1 plasticity impairment and spatial memory deficits in juveniles. Further, these results provide the first evidence for the regulatory role of oxytocin in spatial memory.
Collapse
Affiliation(s)
- Tala Khazen
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Guillaume Ferreira
- University of Bordeaux, INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, 33076, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Spivak L, Levi A, Sloin HE, Someck S, Stark E. Deconvolution improves the detection and quantification of spike transmission gain from spike trains. Commun Biol 2022; 5:520. [PMID: 35641587 PMCID: PMC9156687 DOI: 10.1038/s42003-022-03450-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Accurate detection and quantification of spike transmission between neurons is essential for determining neural network mechanisms that govern cognitive functions. Using point process and conductance-based simulations, we found that existing methods for determining neuronal connectivity from spike times are highly affected by burst spiking activity, resulting in over- or underestimation of spike transmission. To improve performance, we developed a mathematical framework for decomposing the cross-correlation between two spike trains. We then devised a deconvolution-based algorithm for removing effects of second-order spike train statistics. Deconvolution removed the effect of burst spiking, improving the estimation of neuronal connectivity yielded by state-of-the-art methods. Application of deconvolution to neuronal data recorded from hippocampal region CA1 of freely-moving mice produced higher estimates of spike transmission, in particular when spike trains exhibited bursts. Deconvolution facilitates the precise construction of complex connectivity maps, opening the door to enhanced understanding of the neural mechanisms underlying brain function.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hadas E Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
11
|
Francesconi W, Berton F, Olivera-Pasilio V, Dabrowska J. Oxytocin excites BNST interneurons and inhibits BNST output neurons to the central amygdala. Neuropharmacology 2021; 192:108601. [PMID: 33971215 DOI: 10.1016/j.neuropharm.2021.108601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
The dorsolateral bed nucleus of the stria terminalis (BNSTDL) has high expression of oxytocin (OT) receptors (OTR), which were shown to facilitate cued fear. However, the role of OTR in the modulation of BNSTDL activity remains elusive. BNSTDL contains GABA-ergic neurons classified based on intrinsic membrane properties into three types. Using in vitro patch-clamp recordings in male rats, we demonstrate that OT selectively excites and increases spontaneous firing rate of Type I BNSTDL neurons. As a consequence, OT increases the frequency, but not amplitude, of spontaneous inhibitory post-synaptic currents (sIPSCs) selectively in Type II neurons, an effect abolished by OTR antagonist or tetrodotoxin, and reduces spontaneous firing rate in these neurons. These results suggest an indirect effect of OT in Type II neurons, which is mediated via OT-induced increase in firing of Type I interneurons. As Type II BNSTDL neurons were shown projecting to the central amygdala (CeA), we also recorded from retrogradely labeled BNST→CeA neurons and we show that OT increases the frequency of sIPSC in these Type II BNST→CeA output neurons. In contrast, in Type III neurons, OT reduces the amplitude, but not frequency, of both sIPSCs and evoked IPSCs via a postsynaptic mechanism without changing their intrinsic excitability. We present a model of fine-tuned modulation of BNSTDL activity by OT, which selectively excites BNSTDL interneurons and inhibits Type II BNST→CeA output neurons. These results suggest that OTR in the BNST might facilitate cued fear by inhibiting the BNST→CeA neurons.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Fulvia Berton
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
12
|
Abstract
Oxytocin regulates parturition, lactation, parental nurturing, and many other social behaviors in both sexes. The circuit mechanisms by which oxytocin modulates social behavior are receiving increasing attention. Here, we review recent studies on oxytocin modulation of neural circuit function and social behavior, largely enabled by new methods of monitoring and manipulating oxytocin or oxytocin receptor neurons in vivo. These studies indicate that oxytocin can enhance the salience of social stimuli and increase signal-to-noise ratios by modulating spiking and synaptic plasticity in the context of circuits and networks. We highlight oxytocin effects on social behavior in nontraditional organisms such as prairie voles and discuss opportunities to enhance the utility of these organisms for studying circuit-level modulation of social behaviors. We then discuss recent insights into oxytocin neuron activity during social interactions. We conclude by discussing some of the major questions and opportunities in the field ahead.
Collapse
Affiliation(s)
- Robert C Froemke
- Skirball Institute, Neuroscience Institute, and Departments of Otolaryngology and Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA; .,Center for Neural Science, New York University, New York, NY 10003, USA
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA.,Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
13
|
Wu Z, Xie C, Kuang H, Wu J, Chen X, Liu H, Liu T. Oxytocin mediates neuroprotection against hypoxic-ischemic injury in hippocampal CA1 neuron of neonatal rats. Neuropharmacology 2021; 187:108488. [PMID: 33556384 DOI: 10.1016/j.neuropharm.2021.108488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) is one of the most prevalent causes of death during the perinatal period. The lack of exposure to oxytocin is associated with NHIE-mediated severe brain injury. However, the underlying mechanism is not fully understood. This study combined immunohistochemistry with electrophysiological recordings of hippocampal CA1 neurons to investigate the role of oxytocin in an in vitro model of hypoxic-ischemic (HI) injury (oxygen and glucose deprivation, OGD) in postnatal day 7-10 rats. Immunohistochemical analysis showed that oxytocin largely reduced the relative intensity of TOPRO-3 staining following OGD in the hippocampal CA1 region. Whole-cell patch-clamp recording revealed that the OGD-induced onset time of anoxic depolarization (AD) was significantly delayed by oxytocin. This protective effect of oxytocin was blocked by pretreatment with [d(CH2)51, Tyr (Me)2, Thr4, Orn8, des-Gly-NH29] vasotocin (dVOT, an oxytocin receptor antagonist) or bicuculline (a GABAA receptor antagonist). Interestingly, oxytocin enhanced inhibitory postsynaptic currents in CA1 pyramidal neurons, which were abolished by tetrodotoxin or dVOT. In contrast, oxytocin had no effect on excitatory postsynaptic currents but induced an inward current in 86% of the pyramidal neurons tested. Taken together, these results demonstrate that oxytocin receptor signaling plays a critical role in attenuating neonatal neural death by facilitating GABAergic transmission, which may help to regulate the excitatory-inhibitory balance in local neuronal networks in NHIE patients.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Changning Xie
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Huibao Liu
- Department of Pediatrics, Xinyu Maternal and Child Health Hospital, 292 S. Laodong, Xinyu, Jiangxi, 338025, PR China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
14
|
Hu B, Boyle CA, Lei S. Activation of Oxytocin Receptors Excites Subicular Neurons by Multiple Signaling and Ionic Mechanisms. Cereb Cortex 2020; 31:2402-2415. [PMID: 33341872 DOI: 10.1093/cercor/bhaa363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OXT) is a nonapeptide that serves as a neuromodulator in the brain and a hormone participating in parturition and lactation in the periphery. The subiculum is the major output region of the hippocampus and an integral component in the networks that process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information. Whilst the subiculum expresses the highest OXT-binding sites and is the first brain region to be activated by peripheral application of OXT, the precise actions of OXT in the subiculum have not been determined. Our results demonstrate that application of the selective OXT receptor (OXTR) agonist, [Thr4,Gly7]-oxytocin (TGOT), excited subicular neurons via activation of TRPV1 channels, and depression of K+ channels. The OXTR-mediated excitation of subicular neurons required the functions of phospholipase Cβ, protein kinase C, and degradation of phosphatidylinositol 4,5-bisphosphate (PIP2). OXTR-elicited excitation of subicular neurons enhanced long-term potentiation via activation of TRPV1 channels. Our results provide a cellular and molecular mechanism to explain the physiological functions of OXT in the brain.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
15
|
Linial M, Stern A, Weinstock M. Effect of ladostigil treatment of aging rats on gene expression in four brain areas associated with regulation of memory. Neuropharmacology 2020; 177:108229. [PMID: 32738309 DOI: 10.1016/j.neuropharm.2020.108229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 02/09/2023]
Abstract
Episodic and spatial memory decline in aging and are controlled by the hippocampus, perirhinal, frontal and parietal cortices and the connections between them. Ladostigil, a drug with antioxidant and anti-inflammatory activity, was shown to prevent the loss of episodic and spatial memory in aging rats. To better understand the molecular effects of aging and ladostigil on these brain regions we characterized the changes in gene expression using RNA-sequencing technology in rats aged 6 and 22 months. We found that the changes induced by aging and chronic ladostigil treatment were brain region specific. In the hippocampus, frontal and perirhinal cortex, ladostigil decreased the overexpression of genes regulating calcium homeostasis, ion channels and those adversely affecting synaptic function. In the parietal cortex, ladostigil increased the expression of several genes that provide neurotrophic support, while reducing that of pro-apoptotic genes and those encoding pro-inflammatory cytokines and their receptors. Ladostigil also decreased the expression of axonal growth inhibitors and those impairing mitochondrial function. Together, these actions could explain the protection by ladostigil against age-related memory decline.
Collapse
Affiliation(s)
- Michal Linial
- Department of Biological Chemistry, Life Science Institute, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, Israel
| | - Amos Stern
- Department of Biological Chemistry, Life Science Institute, Israel
| | - Marta Weinstock
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
16
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
17
|
Hu B, Boyle CA, Lei S. Oxytocin receptors excite lateral nucleus of central amygdala by phospholipase Cβ- and protein kinase C-dependent depression of inwardly rectifying K + channels. J Physiol 2020; 598:3501-3520. [PMID: 32458437 DOI: 10.1113/jp279457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Activation of oxytocin receptors (OXTRs) facilitates neuronal excitability in rat lateral nucleus of central amygdala (CeL). OXTR-induced excitation is mediated by inhibition of inwardly rectifying K+ (Kir) channels. Phospholipase Cβ is necessary for OXTR-mediated excitation of CeL neurons and depression of Kir channels. OXTR-elicited depression of Kir channels and excitation of CeL neurons require the function of Ca2+ -dependent protein kinase C. ABSTRACT Oxytocin (OXT) is a nonapeptide that exerts anxiolytic effects in the brain. The amygdala is an important structure involved in the modulation of fear and anxiety. A high density of OXT receptors (OXTRs) has been detected in the capsular (CeC) and lateral (CeL) nucleus of the central amygdala (CeA). Previous studies have demonstrated that activation of OXTRs induces remarkable increases in neuronal excitability in the CeL/C. However, the signalling and ionic mechanisms underlying OXTR-induced facilitation of neuronal excitability have not been determined. We found that activation of OXTRs in the CeL increased action potential firing frequency recorded from neurons in this region via inhibition of the inwardly rectifying K+ channels. The functions of phospholipase Cβ and protein kinase C were required for OXTR-induced augmentation of neuronal excitability. Our results provide a cellular and molecular mechanism whereby activation of OXTRs exerts anxiolytic effects.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
18
|
Lefter R, Ciobica A, Antioch I, Ababei DC, Hritcu L, Luca AC. Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. ACTA ACUST UNITED AC 2020; 56:medicina56060267. [PMID: 32485966 PMCID: PMC7353871 DOI: 10.3390/medicina56060267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Background and objectives: The hormone oxytocin (OXT) has already been reported in both human and animal studies for its promising therapeutic potential in autism spectrum disorder (ASD), but the comparative effectiveness of various administration routes, whether central or peripheral has been insufficiently studied. In the present study, we examined the effects of intranasal (IN) vs. intraperitoneal (IP) oxytocin in a valproic-acid (VPA) autistic rat model, focusing on cognitive and mood behavioral disturbances, gastrointestinal transit and central oxidative stress status. Materials and Methods: VPA prenatally-exposed rats (500 mg/kg; age 90 days) in small groups of 5 (n = 20 total) were given OXT by IP injection (10 mg/kg) for 8 days consecutively or by an adapted IN pipetting protocol (12 IU/kg, 20 μL/day) for 4 consecutive days. Behavioral tests were performed during the last three days of OXT treatment, and OXT was administrated 20 minutes before each behavioral testing for each rat. Biochemical determination of oxidative stress markers in the temporal area included superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). A brief quantitative assessment of fecal discharge over a period of 24 hours was performed at the end of the OXT treatment to determine differences in intestinal transit. Results: OXT improved behavioral and oxidative stress status in both routes of administration, but IN treatment had significantly better outcome in improving short-term memory, alleviating depressive manifestations and mitigating lipid peroxidation in the temporal lobes. Significant correlations were also found between behavioral parameters and oxidative stress status in rats after OXT administration. The quantitative evaluation of the gastrointestinal (GI) transit indicated lower fecal pellet counts in the VPA group and homogenous average values for the control and both OXT treated groups. Conclusions: The data from the present study suggest OXT IN administration to be more efficient than IP injections in alleviating autistic cognitive and mood dysfunctions in a VPA-induced rat model. OXT effects on the cognitive and mood behavior of autistic rats may be associated with its effects on oxidative stress. Additionally, present results provide preliminary evidence that OXT may have a balancing effect on gastrointestinal motility.
Collapse
Affiliation(s)
- Radu Lefter
- Center of Biomedical Research, Romanian Academy, B dul Carol I, No 8, 700505 Iasi, Romania;
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
- Correspondence: (A.C.); (L.H.)
| | - Iulia Antioch
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Daniela Carmen Ababei
- “Grigore T.Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (A.-C.L.)
| | - Luminita Hritcu
- Faculty of Veterinary Medicine, University of Agricultural Sciencies and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu Alley, 700490 Iasi, Romania
- Correspondence: (A.C.); (L.H.)
| | - Alina-Costina Luca
- “Grigore T.Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (A.-C.L.)
| |
Collapse
|
19
|
Young WS, Song J. Characterization of Oxytocin Receptor Expression Within Various Neuronal Populations of the Mouse Dorsal Hippocampus. Front Mol Neurosci 2020; 13:40. [PMID: 32256314 PMCID: PMC7093644 DOI: 10.3389/fnmol.2020.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/30/2022] Open
Abstract
Oxytocin, acting through the oxytocin receptor (Oxtr) in the periphery, is best known for its roles in regulating parturition and lactation. However, it is also now known to possess a number of important social functions within the central nervous system, including social preference, memory and aggression, that vary to different degrees in different species. The Oxtr is found in both excitatory and inhibitory neurons within the brain and research is focusing on how, for example, activation of the receptor in interneurons can enhance the signal-to-noise of neuronal transmission. It is important to understand which neurons in the mouse dorsal hippocampus might be activated during memory formation. Therefore, we examined the colocalization of transcripts in over 5,000 neurons for Oxtr with those for nine different markers often found in interneurons using hairpin chain reaction in situ hybridization on hippocampal sections. Most pyramidal cell neurons of CA2 and many in the CA3 express Oxtr. Outside of those excitatory neurons, over 90% of Oxtr-expressing neurons co-express glutamic acid decarboxylase-1 (Gad-1) with progressively decreasing numbers of co-expressing cholecystokinin, somatostatin, parvalbumin, neuronal nitric oxide synthase, the serotonin 3a receptor, the vesicular glutamate transporter 3, calbindin 2 (calretinin), and vasoactive intestinal polypeptide neurons. Distributions were analyzed within hippocampal layers and regions as well. These findings indicate that Oxtr activation will modulate the activity of ~30% of the Gad-1 interneurons and the majority of the diverse population of those, mostly, interneuron types specifically examined in the mouse hippocampus.
Collapse
Affiliation(s)
- W. Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
20
|
Fan XY, Shi G, Zhao P. Reversal of oxycodone conditioned place preference by oxytocin: Promoting global DNA methylation in the hippocampus. Neuropharmacology 2019; 160:107778. [PMID: 31526808 DOI: 10.1016/j.neuropharm.2019.107778] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Accumulating evidence has shown that oxytocin (OT), a neurohypophyseal neuropeptide, could reduce the abuse potential of drugs. Recent studies suggest that epigenetic regulation through DNA methylation are involved in neuroadaptations. The current study was conducted to investigate the effects of OT on oxycodone conditioned place preference (CPP) and the epigenetic mechanism of OT in the hippocampus. For induction of CPP, oxycodone (3.0 mg/kg, i. p.) was administrated to male Sprague-Dawley rats once every other day during an eight-day conditioning phase. Global 5-methylcytosine (5-mC) level was determined based on CPP procedure, including acquisition, expression, extinction and reinstatement. We also measured mRNA levels of DNA methyltransferases (Dnmts), ten-eleven translocations (Tets) and synaptic genes (Psd95, Shank2, Gap43, etc.), and determined synaptic density after restraint stress-induced reinstatement of oxycodone CPP. The results showed that OT (2.5 μg, i. c.v.) pretreatment specifically inhibited the CPP acquisition and expression, facilitated the CPP extinction, and abolished restraint stress-induced reinstatement of oxycodone CPP. OT markedly inhibited global 5-mC changes induced by oxycodone CPP in the four phases. Following restraint stress-induced reinstatement of oxycodone CPP, OT significantly increased mRNA levels of Dnmt1, decreased Tet1 mRNA, synaptic proteins and synaptic density in the hippocampus. Our study indicated that reversal of global DNA hypomethylation through OT could significantly attenuate the rewarding effects induced by oxycodone. Our results suggested that OT could be specific manipulation on oxycodone addiction.
Collapse
Affiliation(s)
- Xin-Yu Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Shi
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|