1
|
Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells 2025; 14:143. [PMID: 39851571 PMCID: PMC11763428 DOI: 10.3390/cells14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory. In addition, IEGs are involved in the regulation of brain cells' metabolism, proliferation, and survival, in the establishment of multicellular ensembles, and, presumably, in cell competition in the tissue. In this review, we analyze the current understanding of the role of IEGs (c-Fos, c-Myc, Arg3.1/Arc) in controlling brain plasticity in physiological and pathological conditions, including brain aging and neurodegeneration. This work might inspire new gene therapy strategies targeting IEGs to regulate synaptic plasticity, and potentially prevent or mitigate neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Research Center of Neurology, 125367 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | | - Anna S. Vetchinova
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | |
Collapse
|
2
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
3
|
Ge D, Luo T, Sun Y, Liu M, Lyu Y, Yin W, Li R, Zhang Y, Yue H, Liu N. Natural diterpenoid EKO activates deubiqutinase ATXN3 to preserve vascular endothelial integrity and alleviate diabetic retinopathy through c-fos/focal adhesion axis. Int J Biol Macromol 2024; 260:129341. [PMID: 38218272 DOI: 10.1016/j.ijbiomac.2024.129341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1β stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1β stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.
Collapse
Affiliation(s)
- Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Tingting Luo
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yajie Sun
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yuzhu Lyu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Yongqi Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Hongwei Yue
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China.
| |
Collapse
|
4
|
Wu X, Liu J, Li W, Khan MF, Dai H, Tian J, Priya R, Tian DJ, Wu W, Yaacoub A, Gu J, Syed F, Yu CH, Gao X, Yu Q, Xu XM, Brutkiewicz RR. CD1d-dependent neuroinflammation impairs tissue repair and functional recovery following a spinal cord injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562047. [PMID: 37905092 PMCID: PMC10614755 DOI: 10.1101/2023.10.13.562047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Tissue damage resulting from a spinal cord injury (SCI) is primarily driven by a robust neuroimmune/neuroinflammatory response. This intricate process is mainly governed by a multitude of cytokines and cell surface proteins in the central nervous system (CNS). However, the critical components of the neuroimmune/neuroinflammatory response during SCI are still not well-defined. In this study, we investigated the impact of CD1d, an MHC class I-like molecule mostly known for presenting lipid antigens to natural killer T (NKT) cells and regulating immune/inflammatory responses, on neuroimmune/neuroinflammatory responses induced by SCI. We observed an increased expression of CD1d on various cell types within the spinal cord, including microglia/macrophages, oligodendrocytes (ODCs), and endothelial cells (DCs), but not on neurons or astrocytes post-SCI. In comparison to wildtype (WT) mice, a T10 contusive SCI in CD1d knockout (CD1dKO or Cd1d -/- ) mice resulted in markedly reduced proinflammatory cytokine release, microglia/macrophage activation and proliferation. Following SCI, the levels of inflammatory cytokines and activation/proliferation of microglia/macrophages were dramatically reduced, while anti-inflammatory cytokines such as IL-4 and growth factors like VEGF were substantially increased in the spinal cord tissues of CD1dKO mice when compared to WT mice. In the post-acute phase of SCI (day 7 post-SCI), CD1dKO mice had a significantly higher frequency of tissue-repairing macrophages, but not other types of immune cells, in the injured spinal cord tissues compared to WT mice. Moreover, CD1d-deficiency protected spinal cord neuronal cells and tissue, promoting functional recovery after a SCI. However, the neuroinflammation in WT mouse spinal cords was independent of the canonical CD1d/NKT cell axis. Finally, treatment of injured mice with a CD1d-specific monoclonal antibody significantly enhanced neuroprotection and improved functional recovery. Therefore, CD1d promotes the proinflammatory response following a SCI and represents a potential therapeutic target for spinal cord repair. Significance Statement The cell surface molecule, CD1d, is known to be recognized by cells of the immune system. To our knowledge, this is the first observation that the CD1d molecule significantly contributes to neuroinflammation following a spinal cord injury (SCI) in a manner independent of the CD1d/NKT cell axis. This is important, because this work reveals CD1d as a potential therapeutic target following an acute SCI for which there are currently no effective treatments.
Collapse
|
5
|
Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023; 64:7004-7027. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Since the first years of history, microbial fermentation products such as bread, wine, yogurt and vinegar have always been noteworthy regarding their nutritional and health effects. Similarly, mushrooms have been a valuable food product in point of both nutrition and medicine due to their rich chemical components. Alternatively, filamentous fungi, which can be easier to produce, play an active role in the synthesis of some bioactive compounds, which are also important for health, as well as being rich in protein content. Therefore, this review presents some important bioactive compounds (bioactive peptides, chitin/chitosan, β-glucan, gamma-aminobutyric acid, L-carnitine, ergosterol and fructooligosaccharides) synthesized by fungal strains and their health benefits. In addition, potential probiotic- and prebiotic fungi were researched to determine their effects on gut microbiota. The current uses of fungal based bioactive compounds for cancer treatment were also discussed. The use of fungal strains in the food industry, especially to develop innovative food production, has been seen as promising microorganisms in obtaining healthy and nutritious food.
Collapse
Affiliation(s)
- Neda Rousta
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Melissa Aslan
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Ferruh Ozcan
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli, Turkey
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | | |
Collapse
|
6
|
He S, He L, Yan F, Li J, Liao X, Ling M, Jing R, Pan L. Identification of hub genes associated with acute kidney injury induced by renal ischemia-reperfusion injury in mice. Front Physiol 2022; 13:951855. [PMID: 36246123 PMCID: PMC9557154 DOI: 10.3389/fphys.2022.951855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a severe clinical syndrome, and ischemia-reperfusion injury is an important cause of acute kidney injury. The aim of the present study was to investigate the related genes and pathways in the mouse model of acute kidney injury induced by ischemia-reperfusion injury (IRI-AKI). Method: Two public datasets (GSE39548 and GSE131288) originating from the NCBI Gene Expression Omnibus (GEO) database were analyzed using the R software limma package, and differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genomes (KEGG) and gene set enrichment analysis (GSEA) were performed using the differentially expressed genes. Furthermore, a protein-protein interaction (PPI) network was constructed to investigate hub genes, and transcription factor (TF)-hub gene and miRNA-hub gene networks were constructed. Drugs and molecular compounds that could interact with hub genes were predicted using the DGIdb. Result: A total of 323 common differentially expressed genes were identified in the renal ischemia-reperfusion injury group compared with the control group. Among these, 260 differentially expressed genes were upregulated and 66 differentially expressed genes were downregulated. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis results showed that these common differentially expressed genes were enriched in positive regulation of cytokine production, muscle tissue development, and other biological processes, indicating that they were involved in mitogen-activated protein kinase (MAPK), PI3K-Akt, TNF, apoptosis, and Epstein-Barr virus infection signaling pathways. Protein-protein interaction analysis showed 10 hub genes, namely, Jun, Stat3, MYC, Cdkn1a, Hif1a, FOS, Atf3, Mdm2, Egr1, and Ddit3. Using the STRUST database, starBase database, and DGIdb database, it was predicted that 34 transcription factors, 161 mi-RNAs, and 299 drugs or molecular compounds might interact with hub genes. Conclusion: Our findings may provide novel potential biomarkers and insights into the pathogenesis of ischemia-reperfusion injury-acute kidney injury through a comprehensive analysis of Gene Expression Omnibus data, which may provide a reliable basis for early diagnosis and treatment of ischemia-reperfusion injury-acute kidney injury.
Collapse
Affiliation(s)
- Sheng He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
- Department of Anesthesiology, The First Affiliated Hospital of Southern China University, Hengyang, China
| | - Lili He
- Department of Anesthesiology, The Second Affiliated Hospital of Southern China University, Hengyang, China
| | - Fangran Yan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junda Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoting Liao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ren Jing
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Engineering Research Center for Tissue and Organ Injury and Repair Medicine, Nanning, China
- Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| |
Collapse
|
7
|
Diet, Polyphenols, and Human Evolution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diet has contributed significantly to the evolution of human beings, the composition of the diet that has most affected this phenomenon is still an open issue. Diet has undoubtedly participated in the acquisition of the skills that underlie the differentiation of humans from other animal species and in this context the development of the nervous system has played a primary role. This paper aimed to: (1) outline the relationship between diet and human evolution; (2) evaluate how a variation in food consumption may have contributed to the enhancement of cognitive and adaptive capacities. The most widespread diet among the ancient populations that showed the highest levels of civilization (that is well-organized societies, using advanced technical tools, and promoting art and science) was very close to what is now defined as the Mediterranean diet. This suggests that a dietary approach typical of the Mediterranean basin (little meat and some fish; abundant cereals, legumes, fruit, vegetables and wine) significantly increased the intake of antioxidant molecules, including polyphenols, which along with other factors may have modulated the cognitive evolution of humans.
Collapse
|
8
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
9
|
Wen P, Dayyani F, Tao R, Zhong X. Screening and verification of potential gene targets in esophageal carcinoma by bioinformatics analysis and immunohistochemistry. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:70. [PMID: 35282073 PMCID: PMC8848373 DOI: 10.21037/atm-21-6589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 01/15/2023]
Abstract
Background To evaluate the potential of candidate proteins as diagnostic markers or drug targets in esophageal carcinoma (ESCA). Methods GSE20347, GSE17351, and GSE45670 were downloaded from Gene Expression Omnibus (GEO). Differently expressed genes (DEGs) between ESCA and normal esophageal tissues from patients were obtained. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. The genes commonly featured in ESCA were screened by least absolute shrinkage and selection operator (LASSO) logistic regression and Boruta feature selection algorithm. The transcriptome data and corresponding clinical data of ESCA were downloaded from The Cancer Genome Atlas (TCGA) public database. Kaplan-Meier survival analysis was used to explore the core genes related to the prognosis of patients. A protein-protein interaction (PPI) network was generated by GeneMANIA to visualize the functional network between genes. Expressions of CRIP2, FOS, and HOXA10 genes in ESCA cells were verified by immunohistochemistry (IHC). Results Out of 11,207 genes, 430 DEGs were identified, including 210 up-regulated genes and 220 down-regulated genes. After taking the intersection of LASSO regression and Boruta algorithm, 15 core genes were identified. Survival analyses demonstrated that low expression of CRIP2 (P=2.643e-02), as well as high expression of FOS (P=4.837e-02) and HOXA10 (P=4.97e-02), was significantly associated with the worse prognosis of ESCA patients. The 3 genes were strongly correlated with the content of immune cells and the stage of tumors. The expression of CRIP2 was correlated with the sensitivity of patients to dasatinib; FOS expression was correlated with the sensitivity of patients to erlotinib, and HOXA10 expression affected the sensitivity of patients to cisplatin, dasatinib, erlotinib, and gefitinib. The cBioportal database showed that 56 patients (31%) had the above core gene mutations: CRIP2 (8%), FOS (10%), and HOXA10 (17%). The IHC showed that there were differences in the expressions of these core genes between ESCA patients and the normal population (P<0.05), with ESCA patients showing higher expression. Conclusions The low CRIP2 expression and high expressions of FOS and HOXA10 are associated with more advanced tumor stage, which may have the potential to be novel biomarkers for treatment selection in ESCA.
Collapse
Affiliation(s)
- Pingwu Wen
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| | - Farshid Dayyani
- Chao Comprehensive Cancer Center, University of California Irvine, Orange, CA, USA
| | - Randa Tao
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Xiongping Zhong
- Department of Gastroenterology, Meizhou People's Hospital, Meizhou, China
| |
Collapse
|
10
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
11
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
12
|
Naqvi KF, Huante MB, Saito TB, Endsley MA, Gelman BB, Endsley JJ. Novel Role for Macrophage Galactose-Type Lectin-1 to Regulate Innate Immunity against Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2021; 207:221-233. [PMID: 34183369 DOI: 10.4049/jimmunol.2001276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/27/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) caused by infection with Mycobacterium tuberculosis is characterized by inflammatory pathology and poorly understood mechanisms of innate immunity. Pattern recognition receptors, expressed on the surface of macrophages, determine the balance of inflammatory and antimicrobial functions that influence disease outcome. Carbohydrate moieties displayed by mycobacteria can serve as pattern recognition receptor ligands for some members of the C-type lectin receptor (CLR) family, interactions that mediate a variety of incompletely understood immune outcomes. This work identifies a novel role for the CLR macrophage galactose-type lectin (MGL)-1 in a mouse model (C57BL/6 and MGL-1-/-) of experimental TB. Murine macrophages upregulated MGL-1 following in vitro exposure to M. tuberculosis, whereas MGL+ cells accumulated at sites of mycobacteria-driven inflammation in the lung. Pulmonary macrophages from MGL-1-deficient mice displayed increased production of proinflammatory cytokines (IL-1β, IL-6, and IFN-γ) that were associated with greater lipid accumulation, following M. tuberculosis infection. Surprisingly, for a CLR, we also observed MGL-1-dependent antimycobacterial activity as evidenced by greater M. tuberculosis proliferation in bone marrow-derived macrophages, and the lung, of MGL-1-deficient mice. Differential transcriptome analysis further revealed that loss of MGL-1 perturbs the activation of various genes involved in the regulation of inflammation and lipid metabolism in the setting of M. tuberculosis infection. These results identify MGL-1 signaling as an important mechanism that regulates innate immunity against M. tuberculosis and indicates the potential for the MGL pathway as a novel therapeutic target for anti-TB immunity.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| |
Collapse
|
13
|
Impairing activation of phospholipid synthesis by c-Fos interferes with glioblastoma cell proliferation. Biochem J 2021; 477:4675-4688. [PMID: 33211090 DOI: 10.1042/bcj20200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1-138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.
Collapse
|
14
|
Shirokova OM, Pchelin PV, Mukhina IV. MERCs. The Novel Assistant to Neurotransmission? Front Neurosci 2020; 14:589319. [PMID: 33240039 PMCID: PMC7680918 DOI: 10.3389/fnins.2020.589319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
In neuroscience, much attention is paid to intercellular interactions, in particular, to synapses. However, many researchers do not pay due attention to the contribution of intracellular contacts to the work of intercellular interactions. Nevertheless, along with synapses, intracellular contacts also have complex organization and a tremendous number of regulatory elements. Mitochondria-endoplasmic reticulum contacts (MERCs) are a specific site of interaction between the two organelles; they provide a basis for a large number of cellular functions, such as calcium homeostasis, lipid metabolism, autophagy, and apoptosis. Despite the presence of these contacts in various parts of neurons and glial cells, it is yet not known whether they fulfill the same functions. There are still many unsolved questions about the work of these intracellular contacts, and one of the most important among them is if MERCs, with their broad implication into synaptic events, can be considered the assistant to neurotransmission?
Collapse
Affiliation(s)
- Olesya M Shirokova
- Central Scientific Research Laboratory, Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Pavel V Pchelin
- Central Scientific Research Laboratory, Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina V Mukhina
- Central Scientific Research Laboratory, Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
15
|
Kumar JBS, Sharma B. A review on neuropharmacological role of erucic acid: an omega-9 fatty acid from edible oils. Nutr Neurosci 2020; 25:1041-1055. [PMID: 33054628 DOI: 10.1080/1028415x.2020.1831262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (ND) are characterised by loss of neurons in the brain and spinal cord. For the normal functioning of the brain, divers group of fatty acids in the form of glycerophospholipids, glycerol ether lipids, cerebrosides, sulfatides, and gangliosides are essential. They are present abundantly in the nervous system and are actively involved in both the development and maintenance of the nervous system. A dietary deficiency of essential fatty acid during development results in hypomyelination state which affects various neuronal functions. Several studies suggested that age remains the primary risk factor for almost all neurodegenerative disorders. The potential contribution of these fatty acids in the progression of neurodegenerative disorders is indispensable. Erucic acid an omega 9 fatty acid, which is obtained from edible oils has proven to cause myocardial lipidosis, heart lesions and hepatic steatosis in animals therefore, its content in edible oils is restricted to certain levels by regulatory agencies. However, erucic acid in the form of a mixture with oleic acid is often used as a dietary treatment for the management of adrenoleukodystrophy without any cardiotoxicity. Our literature search revealed that, erucic acid reported to enhance cognitive function, interact with peroxisome proliferator activated receptors (PPARs), inhibit elastase and thrombin. In this review first we have attempted to describe the relationship between fatty acids and neurodegeneration followed by a description on the pharmacology of erucic acid. The overall purpose of this review is to analyse toxic and beneficial neuropharmacological effects of erucic acid.
Collapse
Affiliation(s)
- J B Senthil Kumar
- Special centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,School of Medical and Allied Sciences, KR Mangalam University, Delhi NCR, India
| | - Bhawna Sharma
- School of Medical and Allied Sciences, KR Mangalam University, Delhi NCR, India
| |
Collapse
|
16
|
Bianchetti G, Di Giacinto F, De Spirito M, Maulucci G. Machine-learning assisted confocal imaging of intracellular sites of triglycerides and cholesteryl esters formation and storage. Anal Chim Acta 2020; 1121:57-66. [PMID: 32493590 DOI: 10.1016/j.aca.2020.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
All living systems are maintained by a constant flux of metabolic energy and, among the different reactions, the process of lipids storage and lipolysis is of fundamental importance. Current research has focused on the investigation of lipid droplets (LD) as a powerful biomarker for the early detection of metabolic and neurological disorders. Efforts in this field aim at increasing selectivity for LD detection by exploiting existing or newly synthesized probes. However, LD constitute only the final product of a complex series of reactions during which fatty acids are transformed into triglycerides and cholesterol is transformed in cholesteryl esters. These final products can be accumulated in intracellular organelles or deposits other than LD. A complete spatial mapping of the intracellular sites of triglycerides and cholesteryl esters formation and storage is, therefore, crucial to highlight any potential metabolic imbalance, thus predicting and counteracting its progression. Here, we present a machine learning assisted, polarity-driven segmentation which enables to localize and quantify triglycerides and cholesteryl esters biosynthesis sites in all intracellular organelles, thus allowing to monitor in real-time the overall process of the turnover of these non-polar lipids in living cells. This technique is applied to normal and differentiated PC12 cells to test how the level of activation of biosynthetic pathways changes in response to the differentiation process.
Collapse
Affiliation(s)
- Giada Bianchetti
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica Del Sacro Cuore, Rome, Italy.
| |
Collapse
|
17
|
Oh MI, Oh CI, Weaver DF. Effect of Cholesterol on the Structure of Networked Water at the Surface of a Model Lipid Membrane. J Phys Chem B 2020; 124:3686-3694. [DOI: 10.1021/acs.jpcb.0c01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Myong In Oh
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Chang In Oh
- Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
18
|
Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Strzalka K, Aguilar LF. An in vitro study on the interaction of the anti-Alzheimer drug rivastigmine with human erythrocytes. Chem Biol Interact 2020; 319:109019. [PMID: 32092302 DOI: 10.1016/j.cbi.2020.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 10/25/2022]
Abstract
The inhibition of the enzyme acetylcholinesterase (AChE) is a frequently used therapeutic option to treat Alzheimer's disease (AD). By decreasing the levels of acetylcholine degradation in the synaptic space, some cognitive functions of patients suffering from this disease are significantly improved. Rivastigmine is one of the most widely used AChE inhibitors. The objective of this work was to determine the effects of this drug on human erythrocytes, which have a type of AChE in the cell membrane. To that end, human erythrocytes and molecular models of its membrane constituted by dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. They correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. The experimental results obtained by X-ray diffraction and differential scanning calorimetry (DSC) indicated that rivastigmine molecules were able to interact with both phospholipids. Fluorescence spectroscopy results showed that rivastigmine produce a slight change in the acyl chain packing order and a weak displacement of the water molecules of the hydrophobic-hydrophilic membrane interface. On the other hand, observations by scanning electron microscopy (SEM) showed that the drug changed the normal biconcave shape of erythrocytes in stomatocytes (cup-shaped cells) and echinocytes (speculated shaped).
Collapse
Affiliation(s)
- Pablo Zambrano
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - Mario Suwalsky
- Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Malgorzata Jemiola-Rzeminska
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kazimierz Strzalka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Luis F Aguilar
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|