1
|
Tomou EM, Bieler L, Spöttl T, Couillard-Despres S, Skaltsa H, Urmann C. Metabolic Fingerprinting of Different Sideritis Taxa Infusions and Their Neurogenic Activity. PLANTA MEDICA 2023; 89:1087-1096. [PMID: 37044130 DOI: 10.1055/a-2072-2351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the last years, Sideritis extracts were shown to improve memory. However, their potential to promote the generation of new neurons, starting with the neuronal differentiation of neural stem cells, remains unexplored. Therefore, the present study aimed to evaluate the neurogenic effects of different Sideritis infusions in neural stem and precursor cells and their impact on cell viability. Moreover, the metabolic fingerprints were recorded using LC-DAD, LC-HRESIMS, and GC-MS. The neurogenic potential of infusions of the eight Sideritis taxa tested was as potent as the classical neuronal inducer combination of retinoic acid and valproic acid. Further cytotoxicity assays revealed that the IC50 values of the extracts were between 163 and 322 µg/mL. Hierarchical cluster analyses of the metabolic fingerprints unveiled that the two Sideritis taxa with the lowest IC50 values were the most divergent in the analytical techniques used. As the analysis focused on polyphenols, it is reasonable to assume that these compounds are responsible for the effect on the cell viability of SH-SY5Y neuroblastoma cells. This study is the first report on the neurogenic potential of Sideritis taxa and might support the use of Sideritis herbal preparations in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-Analytical Chemistry, Straubing, Germany
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tobias Spöttl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University Salzburg, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Corinna Urmann
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-Analytical Chemistry, Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| |
Collapse
|
2
|
Yuan W, Liu W, Zhan X, Zhou Y, Ma R, Liang S, Wang T, Ge Z. Inhibition of miR-221-3p promotes axonal regeneration and repair of primary sensory neurons via regulating p27 expression. Neuroreport 2023; 34:471-484. [PMID: 37161985 PMCID: PMC10292576 DOI: 10.1097/wnr.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
This study aimed to explore the key microRNA (miRNA) playing a vital role in axonal regeneration with a hostile microenvironment after spinal cord injury. Based on the theory that sciatic nerve conditioning injury (SNCI) could promote the repair of the injured dorsal column. Differentially expressed miRNAs were screened according to the microarray, revealing that 47 known miRNAs were differentially expressed after injury and perhaps involved in nerve regeneration. Among the 47 miRNAs, the expression of miR-221-3p decreased sharply in the SNCI group compared with the simple dorsal column lesion (SDCL) group. Subsequently, it was confirmed that p27 was the target gene of miR-221-3p from luciferase reporter assay. Further, we found that inhibition of miR-221-3p expression could specifically target p27 to upregulate the expression of growth-associated protein 43 (GAP-43), α-tubulin acetyltransferase (α-TAT1) together with α-tubulin, and advance the regeneration of dorsal root ganglion (DRG) neuronal axons. Chondroitin sulfate proteoglycans (CSPGs) are the main components of glial scar, which can hinder the extension and growth of damaged neuronal axons. After CSPGs were used in this study, the results demonstrated that restrained miR-221-3p expression also via p27 promoted the upregulation of GAP-43, α-TAT1, and α-tubulin and enhanced the axonal growth of DRG neurons. Hence, miR-221-3p could contribute significantly to the regeneration of DRG neurons by specifically regulating p27 in the p27/CDK2/GAP-43 and p27/α-TAT1/α-tubulin pathways even in the inhibitory environment with CSPGs.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Wei Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Xuehua Zhan
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Yueyong Zhou
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region
| | - Rong Ma
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Simin Liang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| | - Tianyi Wang
- Department of Spine Surgery, 981st Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Chengde, China
| | - Zhaohui Ge
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University
| |
Collapse
|
3
|
Urmann C, Bieler L, Hackl M, Chia-Leeson O, Couillard-Despres S, Riepl H. Semi-Synthesis of Different Pyranoflavonoid Backbones and the Neurogenic Potential. Molecules 2023; 28:molecules28104023. [PMID: 37241764 DOI: 10.3390/molecules28104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Flavonoids and chalcones are known for their manifold biological activities, of which many affect the central nervous system. Pyranochalcones were recently shown to have a great neurogenic potential, which is partly due to a specific structural motif-the pyran ring. Accordingly, we questioned if other flavonoid backbones with a pyran ring as structural moiety would also show neurogenic potential. Different semi-synthetic approaches starting with the prenylated chalcone xanthohumol, isolated from hops, led to pyranoflavanoids with different backbones. We identified the chalcone backbone as the most active backbone with pyran ring using a reporter gene assay based on the promoter activity of doublecortin, an early neuronal marker. Pyranochalcones therefore appear to be promising compounds for further development as a treatment strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Corinna Urmann
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Michael Hackl
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Olivia Chia-Leeson
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Herbert Riepl
- Organic-Analytical Chemistry, Weihenstephan-Triesdorf University of Applied Sciences, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| |
Collapse
|
4
|
Lomartire S, Gonçalves AMM. Marine Macroalgae Polyphenols as Potential Neuroprotective Antioxidants in Neurodegenerative Diseases. Mar Drugs 2023; 21:md21050261. [PMID: 37233455 DOI: 10.3390/md21050261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Polyphenols are beneficial natural compounds with antioxidant properties that have recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore, these compounds can be included in several areas of drug development. Authors have considered the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their antioxidant activity; therefore, the use of these natural compounds would improve the quality of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols, and present the highest antioxidant activity in comparison to red algae and green algae. The present paper collects the most recent in vitro and in vivo evidence from investigations regarding polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in drug development to delay cell loss in patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Zhao K, Yao M, Zhang X, Xu F, Shao X, Wei Y, Wang H. Flavonoids and intestinal microbes interact to alleviate depression. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1311-1318. [PMID: 34625972 DOI: 10.1002/jsfa.11578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids have a variety of biological activities that are beneficial to human health. However, owing to low bioavailability, most flavonoids exert beneficial effects in the intestine through metabolism by the flora into a variety of structurally different derivatives. Also, flavonoids can modulate the type and structure of intestinal microorganisms to improve human health. It has been reported that the development of depression is accompanied by changes in the type and number of intestinal microorganisms, and gut microbes can significantly improve depressive symptoms through the gut-brain axis. Therefore, the interaction between flavonoids and intestinal microbes to alleviate depression is discussed. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Mei Yao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Feng Xu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Yingying Wei
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Hongfei Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
6
|
Urmann C, Bieler L, Priglinger E, Aigner L, Couillard-Despres S, Riepl HM. Neuroregenerative Potential of Prenyl- and Pyranochalcones: A Structure-Activity Study. JOURNAL OF NATURAL PRODUCTS 2021; 84:2675-2682. [PMID: 34542287 DOI: 10.1021/acs.jnatprod.1c00505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Loss of neuronal tissue is a hallmark of age-related neurodegenerative diseases. Since adult neurogenesis has been confirmed in the human brain, great interest has arisen in substances stimulating the endogenous neuronal regeneration mechanism based on adult neural stem cells. Medicinal plants are a valuable source of neuroactive small molecules. In the structure-activity study presented here, the activities of prenyl- and pyranochalcones were compared to each other, using a differentiation assay based on the doublecortin promoter sequences. The latter revealed that the pyrano ring is a crucial structural element for the induction of neuronal differentiation of adult neural stem cells, while compounds with a prenyl group show significantly lower activities. Furthermore, a decrease of pro-differentiation activity was observed following structural modifications, such as substitutions on the pyrano ring and on the B-ring of the chalcone. We also initiated the elucidation of the structural characteristics of the newly discovered lead substance xanthohumol C, which correlated with the activation of the doublecortin promoter during neuronal differentiation.
Collapse
Affiliation(s)
- Corinna Urmann
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| | - Lara Bieler
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Eleni Priglinger
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, https://www.tissue-regeneration.at/
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, https://www.tissue-regeneration.at/
| | - Herbert M Riepl
- Weihenstephan-Triesdorf University of Applied Sciences, Organic-analytical Chemistry, 94315 Straubing, Germany
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, 94315 Straubing, Germany
| |
Collapse
|
7
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Raudzus F, Schöneborn H, Neumann S, Secret E, Michel A, Fresnais J, Brylski O, Ménager C, Siaugue JM, Heumann R. Magnetic spatiotemporal control of SOS1 coupled nanoparticles for guided neurite growth in dopaminergic single cells. Sci Rep 2020; 10:22452. [PMID: 33384447 PMCID: PMC7775457 DOI: 10.1038/s41598-020-80253-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
The axon regeneration of neurons in the brain can be enhanced by activating intracellular signaling pathways such as those triggered by the membrane-anchored Rat sarcoma (RAS) proto-oncogene. Here we demonstrate the induction of neurite growth by expressing tagged permanently active Harvey-RAS protein or the RAS-activating catalytic domain of the guanine nucleotide exchange factor (SOS1cat), in secondary dopaminergic cells. Due to the tag, the expressed fusion protein is captured by functionalized magnetic nanoparticles in the cytoplasm of the cell. We use magnetic tips for remote translocation of the SOS1cat-loaded magnetic nanoparticles from the cytoplasm towards the inner face of the plasma membrane where the endogenous Harvey-RAS protein is located. Furthermore, we show the magnetic transport of SOS1cat-bound nanoparticles from the cytoplasm into the neurite until they accumulate at its tip on a time scale of minutes. In order to scale-up from single cells, we show the cytoplasmic delivery of the magnetic nanoparticles into large numbers of cells without changing the cellular response to nerve growth factor. These results will serve as an initial step to develop tools for refining cell replacement therapies based on grafted human induced dopaminergic neurons loaded with functionalized magnetic nanoparticles in Parkinson model systems.
Collapse
Affiliation(s)
- Fabian Raudzus
- Department of Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany.,Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Hendrik Schöneborn
- Department of Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Sebastian Neumann
- Department of Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Emilie Secret
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Jérome Fresnais
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Oliver Brylski
- Technische Universität Braunschweig, Institut für Physikalische und Theoretische Physik, Biophotonik, Rebenring 56, 38106, Braunschweig, Germany
| | - Christine Ménager
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Jean-Michel Siaugue
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005, Paris, France
| | - Rolf Heumann
- Department of Biochemistry II, Molecular Neurobiochemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| |
Collapse
|
9
|
Masood MI, Schäfer KH, Naseem M, Weyland M, Meiser P. Troxerutin flavonoid has neuroprotective properties and increases neurite outgrowth and migration of neural stem cells from the subventricular zone. PLoS One 2020; 15:e0237025. [PMID: 32797057 PMCID: PMC7428079 DOI: 10.1371/journal.pone.0237025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Troxerutin (TRX) is a water-soluble flavonoid which occurs commonly in the edible plants. Recent studies state that TRX improves the functionality of the nervous system and neutralizes Amyloid-ß induced neuronal toxicity. In this study, an in vitro assay based upon Neural stem cell (NSCs) isolated from the subventricular zone of the postnatal balb/c mice was established to explore the impact of TRX on individual neurogenesis processes in general and neuroprotective effect against ß-amyloid 1-42 (Aß42) induced inhibition in differentiation in particular. NSCs were identified exploiting immunostaining of the NSCs markers. Neurosphere clonogenic assay and BrdU/Ki67 immunostaining were employed to unravel the impact of TRX on proliferation. Differentiation experiments were carried out for a time span lasting from 48 h to 7 days utilizing ß-tubulin III and GFAP as neuronal and astrocyte marker respectively. Protective effects of TRX on Aß42 induced depression of NSCs differentiation were determined after 48 h of application. A neurosphere migration assay was carried out for 24 h in the presence and absence of TRX. Interestingly, TRX enhanced neuronal differentiation of NSCs in a dose-dependent manner after 48 h and 7 days of incubation and significantly enhanced neurite growth. A higher concentration of TRX also neutralized the inhibitory effects of Aß42 on neurite outgrowth and length after 48 h of incubation. TRX significantly stimulated cell migration. Overall, TRX not only promoted NSCs differentiation and migration but also neutralized the inhibitory effects of Aß42 on NSCs. TRX, therefore, offers an interesting lead structure from the perspective of drug design especially to promote neurogenesis in neurological disorders i.e. Alzheimer's disease.
Collapse
Affiliation(s)
- Muhammad Irfan Masood
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, Germany
- ENS Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Mahrukh Naseem
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Maximilian Weyland
- ENS Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Peter Meiser
- Medical Scientific Department GM, URSAPHARM Arzneimittel GmbH, Saarbrücken, Germany
| |
Collapse
|