1
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
2
|
Aboul-Fotouh S, Zohny SM, Elnahas EM, Habib MZ, Hassan GA. Can memantine treat autism? Answers from preclinical and clinical studies. Neurosci Biobehav Rev 2025; 169:106019. [PMID: 39826825 DOI: 10.1016/j.neubiorev.2025.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Autism Spectrum Disorder (ASD) represents a clinical challenge due to its diverse behavioral symptoms and complex neuro-pathophysiology. Finding effective treatments that target the fundamental mechanisms of ASD remains a top priority. This narrative review presents the potential of the NMDA-receptor blocker memantine in managing ASD symptoms. Preclinical studies indicate that memantine could abrogate excitotoxicity, GABA/glutamate imbalance, reduced levels of brain-derived neurotrophic factor (BDNF), blood-brain barrier (BBB) leakage, and neuroinflammation, offering hope for managing core deficits associated with ASD like impaired social interaction and repetitive behaviors. However, clinical trials yield conflicting results, with some showing slight improvements in symptom severity and cognitive function, while others demonstrate limited efficacy. Further exploration of memantine's neurobiological mechanisms and refinement of treatment approaches are crucial for comprehensively tackling ASD complexities. Drawing from both animal models and clinical data, this review examines memantine's impact on core ASD symptoms, cognitive function, and potential mechanisms of action. Lastly, it identifies research gaps and proposes avenues for future investigations to enhance our understanding and utilization of memantine in ASD management.
Collapse
Affiliation(s)
- Sawsan Aboul-Fotouh
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sohir M Zohny
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Esraa M Elnahas
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Basic Medical Sciences Department, Faculty of Medicine, King Salman International University, El Tor, South Sinai, Egypt.
| | - Ghada Am Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Suez, Egypt; Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Kumari S, Bagri K, Deshmukh R. Connecting dots: Preclinical foundations to clinical realities of PDE4 inhibitors in Alzheimer's disease. Inflammopharmacology 2025; 33:593-603. [PMID: 39808238 DOI: 10.1007/s10787-024-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD. Phosphodiesterases (PDEs), particularly Phosphodiesterase 4 (PDE4), play a pivotal role in regulating cyclic adenosine monophosphate (cAMP), a key molecule involved in memory consolidation and cognitive function. PDE4 inhibitors have demonstrated potential in enhancing memory and cognition in preclinical models of AD by modulating cAMP signaling. However, their clinical translation has been limited due to challenges such as adverse effects, narrow therapeutic windows, and low specificity in mechanism of action. This review bridges the gap between preclinical discoveries and clinical applications of PDE4 inhibitors in AD. It highlights preclinical evidence supporting the neuroprotective and anti-inflammatory effects of PDE4 inhibitors while addressing challenges in their clinical development, including issues of safety, efficacy, and disease-specific targeting. By integrating findings from both preclinical and clinical studies, we provide a comprehensive understanding of the therapeutic potential of PDE4 inhibitors in AD. Furthermore, this review outlines future research directions aimed at optimizing PDE4 inhibition strategies for AD treatment, offering a roadmap to translate foundational insights into clinical realities.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Kajal Bagri
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
4
|
Dos Santos GRO, Cararo-Lopes MM, Possebom IR, de Sá Lima L, Scavone C, Kawamoto EM. Sex-dependent changes in AMPAR expression and Na, K-ATPase activity in the cerebellum and hippocampus of α-Klotho-Hypomorphic mice. Neuropharmacology 2024; 258:110097. [PMID: 39094831 DOI: 10.1016/j.neuropharm.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.
Collapse
Affiliation(s)
| | - Marina Minto Cararo-Lopes
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso Do Sul, 79070-900, Campo Grande, MS, Brazil
| | - Isabela Ribeiro Possebom
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
6
|
Chen J, Liu Y, Song Y, Liang H, Zhu G, Zhang B, Liao L, Luo J, Yang M, Su D. Neuro-stimulating effect of Citri Reticulata Pericarpium Viride essential oil through regulating Glu/NMDAR on olfactory bulb to improve anxiety-like behavior. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118332. [PMID: 38735421 DOI: 10.1016/j.jep.2024.118332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citri Reticulata Pericarpium Viride (also known Qing-Pi or QP) is a plant in the Rutaceae family, QP is a traditional Qi-regulating medicine in Chinese medicine that is compatible with other Chinese medicine components and has extensive clinical practice in treating anxiety and depression. Reports on the pharmacological effects of QP have demonstrated its neuroprotective effects and antioxidant capacities. Numerous pharmacological benefits of QP are attributed to its antioxidant abilities. Anxiety disorders are a broadly defined category of mental illnesses. Oxidative stress and an imbalance in the antioxidant defense system are typical pathological features of these disorders. AIM OF THE STUDY The aim of this study was to evaluate the effects of QP essential oil on anxiety using animal models and investigate the underlying neurobiological mechanisms. MATERIALS AND METHODS This study aimed to develop an animal model of anxiety using chronic restraint stress and investigate the effects of inhalation of Citri Reticulata Pericarpium Viride essential oil on anxiety-like behavior, olfactory function, and olfactory bulb neurogenesis in mice with anxiety. RESULTS The results showed that long-term chronic restraint stimulation caused a decrease in olfactory function, significant anxiety-like behavior, and a notable reduction in the number of neurons in the olfactory bulb. However, inhalation of Citri Reticulata Pericarpium Viride essential oil reversed these effects, improving the olfactory function, neuro-stimulating effect, alleviating anxiety-like behavior, and regulating theta (4-12Hz) oscillation in the hippocampus DG area. These effects were associated with changes in the expression levels of glutamate receptor NMDAR and NeuN in olfactory bulb. CONCLUSIONS The study revealed that mice with anxiety induced by chronic restraint stress exhibited significant olfactory dysfunction, providing strong evidence for the causal relationship between anxiety disorders and olfactory dysfunction. Moreover, QP essential oil has the potential to be developed as a therapeutic drug for anxiety disorders, in addition to its role as a complementary anxiolytic.
Collapse
Affiliation(s)
- Jingbin Chen
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Yali Liu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China; Key Laboratory of Evaluation of the Efficacy and Quality of Anti-inflammatory Traditional Chinese Medicine, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, 1689 Meiling Road, Nanchang, 330006, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Huihui Liang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Bike Zhang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Liangliang Liao
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Jian Luo
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China
| | - Ming Yang
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China; Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Dan Su
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Diseases with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, China.
| |
Collapse
|
7
|
Li S, Xiao Z. Recent Research Progress on the Use of Transcranial Magnetic Stimulation in the Treatment of Vascular Cognitive Impairment. Neuropsychiatr Dis Treat 2024; 20:1235-1246. [PMID: 38883416 PMCID: PMC11179638 DOI: 10.2147/ndt.s467357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/01/2024] [Indexed: 06/18/2024] Open
Abstract
Vascular Cognitive Impairment (VCI) is a condition where problems with brain blood vessels lead to a decline in cognitive abilities, commonly affecting the elderly and placing a significant burden on both patients and their families. Compared to medication and surgery, Transcranial Magnetic Stimulation (TMS) is a non-invasive treatment option with fewer risks and side effects, making it particularly suitable for elderly patients. TMS not only assesses the excitability and plasticity of the cerebral cortex, but its effectiveness in treating Vascular Cognitive Impairment (VCI) and its subtypes has also been validated in numerous clinical trials worldwide. However, there is still a lack of review on the physiological mechanisms of TMS treatment for VCI and its specific clinical application parameters. Therefore, this article initially provided a brief overview of the risk factors, pathological mechanisms, and classification of VCI. Next, the article explained the potential physiological mechanisms of TMS in treating VCI, particularly its role in promoting synaptic plasticity, regulating neurotransmitter balance, and improving the function of the default mode network. Additionally, The article also summarizes the application of rTMS in treating VCI and its subtypes, VCI-related sleep disorders, and the use of TMS in follow-up studies of VCI patients, providing empirical evidence for the clinical application of TMS and rTMS technologies.
Collapse
Affiliation(s)
- Sijing Li
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People's Republic of China
| | - Zijian Xiao
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
- Clinical Research Center for Immune‑Related Encephalopathy of Hunan Province (The First Affiliated Hospital), Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
8
|
Chen L, Yang W, Yang F, Xu T, Yu Y, Wu Q, Han Y. Astrocyte mitochondria: Potential therapeutic targets for epilepsy. Heliyon 2024; 10:e29950. [PMID: 38756598 PMCID: PMC11096718 DOI: 10.1016/j.heliyon.2024.e29950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Epilepsy is a chronic, relapsing neurological disorder, and current treatments focus primarily on neurons, yet one-third of patients still develop drug-resistant epilepsy. Therefore, there is an urgent need to explore new therapeutic targets. Interestingly, astrocytes can transfer their healthy mitochondria into neighboring neurons, thus preventing neuronal damage. Astrocyte mitochondria have been shown to have a therapeutic role in stroke and neurodegenerative diseases. However, their therapeutic effect in epilepsy and its related mechanisms have been less studied. In this review, we mainly summarize the regulatory role of astrocyte mitochondria in glutamate, calcium ion, and adenosine triphosphate (ATP) homeostasis and outline the protective role of astrocyte mitochondria in nervous system diseases, revealing a new target for epilepsy treatment.
Collapse
Affiliation(s)
| | | | - Fei Yang
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Tingwan Xu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanying Yu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| |
Collapse
|
9
|
Oliveira RN, Carvalhinho-Lopes PS, Carvalho CPF, Hirata RYS, Vaz SH, Sebastião AM, Armada-Moreira A, Rosário BA, Lemes JA, Soares-Silva B, de Andrade JS, Santos JR, Ribeiro AM, Viana MB. Neuroprotective effects of platinum nanoparticle-based microreactors in bicuculline-induced seizures. Behav Brain Res 2024; 465:114956. [PMID: 38479475 DOI: 10.1016/j.bbr.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.
Collapse
Affiliation(s)
- Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Patrícia S Carvalhinho-Lopes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Adam Armada-Moreira
- Neuronal Dynamics Laboratory, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, Trieste 265 - 34136, Italy
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Beatriz Soares-Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José Ronaldo Santos
- Departamento de Biociências, Universidade Federal de Sergipe, Rua Cláudio Batista, s/n, Cidade Nova Aracaju, Aracaju, Sergipe 49060-108, Brazil
| | - Alessandra M Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil.
| |
Collapse
|
10
|
Yan L, Wu L, Li H, Qian Y, Wang M, Wang Y, Dou B, Yu T. Effect of non-invasive neuromodulation techniques on vascular cognitive impairment: A Bayesian network meta-analysis protocol. PLoS One 2024; 19:e0284447. [PMID: 38175852 PMCID: PMC10766188 DOI: 10.1371/journal.pone.0284447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND VCI is a severe public health problem facing the world today. In addition to pharmacological treatment, non-invasive neuromodulation techniques have also been effective. At this stage, non-invasive neuromodulation techniques combined with pharmacological treatment are the mainstay of clinical treatment, and clinical trials are continuing to be conducted, which is becoming the direction of treatment for VCI. Therefore, we outline this systematic review and network meta-analysis protocol to evaluate and rank clinical data in future studies which can develop optimal protocols for the clinical treatment of VCI with non-invasive neuromodulation techniques in combination with drugs. METHODS The network meta-analysis will search eight databases, including PubMed, Embase, Cochrane Library, Web of Science, China Knowledge Infrastructure Library (CNKI), China Biology Medicine disc (CBM)), Wanfang Data Knowledge Service Platform and Vipshop Journal Service Platform (VIP), for a period of from the establishment of the library to January 30 2022. The quality of the studies will be evaluated using the Cochrane Review's Handbook 5.1 and the PEDro scale to assess the evidence and quality of the included randomised controlled trials. Risk of bias assessment and heterogeneity tests will be performed using the Review Manager 5.4 program, and Bayesian network meta-analysis will be performed using the Stata 16.0 and WinBUGS 1.4.3 program. RESULTS The results of the network meta-analysis will be published in a peer-reviewed journal. CONCLUSIONS Our study is expected to provide high quality evidence-based medical evidence for the treatment of VCI by clinicians. TRIAL REGISTRATION PROSPERO: CRD42022308580.
Collapse
Affiliation(s)
- Long Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Linna Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Hong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China
| | - Yulin Qian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Baomin Dou
- Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
11
|
Neves D, Salazar IL, Almeida RD, Silva RM. Molecular mechanisms of ischemia and glutamate excitotoxicity. Life Sci 2023; 328:121814. [PMID: 37236602 DOI: 10.1016/j.lfs.2023.121814] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Excitotoxicity is classically defined as the neuronal damage caused by the excessive release of glutamate, and subsequent activation of excitatory plasma membrane receptors. In the mammalian brain, this phenomenon is mainly driven by excessive activation of glutamate receptors (GRs). Excitotoxicity is common to several chronic disorders of the Central Nervous System (CNS) and is considered the primary mechanism of neuronal loss of function and cell death in acute CNS diseases (e.g. ischemic stroke). Multiple mechanisms and pathways lead to excitotoxic cell damage including pro-death signaling cascade events downstream of glutamate receptors, calcium (Ca2+) overload, oxidative stress, mitochondrial impairment, excessive glutamate in the synaptic cleft as well as altered energy metabolism. Here, we review the current knowledge on the molecular mechanisms that underlie excitotoxicity, emphasizing the role of Nicotinamide Adenine Dinucleotide (NAD) metabolism. We also discuss novel and promising therapeutic strategies to treat excitotoxicity, highlighting recent clinical trials. Finally, we will shed light on the ongoing search for stroke biomarkers, an exciting and promising field of research, which may improve stroke diagnosis, prognosis and allow better treatment options.
Collapse
Affiliation(s)
- Diogo Neves
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ivan L Salazar
- Multidisciplinary Institute of Ageing, MIA - Portugal, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Raquel M Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal.
| |
Collapse
|
12
|
Alotaibi G, Khan A, Ronan PJ, Lutfy K, Rahman S. Glial Glutamate Transporter Modulation Prevents Development of Complete Freund's Adjuvant-Induced Hyperalgesia and Allodynia in Mice. Brain Sci 2023; 13:807. [PMID: 37239279 PMCID: PMC10216248 DOI: 10.3390/brainsci13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glial glutamate transporter (GLT-1) modulation in the hippocampus and anterior cingulate cortex (ACC) is critically involved in nociceptive pain. The objective of the study was to investigate the effects of 3-[[(2-methylphenyl) methyl] thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, against microglial activation induced by complete Freund's adjuvant (CFA) in a mouse model of inflammatory pain. Furthermore, the effects of LDN-212320 on the protein expression of glial markers, such as ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation molecule 11b (CD11b), mitogen-activated protein kinases (p38), astroglial GLT-1, and connexin 43 (CX43), were measured in the hippocampus and ACC following CFA injection using the Western blot analysis and immunofluorescence assay. The effects of LDN-212320 on the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus and ACC were also assessed using an enzyme-linked immunosorbent assay. Pretreatment with LDN-212320 (20 mg/kg) significantly reduced the CFA-induced tactile allodynia and thermal hyperalgesia. The anti-hyperalgesic and anti-allodynic effects of LDN-212320 were reversed by the GLT-1 antagonist DHK (10 mg/kg). Pretreatment with LDN-212320 significantly reduced CFA-induced microglial Iba1, CD11b, and p38 expression in the hippocampus and ACC. LDN-212320 markedly modulated astroglial GLT-1, CX43, and, IL-1β expression in the hippocampus and ACC. Overall, these results suggest that LDN-212320 prevents CFA-induced allodynia and hyperalgesia by upregulating astroglial GLT-1 and CX43 expression and decreasing microglial activation in the hippocampus and ACC. Therefore, LDN-212320 could be developed as a novel therapeutic drug candidate for chronic inflammatory pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Amna Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Patrick J. Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD 57105, USA
| |
Collapse
|
13
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
14
|
Nassar H, Sippl W, Dahab RA, Taha M. Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv 2023; 13:11278-11290. [PMID: 37057264 PMCID: PMC10087387 DOI: 10.1039/d3ra01145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
GSK3β is a serine/threonine kinase that has been suggested as a putative drug target for several diseases. Recent studies have reported the beneficial effects of cephalosporin antibiotics in cancer and Alzheimer's disease, implying potential inhibition of GSK3β. To investigate this mechanism, four cephalosporins, namely, cefixime, ceftriaxone, cephalexin and cefadroxil were docked into the GSK3β binding pocket. The third-generation cephalosporins, cefixime and ceftriaxone, exhibited the best docking scores due to the exclusive hydrogen bonding between their aminothiazole group and hinge residues of GSK3β. The stability of top-ranked poses and the possibility of covalent bond formation between the carbonyl carbon of the β-lactam ring and the nucleophilic thiol of Cys-199 were evaluated by molecular dynamics simulations and covalent docking. Finally, the in vitro inhibitory activities of the four cephalosporins were measured against GSK3β with and without preincubation. In agreement with the results of molecular docking, cefixime and ceftriaxone exhibited the best inhibitory activities with IC50 values of 2.55 μM and 7.35 μM, respectively. After 60 minutes preincubation with GSK3β, the IC50 values decreased to 0.55 μM for cefixime and 0.78 μM for ceftriaxone, supporting a covalent bond formation as suggested by molecular dynamics simulations and covalent docking. In conclusion, the third-generation cephalosporins are reported herein as GSK3β covalent inhibitors, offering insight into the mechanism behind their benefits in cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Husam Nassar
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Rana Abu Dahab
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| |
Collapse
|
15
|
Zohny SM, Habib MZ, Mohamad MI, Elayat WM, Elhossiny RM, El-Salam MFA, Hassan GAM, Aboul-Fotouh S. Memantine/Aripiprazole Combination Alleviates Cognitive Dysfunction in Valproic Acid Rat Model of Autism: Hippocampal CREB/BDNF Signaling and Glutamate Homeostasis. Neurotherapeutics 2023; 20:464-483. [PMID: 36918475 PMCID: PMC10121975 DOI: 10.1007/s13311-023-01360-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Significant efforts are increasingly directed towards identifying novel therapeutic targets for autism spectrum disorder (ASD) with a rising role of aberrant glutamatergic transmission in the pathogenesis of ASD-associated cellular and behavioral deficits. This study aimed at investigating the role of chronic memantine (20 mg/kg/day) and aripiprazole (3 mg/kg/day) combination therapy in the management of prenatal sodium valproate (VPA)-induced autistic-like/cognitive deficits in male Wistar rats. Pregnant female rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like behaviors in their offspring. Prenatal VPA induced autistic-like symptoms (decreased social interaction and the appearance of stereotyped behavior) with deficits in spatial learning (in Morris water maze) and cognitive flexibility (in the attentional set-shifting task) in addition to decreased hippocampal protein levels of phosphorylated cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and gene expression of glutamate transporter-1 (Glt-1) with a decline in GABA/glutamate ratio (both measured by HPLC). These were accompanied by the appearance of numerous neurofibrillary tangles (NFTs) with enhanced apoptosis in hippocampal sections. Memantine/aripiprazole combination increased the protein levels of p-CREB, BDNF, and Glt-1 gene expression with restoration of GABA/glutamate balance, attenuation of VPA-induced neurodegenerative changes and autistic-like symptoms, and improvement of cognitive performance. This study draws attention to the favorable cognitive effects of memantine/aripiprazole combination in autistic subjects which could be mediated via enhancing CREB/BDNF signaling with increased expression of astrocytic Glt-1 and restoration of GABA/glutamate balance, leading to inhibition of hippocampal NFTs formation and neuronal apoptosis.
Collapse
Affiliation(s)
- Sohir M Zohny
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mohamed Z Habib
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Magda I Mohamad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael M Elayat
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham M Elhossiny
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Ghada A M Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Al Galala, Egypt
- Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sawsan Aboul-Fotouh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, 11566, Egypt
- Clinical Pharmacology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
The role of AMPA and NMDA receptors in mitragynine effects on hippocampal synaptic plasticity. Behav Brain Res 2023; 438:114169. [PMID: 36273648 DOI: 10.1016/j.bbr.2022.114169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
Mitragynine, an indole alkaloid from the plant Mitragyna speciosa (Kratom), has been reported to modify hippocampal synaptic transmission. However, the role of glutamatergic neurotransmission modulating synaptic plasticity in mitragynine-induced synaptic changes is still unknown. Here, we determined the role of AMPA- and NMDA glutamate receptors in mitragynine-induced synaptic plasticity in the hippocampus. Male Sprague Dawley rats received either vehicle or mitragynine (10 mg/kg), with or without the AMPA receptor antagonist, NBQX (3 mg/kg), or the NMDA receptor antagonist, MK-801 (0.2 mg/kg). Field excitatory postsynaptic potentials (fEPSP) during baseline, paired-pulse facilitation (PPF) and long-term potentiation (LTP) were recorded in-vivo in the hippocampal CA1 area of anaesthetised rats. Basal synaptic transmission and LTP were significantly impaired after mitragynine, NBQX, and MK-801 alone, without an effect on PPF. Combined effects suggest a weak functional AMPA- as well as NMDA receptor antagonist action of mitragynine.
Collapse
|
17
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
18
|
Costa G, Ribeiro FF, Sebastião AM, Muir EM, Vaz SH. Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on central axonal regeneration. Front Neurosci 2022; 16:1003145. [PMID: 36440273 PMCID: PMC9682039 DOI: 10.3389/fnins.2022.1003145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 08/26/2023] Open
Abstract
Neuronal regeneration in the central nervous system (CNS) is an important field of research with relevance to all types of neuronal injuries, including neurodegenerative diseases. The glial scar is a result of the astrocyte response to CNS injury. It is made up of many components creating a complex environment in which astrocytes play various key roles. The glial scar is heterogeneous, diverse and its composition depends upon the injury type and location. The heterogeneity of the glial scar observed in different situations of CNS damage and the consequent implications for axon regeneration have not been reviewed in depth. The gap in this knowledge will be addressed in this review which will also focus on our current understanding of central axonal regeneration and the molecular mechanisms involved. The multifactorial context of CNS regeneration is discussed, and we review newly identified roles for components previously thought to solely play an inhibitory role in central regeneration: astrocytes and p75NTR and discuss their potential and relevance for deciding therapeutic interventions. The article ends with a comprehensive review of promising new therapeutic targets identified for axonal regeneration in CNS and a discussion of novel ways of looking at therapeutic interventions for several brain diseases and injuries.
Collapse
Affiliation(s)
- Gonçalo Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Filipa F. Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Elizabeth M. Muir
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Sandra H. Vaz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Hirata RYS, Oliveira RN, Silva MSCF, Armada-Moreira A, Vaz SH, Ribeiro FF, Sebastião AM, Lemes JA, de Andrade JS, Rosário BA, Céspedes IC, Viana MB. Platinum nanoparticle-based microreactors protect against the behavioral and neurobiological consequences of chronic stress exposure. Brain Res Bull 2022; 190:1-11. [PMID: 36089164 DOI: 10.1016/j.brainresbull.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/15/2022]
Abstract
Excitotoxicity is described as the exacerbated activation of glutamate AMPA and NMDA receptors that leads to neuronal damage, and ultimately to cell death. Astrocytes are responsible for the clearance of 80-90% of synaptically released glutamate, preventing excitotoxicity. Chronic stress renders neurons vulnerable to excitotoxicity and has been associated to neuropsychiatric disorders, i.e., anxiety. Microreactors containing platinum nanoparticles (Pt-NP) and glutamate dehydrogenase have shown in vitro activity against excitotoxicity. The purpose of the present study was to investigate the in vivo effects of these microreactors on the behavioral and neurobiological effects of chronic stress exposure. Rats were either unstressed or exposed for 2 weeks to an unpredictable chronic mild stress paradigm (UCMS), administered intra-ventral hippocampus with the microreactors (with or without the blockage of astrocyte functioning), and seven days later tested in the elevated T-maze (ETM; Experiment 1). The ETM allows the measurement of two defensive responses, avoidance and escape, in terms of psychopathology respectively related to generalized anxiety and panic disorder. Locomotor activity in an open field was also measured. Since previous evidence shows that stress inhibits adult neurogenesis, we evaluated the effects of the different treatments on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the dorsal and ventral hippocampus (Experiment 2). Results showed that UCMS induces anxiogenic effects, increases locomotion, and decreases the number of DCX cells in the dorsal and ventral hippocampus, effects that were counteracted by microreactor administration. This is the first study to demonstrate the in vivo efficacy of Pt-NP against the behavioral and neurobiological effects of chronic stress exposure.
Collapse
Affiliation(s)
- Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Mariana S C F Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Adam Armada-Moreira
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Bredgatan 33, 602 21 Norrköping, Sweden
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Filipa F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil
| | - Isabel C Céspedes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, 04023-900 São Paulo, SP, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, 11015-020 Santos, São Paulo, Brazil.
| |
Collapse
|
20
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
21
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
22
|
Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D, Nampoothiri M. Astrocytic Glutamatergic Transmission and Its Implications in Neurodegenerative Disorders. Cells 2022; 11:cells11071139. [PMID: 35406702 PMCID: PMC8997779 DOI: 10.3390/cells11071139] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022] Open
Abstract
Several neurodegenerative disorders involve impaired neurotransmission, and glutamatergic neurotransmission sets a prototypical example. Glutamate is a predominant excitatory neurotransmitter where the astrocytes play a pivotal role in maintaining the extracellular levels through release and uptake mechanisms. Astrocytes modulate calcium-mediated excitability and release several neurotransmitters and neuromodulators, including glutamate, and significantly modulate neurotransmission. Accumulating evidence supports the concept of excitotoxicity caused by astrocytic glutamatergic release in pathological conditions. Thus, the current review highlights different vesicular and non-vesicular mechanisms of astrocytic glutamate release and their implication in neurodegenerative diseases. As in presynaptic neurons, the vesicular release of astrocytic glutamate is also primarily meditated by calcium-mediated exocytosis. V-ATPase is crucial in the acidification and maintenance of the gradient that facilitates the vesicular storage of glutamate. Along with these, several other components, such as cystine/glutamate antiporter, hemichannels, BEST-1, TREK-1, purinergic receptors and so forth, also contribute to glutamate release under physiological and pathological conditions. Events of hampered glutamate uptake could promote inflamed astrocytes to trigger repetitive release of glutamate. This could be favorable towards the development and worsening of neurodegenerative diseases. Therefore, across neurodegenerative diseases, we review the relations between defective glutamatergic signaling and astrocytic vesicular and non-vesicular events in glutamate homeostasis. The optimum regulation of astrocytic glutamatergic transmission could pave the way for the management of these diseases and add to their therapeutic value.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.S.); (S.L.B.); (P.C.G.); (J.M.)
- Correspondence:
| |
Collapse
|
23
|
Huang Y, Li D, Wang C, Sun N, Zhou WX. Stachyose Alleviates Corticosterone-Induced Long-Term Potentiation Impairment via the Gut–Brain Axis. Front Pharmacol 2022; 13:799244. [PMID: 35370743 PMCID: PMC8965576 DOI: 10.3389/fphar.2022.799244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Stress can induce learning and memory impairment; corticosterone is often used to study the effects and mechanisms of stress in animal models. Long-term potentiation (LTP) has been widely used for tackling the mechanisms of memory. Liuwei Dihuang decoction-active fraction combination (LW-AFC) can improve stress-induced LTP and cognition impairment; stachyose is an oligosaccharide in LW-AFC. The effects and mechanisms of stachyose on stress are unknown. In this study, stachyose showed protective effects against LTP impairment by corticosterone in vivo only via intragastric administration for 7 consecutive days, but there was little effect even after direct intracerebroventricular injection; the protective effect of stachyose could be canceled by non-absorbable antibiotics (ATB) which disturbed gut flora. 16S rRNA sequencing, alpha diversity, and principal coordinate analysis (PCoA) revealed that the gut flora in corticosterone-treated mice was disturbed and stachyose could improve corticosterone-induced gut flora disturbance. Bacteroidetes were decreased and Deferribacteres were increased significantly in corticosterone-treated mice, and stachyose restored Bacteroidetes and Deferribacteres to the normal level. D-serine, a coactivator of NMDA receptors, plays an important role in synaptic plasticity and cognition. Here, corticosterone had little effect on the content of D-serine and L-serine (the precursor of D-serine), but it reduced the D-serine release-related proteins, Na+-independent alanine–serine–cysteine transporter-1 (ASC-1), and vesicle-associated membrane protein 2 (VAMP2) significantly in hippocampus; stachyose significantly increased ASC-1 and VAMP2 in corticosterone-treated mice, and ATB blocked stachyose’s effects on ASC-1 and VAMP2. NMDA receptors co-agonists L-serine, D-serine, and glycine significantly improved LTP impairment by corticosterone. These results indicated that stachyose might indirectly increase D-serine release through the gut–brain axis to improve LTP impairment by corticosterone in the hippocampus in vivo.
Collapse
Affiliation(s)
- Yan Huang
- *Correspondence: Yan Huang, ; Wen-Xia Zhou,
| | | | | | | | | |
Collapse
|
24
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
25
|
Spiers JG, Vassileff N, Hill AF. Neuroinflammatory Modulation of Extracellular Vesicle Biogenesis and Cargo Loading. Neuromolecular Med 2022; 24:385-391. [PMID: 35181852 DOI: 10.1007/s12017-022-08704-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests neuroinflammation is a highly coordinated response involving multiple cell types and utilising several different forms of cellular communication. In addition to the well documented cytokine and chemokine messengers, extracellular vesicles (EVs) have emerged as key regulators of the inflammatory response. EVs act as vectors of intercellular communication, capable of travelling between different cells and tissues to deliver selectively packaged protein, miRNA, and lipids from the parent cell. During neuroinflammation, EVs transmit specific inflammatory mediators, particularly from microglia, to promote inflammatory resolution. This mini-review will highlight the novel neuroinflammatory mechanisms contributing to the biogenesis and selective packaging of EVs.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Natasha Vassileff
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
26
|
Potier B, Lallemant L, Parrot S, Huguet-Lachon A, Gourdon G, Dutar P, Gomes-Pereira M. DM1 Transgenic Mice Exhibit Abnormal Neurotransmitter Homeostasis and Synaptic Plasticity in Association with RNA Foci and Mis-Splicing in the Hippocampus. Int J Mol Sci 2022; 23:ijms23020592. [PMID: 35054778 PMCID: PMC8775431 DOI: 10.3390/ijms23020592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.
Collapse
Affiliation(s)
- Brigitte Potier
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Louison Lallemant
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Sandrine Parrot
- Lyon Neuroscience Research Center, Inserm U1028, CNRS UMR5292, Université Lyon 1, 69500 Bron, France;
| | - Aline Huguet-Lachon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
| | - Geneviève Gourdon
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| | - Patrick Dutar
- LuMIn, CNRS FRE2036, ENS Paris-Saclay, CentraleSupelec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; (B.P.); (P.D.)
| | - Mário Gomes-Pereira
- Centre de Recherche en Myologie, Institut de Myologie, Inserm, Sorbonne Université, 75013 Paris, France; (L.L.); (A.H.-L.)
- Correspondence: (G.G.); (M.G.-P.)
| |
Collapse
|
27
|
Quilgars C, Cazalets JR, Bertrand SS. Developmentally Regulated Modulation of Lumbar Motoneurons by Metabotropic Glutamate Receptors: A Cellular and Behavioral Analysis in Newborn Mice. Front Cell Neurosci 2021; 15:770250. [PMID: 34955751 PMCID: PMC8699010 DOI: 10.3389/fncel.2021.770250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
The present study explores the impact of metabotropic glutamate receptor (mGluR) activation on activity-dependent synaptic plasticity (ADSP) and the intrinsic membrane properties of lumbar motoneurons (MNs) using a combination of biochemical, pharmacological, electrophysiological and behavioral techniques. Using spinal cord slices from C57BL/6JRJ mice at two developmental stages, 1-3 and 8-12 postnatal days (P1-P3; P8-P12, respectively), we found that ADSP expressed at glutamatergic synapses between axons conveyed in the ventrolateral funiculus (VLF) and MNs, involved mGluR activation. Using specific agonists of the three groups of mGluRs, we observed that mGluR stimulation causes subtype-specific and developmentally regulated modulation of the ADSP and synaptic transmission at VLF-MN synapses as well as the intrinsic membrane properties of MNs. RT-qPCR analysis revealed a downregulation of mGluR gene expression with age in the ventral part of the lumbar spinal cord. Interestingly, the selective harvest by laser microdissection of MNs innervating the Gastrocnemius and Tibialis anterior muscles unraveled that the level of Grm2 expression is higher in Tibialis MNs compared to Gastrocnemius MNs suggesting a specific mGluR gene expression profile in these two MN pools. Finally, we assessed the functional impact of mGluR modulation on electrically induced bouts of fictive locomotion in the isolated spinal cord preparation of P1-P3 mice, and in vivo during spontaneous episodes of swimming activity in both P1-P3 and P8-P12 mouse pups. We observed that the mGluR agonists induced distinct and specific effects on the motor burst amplitudes and period of the locomotor rhythms tested and that their actions are function of the developmental stage of the animals. Altogether our data show that the metabotropic glutamatergic system exerts a complex neuromodulation in the developing spinal lumbar motor networks and provide new insights into the expression and modulation of ADSP in MNs.
Collapse
Affiliation(s)
- Camille Quilgars
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| | - Jean-René Cazalets
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| | - Sandrine S Bertrand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| |
Collapse
|
28
|
Sood A, Preeti K, Fernandes V, Khatri DK, Singh SB. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration. J Neurosci Res 2021; 99:3148-3189. [PMID: 34748682 DOI: 10.1002/jnr.24977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
The imbalance between glutamate and γ-aminobutyric acid (GABA) results in the loss of synaptic strength leading to neurodegeneration. The dogma on the field considered neurons as the main players in this excitation-inhibition (E/I) balance. However, current strategies focusing only on neurons have failed to completely understand this condition, bringing up the importance of glia as an alternative modulator for neuroinflammation as glia alter the activity of neurons and is a source of both neurotrophic and neurotoxic factors. This review's primary goal is to illustrate the role of glia over E/I balance in the central nervous system and its interaction with neurons. Rather than focusing only on the neuronal targets, we take a deeper look at glial receptors and proteins that could also be explored as drug targets, as they are early responders to neurotoxic insults. This review summarizes the neuron-glia interaction concerning GABA and glutamate, possible targets, and its involvement in the E/I imbalance in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
29
|
Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, Bashirzade AA, Dubrovina NI, Aftanas LI. Neuroprotective Effects of Ceftriaxone Involve the Reduction of Aβ Burden and Neuroinflammatory Response in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:736786. [PMID: 34658774 PMCID: PMC8511453 DOI: 10.3389/fnins.2021.736786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aβ) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aβ deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aβ. Mice were injected bilaterally i.c.v. with Aβ fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aβ neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Anna A Akopyan
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Michael V Tenditnik
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Marina V Ovsyukova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Alim A Bashirzade
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Faculty of Life Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina I Dubrovina
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,Department of Clinical Neuroscience, Behavior and Neurotechnologies, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| |
Collapse
|
30
|
Wang C, Yu Q, Li D, Sun N, Huang Y, Zhang YX, Zhou WX. Reduced D-Serine Release May Contribute to Impairment of Long-Term Potentiation by Corticosterone in the Perforant Path-Dentate Gyrus. Neurochem Res 2021; 46:2359-2375. [PMID: 34146194 DOI: 10.1007/s11064-021-03380-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023]
Abstract
Long-term potentiation (LTP) is a neurobiological mechanism of cognitive function, and the N-methyl-D-aspartate (NMDA) receptors is fundamental for LTP. Previous studies showed that over activation of NMDA receptors may be a crucial cause of LTP and cognitive impairment induced by stress or corticosterone. However, other studies showed that the function of NMDA receptors is insufficient since the NMDA receptors co-agonist D-serine could improve stress-induced cognitive impairment. The purpose of this study is to clarify whether over activation of NMDA receptors or hypofunction of NMDA receptors is involved in hippocampal impairment of LTP by corticosterone and the underlying mechanisms. Results showed that hippocampal LTP and object location recognition memory were impaired in corticosterone-treated mice. Corticosterone increased the glutamate level in hippocampal tissues, neither NMDA receptors antagonist nor its subtype antagonists alleviated impairment of LTP, while enhancing the function of NMDA receptors by D-serine did alleviate impairment of LTP by corticosterone, suggesting that hypofunction of NMDA receptors might be one of the main reasons for impairment of LTP by corticosterone. Further results showed that the level of D-serine and its precursor L-serine did not change. D-serine release-related protein Na+-independent alanine-serine-cysteine transporter-1 (ASC-1) in the cell membrane was decreased and increasing D-serine release by the selective activator of ASC-1 antiporter activity alleviated impairment of LTP by corticosterone. Taken together, this study demonstrates that hypofunction of NMDA receptors may be involved in impairment of LTP by corticosterone and reduced D-serine release may be an important reason for its hypofunction, which is an important complement to existing mechanisms of corticosterone-induced LTP and cognitive impairment.
Collapse
Affiliation(s)
- Chen Wang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Qi Yu
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Dong Li
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Na Sun
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| | - Yong-Xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Tai Ping Road 27, Beijing, 100850, China.
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China.
| |
Collapse
|
31
|
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44:837-848. [PMID: 34334233 DOI: 10.1016/j.tins.2021.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Activity-dependent long-term changes in synaptic transmission known as synaptic plasticity are fundamental processes in brain function and are recognized as the cellular basis of learning and memory. While the neuronal mechanisms underlying synaptic plasticity have been largely identified, the involvement of astrocytes in these processes has been less recognized. However, astrocytes are emerging as important cells that regulate synaptic function by interacting with neurons at tripartite synapses. In this review, we discuss recent evidence suggesting that astrocytes are necessary elements in long-term synaptic depression (LTD). We highlight the mechanistic heterogeneity of astrocyte contribution to this form of synaptic plasticity and propose that astrocytes are integral participants in LTD.
Collapse
Affiliation(s)
- Caitlin Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Kumari S, Deshmukh R. β-lactam antibiotics to tame down molecular pathways of Alzheimer's disease. Eur J Pharmacol 2021; 895:173877. [PMID: 33453224 DOI: 10.1016/j.ejphar.2021.173877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a multifactorial disorder characterized by extracellular accumulation of amyloid-β (Aβ) and intracellular accumulations of neurofibrillary tangles. Numerous drug targets have been explored for therapeutic efficacy but failed to deliver successful treatments clinically. However, over the years our understanding of the disease pathophysiology increased significantly. Many of the novel targets which can cure or modify disease pathology are being explored preclinically as well as clinically. On contrarily, the drug discovery and development process is lengthy and the cost involved makes it difficult for faster translation of therapeutic outcomes. Therefore, repurposing existing drugs for a new therapeutic indication is considered a better approach and helps in the fast translation of therapeutic information. The existing drugs have well-proven records on their safety, pharmacokinetics, etc. In recent years, beta (β)-lactam antibiotics have been repurposed for the management of neurodegenerative pathologies. Here in the current review, we have explored β-lactam antibiotics, their target sites, molecular mechanisms, and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|
33
|
Wijtenburg SA, West J, Korenic SA, Kuhney F, Gaston FE, Chen H, Rowland LM. Multimodal Neuroimaging Study of Visual Plasticity in Schizophrenia. Front Psychiatry 2021; 12:644271. [PMID: 33868055 PMCID: PMC8046908 DOI: 10.3389/fpsyt.2021.644271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Schizophrenia is a severe mental illness with visual learning and memory deficits, and reduced long term potentiation (LTP) may underlie these impairments. Recent human fMRI and EEG studies have assessed visual plasticity that was induced with high frequency visual stimulation, which is thought to mimic an LTP-like phenomenon. This study investigated the differences in visual plasticity in participants with schizophrenia and healthy controls. An fMRI visual plasticity paradigm was implemented, and proton magnetic resonance spectroscopy data were acquired to determine whether baseline resting levels of glutamatergic and GABA metabolites were related to visual plasticity response. Adults with schizophrenia did not demonstrate visual plasticity after family-wise error correction; whereas, the healthy control group did. There was a significant regional difference in visual plasticity in the left visual cortical area V2 when assessing group differences, and baseline GABA levels were associated with this specific ROI in the SZ group only. Overall, this study suggests that visual plasticity is altered in schizophrenia and related to basal GABA levels.
Collapse
Affiliation(s)
- S Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeffrey West
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephanie A Korenic
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Franchesca Kuhney
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Frank E Gaston
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hongji Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Toricelli M, Pereira AAR, Souza Abrao G, Malerba HN, Maia J, Buck HS, Viel TA. Mechanisms of neuroplasticity and brain degeneration: strategies for protection during the aging process. Neural Regen Res 2021; 16:58-67. [PMID: 32788448 PMCID: PMC7818866 DOI: 10.4103/1673-5374.286952] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual’s vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer’s disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.
Collapse
Affiliation(s)
- Mariana Toricelli
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Arthur Antonio Ruiz Pereira
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Guilherme Souza Abrao
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Helena Nascimento Malerba
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Julia Maia
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| | - Hudson Sousa Buck
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Tania Araujo Viel
- Laboratory of Neurobiology of Aging, School of Arts, Sciences and Humanities, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Chiang VSC, Park JH. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters, and Steroid Independence. Front Behav Neurosci 2020; 14:589882. [PMID: 33328921 PMCID: PMC7732465 DOI: 10.3389/fnbeh.2020.589882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
The survival of animal species predicates on the success of sexual reproduction. Neurotransmitters play an integral role in the expression of these sexual behaviors in the brain. Here, we review the role of glutamate in sexual behavior in rodents and non-rodent species for both males and females. These encompass the release of glutamate and correlations with glutamate receptor expression during sexual behavior. We then present the effects of glutamate on sexual behavior, as well as the effects of antagonists and agonists on different glutamate transporters and receptors. Following that, we discuss the potential role of glutamate on steroid-independent sexual behavior. Finally, we demonstrate the interaction of glutamate with other neurotransmitters to impact sexual behavior. These sexual behavior studies are crucial in the development of novel treatments of sexual dysfunction and in furthering our understanding of the complexity of sexual diversity. In the past decade, we have witnessed the burgeoning of novel techniques to study and manipulate neuron activity, to decode molecular events at the single-cell level, and to analyze behavioral data. They pose exciting avenues to gain further insight into future sexual behavior research. Taken together, this work conveys the essential role of glutamate in sexual behavior.
Collapse
Affiliation(s)
- Vic Shao-Chih Chiang
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Jin Ho Park
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
36
|
Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020. [PMID: 33193753 DOI: 10.1155/2020/8820881.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
|
37
|
Armada-Moreira A, Coelho JE, Lopes LV, Sebastião AM, Städler B, Vaz SH. Multicompartment Microreactors Prevent Excitotoxic Dysfunctions In Rat Primary Cortical Neurons. ACTA ACUST UNITED AC 2020; 4:e2000139. [PMID: 32869522 DOI: 10.1002/adbi.202000139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Excitotoxicity is a cellular phenomenon that comprises the consequences of toxic actions of excitatory neurotransmitters, such as glutamate. This process is usually related to overproduction of reactive oxygen species (ROS) and ammonia (NH4 + ) toxicity. Platinum nanoparticle (Pt-NP)-based microreactors able to degrade hydrogen peroxide (H2 O2 ) and NH4 + , are previously described as a novel therapeutical approach against excitotoxicity, conferring protection to neuroblasts. Now, it is demonstrated that these microreactors are compatible with rat primary cortical neurons, show high levels of neuronal membrane interaction, and are able to improve cell survival and neuronal activity when neurons are exposed to H2 O2 or NH4 + . Additionally, more complex microreactors are assembled, including enzyme-loaded liposomes containing glutamate dehydrogenase and glutathione reductase, in addition to Pt-NP. The in vitro activity of these microreactors is characterized and they are compared to the Pt-NP-based microreactors in terms of biological activity, concluding that they enhance cell viability similarly or more extensively than the latter. Extracellular electrophysiological recordings demonstrate that these microreactors rescue neuronal functionality lost upon incubation with H2 O2 or NH4 + . This study provides more evidence for the potential application of these microreactors in a biomedical context with more complex cellular environments.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, Lisboa, 1649-028, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal
| |
Collapse
|
38
|
Nonose Y, Pieper LZ, da Silva JS, Longoni A, Apel RV, Meira-Martins LA, Grings M, Leipnitz G, Souza DO, de Assis AM. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res 2020; 1748:147080. [PMID: 32866546 DOI: 10.1016/j.brainres.2020.147080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Glutamate (Glu) is the main mammalian brain neurotransmitter. Concerning the glutamatergic neurotransmission, excessive levels of glutamate in the synaptic cleft are extremally harmful. This phenomenon, named as excitotoxicity is involved in various acute and chronic brain diseases. Guanosine (GUO), an endogenous guanine nucleoside, possesses neuroprotective effects in several experimental models of glutamatergic excitotoxicity, an effect accompanied by an increase in astrocytic glutamate uptake. Therefore, the objective of this study was to investigate the involvement of an additional putative parameter, glutamate oxidation to CO2, involved in ex-vivo GUO neuroprotective effects in mouse hippocampal slices submitted to glutamatergic excitotoxicity. Mice were sacrificed by decapitation, the hippocampi were removed and sliced. The slices were incubated for various times and concentrations of Glu and GUO. First, the concentration of Glu that produced an increase in L-[14C(U)]-Glu oxidation to CO2 without cell injury was determined at different time points (between 0 and 90 min); 1000 μM Glu increased Glu oxidation between 30 and 60 min of incubation without cell injury. Under these conditions (Glu concentration and incubation time), 100 μM GUO increased Glu oxidation (35%). Additionally, 100 μM GUO increased L-[3,4-3H]-glutamate uptake (45%) in slices incubated with 1000 μM Glu (0-30 min). Furthermore, 1000 μM Glu increased reactive species levels, SOD activity, and decreased GPx activity, and GSH content after 30 and 60 min; 100 μM GUO prevented these effects. This is the first study demonstrating that GUO simultaneously promoted an increase in the uptake and utilization of Glu in excitotoxicity-like conditions preventing redox imbalance.
Collapse
Affiliation(s)
- Y Nonose
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L Z Pieper
- Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - J S da Silva
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - A Longoni
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| | - R V Apel
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - L A Meira-Martins
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - M Grings
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - G Leipnitz
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil
| | - D O Souza
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil.
| | - A M de Assis
- Graduate Program in Biological Sciences: Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS 90035-003, Brazil; Graduate Program in Health and Behavior, Center of Health Science, Universidade Católica de Pelotas - UCPel, Pelotas, RS 96015-560, Brazil
| |
Collapse
|
39
|
Srivastava I, Vazquez-Juarez E, Lindskog M. Reducing Glutamate Uptake in Rat Hippocampal Slices Enhances Astrocytic Membrane Depolarization While Down-Regulating CA3-CA1 Synaptic Response. Front Synaptic Neurosci 2020; 12:37. [PMID: 32973483 PMCID: PMC7461906 DOI: 10.3389/fnsyn.2020.00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
The majority of synaptic activity in the brain consists of glutamatergic transmission, and there are numerous mechanisms, both intra- and inter-cellular that regulate this excitatory synaptic activity. Importantly, uptake of glutamate plays an important role and a reduced level of astrocytic glutamate transporters affect the normally balanced neurotransmission and is observed in many mental disorders. However, reduced glutamate uptake affects many different synaptic mechanisms in the astrocyte as well as in the neuron, and the effects are challenging to delineate. Combining electrophysiological recordings from neurons and astrocytes as well as extracellular glutamate recordings in rat hippocampal slices, we confirmed previous work showing that synaptic stimulation induces a long-lasting depolarization of the astrocytic membrane that is dependent on inward-rectifier potassium channels. We further showed that when glutamate transporters are blocked, this astrocytic depolarization is greatly enhanced although synaptic responses are reduced. We propose that increasing the levels of synaptic glutamate through blocking glutamate transporters reduces the AMPA-mediated synaptic response while the NMDA receptor current increases, contributing to a rise in extracellular K+ leading to enhanced astrocytic depolarization.
Collapse
Affiliation(s)
- Ipsit Srivastava
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Erika Vazquez-Juarez
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Lindskog
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
40
|
Li C, Huang L, Jia X, Zhao B, Chen L, Liu Y. Functional glutamate transporters are expressed in the carotid chemoreceptor. Respir Res 2020; 21:208. [PMID: 32771007 PMCID: PMC7414757 DOI: 10.1186/s12931-020-01468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The carotid body (CB) plays a critical role in cyclic intermittent hypoxia (CIH)-induced chemosensitivity; however, the underlying mechanism remains uncertain. We have demonstrated the presence of multiple inotropic glutamate receptors (iGluRs) in CB, and that CIH exposure alters the level of some iGluRs in CB. This result implicates glutamatergic signaling in the CB response to hypoxia. The glutamatergic neurotransmission is not only dependent on glutamate and glutamate receptors, but is also dependent on glutamate transporters, including vesicular glutamate transporters (VGluTs) and excitatory amino acid transporters (EAATs). Here, we have further assessed the expression and distribution of VGluTs and EAATs in human and rat CB and the effect of CIH exposure on glutamate transporters expression. METHODS The mRNA of VGluTs and EAATs in the human CB were detected by RT-PCR. The protein expression of VGluTs and EAATs in the human and rat CB were detected by Western blot. The distribution of VGluT3, EAAT2 and EAAT3 were observed by immunohistochemistry staining and immunofluorescence staining. Male Sprague-Dawley (SD) rats were exposed to CIH (FIO2 10-21%, 3 min/3 min for 8 h per day) for 2 weeks. The unpaired Student's t-test was performed. RESULTS Here, we report on the presence of mRNAs for VGluT1-3 and EAAT1-3 in human CB, which is consistent with our previous results in rat CB. The proteins of VGluT1 and 3, EAAT2 and 3, but not VGluT2 and EAAT1, were detected with diverse levels in human and rat CB. Immunostaining showed that VGluT3, the major type of VGluTs in CB, was co-localized with tyrosine hydroxylase (TH) in type I cells. EAAT2 and EAAT3 were distributed not only in type I cells, but also in glial fibrillary acidic protein (GFAP) positive type II cells. Moreover, we found that exposure of SD rats to CIH enhanced the protein level of EAAT3 as well as TH, but attenuated the levels of VGluT3 and EAAT2 in CB. CONCLUSIONS Our study suggests that glutamate transporters are expressed in the CB, and that glutamate transporters may contribute to glutamatergic signaling-dependent carotid chemoreflex to CIH.
Collapse
Affiliation(s)
- Chaohong Li
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, 88 Jiankang Road, Weihui, 453100, Henan, China
| | - Lu Huang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, 88 Jiankang Road, Weihui, 453100, Henan, China
| | - Xianglei Jia
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, 88 Jiankang Road, Weihui, 453100, Henan, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Lingyun Chen
- Operating Room, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Yuzhen Liu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neural Regeneration and Repairment, Henan Neurology Institute, 88 Jiankang Road, Weihui, 453100, Henan, China.
| |
Collapse
|
41
|
Fan W, Liang C, Ou M, Zou T, Sun F, Zhou H, Cui L. MicroRNA-146a Is a Wide-Reaching Neuroinflammatory Regulator and Potential Treatment Target in Neurological Diseases. Front Mol Neurosci 2020; 13:90. [PMID: 32581706 PMCID: PMC7291868 DOI: 10.3389/fnmol.2020.00090] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Progressive functional deterioration and loss of neurons underlies neurological diseases and constitutes an important cause of disability and death worldwide. The causes of various types of neurological diseases often share several critical nerve-related cellular mechanisms and pathological features, particularly the neuroinflammatory response in the nervous system. A rapidly growing body of evidence indicates that various microRNAs play pivotal roles in these processes in neurological diseases and might be viable therapeutic targets. Among these microRNAs, microRNA-146a (miR-146a) stands out due to the rapid increase in recent literature on its mechanistic involvement in neurological diseases. In this review, we summarize and highlight the critical role of miR-146a in neurological diseases. MiR-146a polymorphisms are associated with the risk of neurological disease. Alterations in miR-146a expression levels are crucial events in the pathogenesis of numerous neurological diseases that are spatially and temporally diverse. Additionally, the target genes of miR-146a are involved in the regulation of pathophysiological processes in neurological diseases, particularly the neuroinflammatory response. In summary, miR-146a mainly plays a critical role in neuroinflammation during the progression of neurological diseases and might be a prospective biomarker and therapeutic target. Understanding the mechanisms by which miR-146a affects the neuroinflammatory response in different neurological injuries, different cell types, and even different stages of certain neurological diseases will pave the way for its use as a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Zou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
42
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Zhang K, Liu R, Gao Y, Ma W, Shen W. Electroacupuncture Relieves LPS-Induced Depression-Like Behaviour in Rats Through IDO-Mediated Tryptophan-Degrading Pathway. Neuropsychiatr Dis Treat 2020; 16:2257-2266. [PMID: 33116524 PMCID: PMC7547135 DOI: 10.2147/ndt.s274778] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation is an important pathological mechanism of depression that leads to an increase in indoleamine-2,3-dioxygenase (IDO) activity and NMDAR activation. This study aimed to observe the effects of electroacupuncture on depression-like behaviour in lipopolysaccharide (LPS)-treated rats and the underlying mechanism. METHODS Wistar rats were intraperitoneally administered LPS (0.5 mg/kg) for 7 consecutive days to establish a depression model. Electroacupuncture treatment was administered 1 hour after daily LPS injection. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to evaluate the depressive-like behaviours. IL-1β, IL-6, and TNF-α levels were determined by enzyme-linked immunosorbent assay (ELISA); Trp, 5-hydroxytryptamine (5-HT), kynurenine (Kyn) and quinolinic acid (Quin) were detected by ultra-high-performance liquid chromatography-tandem mass spectrometry; and N-methyl-D-aspartate receptor (NMDAR) protein and mRNA were assessed by Western blot and real-time qPCR. RESULTS The results showed that electroacupuncture treatment successfully corrected LPS-induced depressive-like behaviour, reduced the inflammatory factor (IL-1β, IL-6 and TNF-α) levels in the blood and hippocampus, prevented IDO over-activation and recovered NR2B expression after challenge by LPS. CONCLUSION Electroacupuncture treatment provided protection against LPS-induced depressive-like behaviour, and the associated mechanisms may be related to inhibiting the inflammatory response, regulating the IDO-mediated tryptophan-degrading pathway, and inhibiting NR2B activation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ran Liu
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuan Gao
- Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wen Ma
- Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Cantone M, Lanza G, Fisicaro F, Pennisi M, Bella R, Di Lazzaro V, Di Pino G. Evaluation and Treatment of Vascular Cognitive Impairment by Transcranial Magnetic Stimulation. Neural Plast 2020; 2020:8820881. [PMID: 33193753 PMCID: PMC7641667 DOI: 10.1155/2020/8820881] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The exact relationship between cognitive functioning, cortical excitability, and synaptic plasticity in dementia is not completely understood. Vascular cognitive impairment (VCI) is deemed to be the most common cognitive disorder in the elderly since it encompasses any degree of vascular-based cognitive decline. In different cognitive disorders, including VCI, transcranial magnetic stimulation (TMS) can be exploited as a noninvasive tool able to evaluate in vivo the cortical excitability, the propension to undergo neural plastic phenomena, and the underlying transmission pathways. Overall, TMS in VCI revealed enhanced cortical excitability and synaptic plasticity that seem to correlate with the disease process and progression. In some patients, such plasticity may be considered as an adaptive response to disease progression, thus allowing the preservation of motor programming and execution. Recent findings also point out the possibility to employ TMS to predict cognitive deterioration in the so-called "brains at risk" for dementia, which may be those patients who benefit more of disease-modifying drugs and rehabilitative or neuromodulatory approaches, such as those based on repetitive TMS (rTMS). Finally, TMS can be exploited to select the responders to specific drugs in the attempt to maximize the response and to restore maladaptive plasticity. While no single TMS index owns enough specificity, a panel of TMS-derived measures can support VCI diagnosis and identify early markers of progression into dementia. This work reviews all TMS and rTMS studies on VCI. The aim is to evaluate how cortical excitability, plasticity, and connectivity interact in the pathophysiology of the impairment and to provide a translational perspective towards novel treatments of these patients. Current pitfalls and limitations of both studies and techniques are also discussed, together with possible solutions and future research agenda.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- 1Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta 93100, Italy
| | - Giuseppe Lanza
- 2Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
- 3Department of Neurology IC, Oasi Research Institute–IRCCS, Troina 94108, Italy
| | - Francesco Fisicaro
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Manuela Pennisi
- 4Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Rita Bella
- 5Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania 95123, Italy
| | - Vincenzo Di Lazzaro
- 6Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Giovanni Di Pino
- 7Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|